Research article

Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions

  • Received: 14 July 2024 Revised: 02 August 2024 Accepted: 07 August 2024 Published: 26 August 2024
  • MSC : 93C40, 93D23

  • In this paper, we investigated the adaptive exponential synchronization problem of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. A stochastic variable with a Bernoulli distribution was utilized to transform the information regarding probabilistic delays into a model featuring deterministic time delays and stochastic parameters. In the context of adaptive controllers, exponential synchronization conditions depending on the delay, noise intensity, and impulse factor were derived using Lyapunov-Krasovskii functions, the nature of Lévy noise, and some inequality methods. To provide further support for the proposed approach, two numerical illustrations were presented.

    Citation: Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu. Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions[J]. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214

    Related Papers:

  • In this paper, we investigated the adaptive exponential synchronization problem of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. A stochastic variable with a Bernoulli distribution was utilized to transform the information regarding probabilistic delays into a model featuring deterministic time delays and stochastic parameters. In the context of adaptive controllers, exponential synchronization conditions depending on the delay, noise intensity, and impulse factor were derived using Lyapunov-Krasovskii functions, the nature of Lévy noise, and some inequality methods. To provide further support for the proposed approach, two numerical illustrations were presented.



    加载中


    [1] M. Lungu, R. Lungu, Automatic control of aircraft lateral-directional motion during landing using neural networks and radio-technical subsystems, Neurocomputing, 171 (2016), 471–481. https://doi.org/10.1016/j.neucom.2015.06.084 doi: 10.1016/j.neucom.2015.06.084
    [2] G. W. Han, Z. F. Kuang, L. Deng, MSCNE: Predict miRNA-disease associations using neural network based on multi-source biological information, IEEE-ACM Trans. Comput. Bio. Bioinf., 19 (2022), 2926–2937. https://doi.org/10.1109/TCBB.2021.3106006 doi: 10.1109/TCBB.2021.3106006
    [3] J. Jiang, P. Trundle, J. Ren, Medical image analysis with artificial neural networks, Comput. Medical Imag. Graph., 34 (2010), 617–631. https://doi.org/10.1016/j.compmedimag.2010.07.003 doi: 10.1016/j.compmedimag.2010.07.003
    [4] T. A. Tutunji, Parametric system identification using neural networks, Appl. Soft Comput., 47 (2016), 251–261. https://doi.org/10.1016/j.asoc.2016.05.012 doi: 10.1016/j.asoc.2016.05.012
    [5] P. Fries, J. H. Reynolds, A. L. Rorie, R. Desimone, Modulation of oscillatory neuronal synchronization by selective visual attention, Science, 291 (2001), 1560–1563. https://doi.org/10.1126/science.1055465 doi: 10.1126/science.1055465
    [6] J. Zhou, X. Q. Wu, W. W. Yu, M. Small, J. Lu, Pinning synchronization of delayed neural networks, Chaos, 18 (2008), 043111. https://doi.org/10.1063/1.2995852 doi: 10.1063/1.2995852
    [7] J. J. Huang, C. D. Li, T. W. Huang, X. He, Finite-time lag synchronization of delayed neural networks, Neurocomputing, 139 (2014), 145–149. https://doi.org/10.1016/j.neucom.2014.02.050 doi: 10.1016/j.neucom.2014.02.050
    [8] H. J. Wu, Y. M. Feng, Z. W. Tu, J. Zhong, Q. S. Zeng, Exponential synchronization of memristive neural networks with time delays, Neurocomputing, 297 (2018), 1–7. https://doi.org/10.1016/j.neucom.2018.01.017 doi: 10.1016/j.neucom.2018.01.017
    [9] S. Zhu, H. B. Bao, Event-triggered synchronization of coupled memristive neural networks, Appl. Math. Comput., 415 (2022), 126715. https://doi.org/10.1016/j.amc.2021.126715 doi: 10.1016/j.amc.2021.126715
    [10] J. Zhang, Y. B. Gao, Synchronization of coupled neural networks with time-varying delay, Neurocomputing, 279 (2017), 154–162. https://doi.org/10.1016/j.neucom.2016.09.004 doi: 10.1016/j.neucom.2016.09.004
    [11] J. L. Wang, Q. Wang, H. N. Wu, T. W. Huang, Finite-time output synchronization and $H_{\infty}$ output synchronization of coupled neural networks with multiple output couplings, IEEE Trans. Cyber., 51 (2021), 6041–6053. https://doi.org/10.1109/TCYB.2020.2964592 doi: 10.1109/TCYB.2020.2964592
    [12] L. Feng, C. Hu, J. Yu, H. J. Jiang, S. P. Wen, Fixed-time synchronization of coupled memristive complex-valued neural networks, Chaos Solitons Fract., 148 (2021), 110993. https://doi.org/10.1016/j.chaos.2021.110993 doi: 10.1016/j.chaos.2021.110993
    [13] W. N. Zhou, Q. Y. Zhu, P. Shi, H. Y. Su, J. A. Fang, L. W. Zhou, Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters, IEEE Trans. Cyber., 44 (2014), 2848–2860. https://doi.org/10.1109/TCYB.2014.2317236 doi: 10.1109/TCYB.2014.2317236
    [14] T. Wu, L. L. Xiong, J. D. Cao, X. Q. Xie, Almost surely asymptotic synchronization for stochastic neural networks of neutral type with Markovian jumping parameters, Int. J. Adapt. Contro. Signal Proc., 33 (2019), 1524–1551. https://doi.org/10.1002/acs.3047 doi: 10.1002/acs.3047
    [15] J. Zhou, X. W. Ding, L. W. Zhou, W. N. Zhou, J. Yang, D. B. Tong, Almost sure adaptive asymptotically synchronization for neutral-type multi-slave neural networks with Markovian jumping parameters and stochastic perturbation, Neurocomputing, 214 (2016), 44–52. https://doi.org/10.1016/j.neucom.2016.05.069 doi: 10.1016/j.neucom.2016.05.069
    [16] H. B. Bao, J. H. Park, J. D. Cao, Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay. IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 190–201. doi: 10.1109/TNNLS.2015.2475737
    [17] X. S. Yang, J. D. Cao, J. Q. Lu, Synchronization of coupled neural networks with random coupling strengths and mixed probabilistic time-varying delays, Int. J. Robust Nonlinear Control, 23 (2013), 2060–2081. https://doi.org/10.1002/rnc.2868 doi: 10.1002/rnc.2868
    [18] X. X. Wang, Y. B. Yu, S. M. Zhong, K. B. Shi, N. J. Yang, D. F. Zhang, et al., Novel heterogeneous mode-dependent impulsive synchronization for piecewise T-S fuzzy probabilistic coupled delayed neural networks, IEEE Trans. Fuzzy Syst., 30 (2022), 2142–2156. https://doi.org/10.1109/TFUZZ.2021.3076525 doi: 10.1109/TFUZZ.2021.3076525
    [19] J. J. He, Y. Q. Lin, M. F. Ge, C. D. Liang, T. F. Ding, L. M. Wang, Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays, Neurocomputing, 384 (2020), 11–20. https://doi.org/10.1016/j.neucom.2019.11.046 doi: 10.1016/j.neucom.2019.11.046
    [20] H. B. Chen, P. Shi, C. Lim, Exponential synchronization for markovian stochastic coupled neural networks of neutral-type via adaptive feedback control, IEEE Trans. Neural Net. Learn. Syst., 28 (2017), 1618–1632. https://doi.org/10.1109/TNNLS.2016.2546962 doi: 10.1109/TNNLS.2016.2546962
    [21] N. Boonsatit, S. Rajendran, C. P. Lim, A. Jirawattanapanit, P. Mohandas, New adaptive finite-time cluster synchronization of neutral-type complex-valued coupled neural networks with mixed time delays, Fractal Fract., 6 (2022), 1–19. https://doi.org/10.3390/fractalfract6090515 doi: 10.3390/fractalfract6090515
    [22] W. Zhang, C. D. Li, T. W. Huang, J. T. Qi, Global exponential synchronization for coupled switched delayed recurrent neural networks with stochastic perturbation and impulsive effects, Neural Comput. Appl., 25 (2014), 1275–1283. https://doi.org/10.1007/s00521-014-1608-y doi: 10.1007/s00521-014-1608-y
    [23] L. L. Li, Y. F. Sun, M. M. Wang, W. Huang, Synchronization of coupled memristor neural networks with time delay: positive effects of stochastic delayed impulses, Neural Proc. Lett., 53 (2021), 4349–4364. https://doi.org/10.1007/s11063-021-10600-z doi: 10.1007/s11063-021-10600-z
    [24] D. Q. Li, P. Cheng, M. G. Hua, F. Q. Yao, Robust exponential stability of uncertain impulsive stochastic neural networks with delayed impulses, J. Franklin Inst., 355 (2018), 8597–8618. https://doi.org/10.1016/j.jfranklin.2018.09.006 doi: 10.1016/j.jfranklin.2018.09.006
    [25] Y. F. Song, W. Sun, F. Jiang, Mean-square exponential input-to-state stability for neutral stochastic neural networks with mixed delays, Neurocomputing, 205 (2016), 195–203. https://doi.org/10.1016/j.neucom.2016.03.048 doi: 10.1016/j.neucom.2016.03.048
    [26] A. Patel, B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise, IEEE Trans. Neural Net. Learn. Syst., 19 (2008), 1993–2008. https://doi.org/10.1109/TNN.2008.2005610 doi: 10.1109/TNN.2008.2005610
    [27] W. N. Zhou, Y. Q. Sun, X. Zhang, P. Shi, Cluster synchronization of coupled neural networks with Lévy noise via event-triggered pinning control. IEEE Trans. Neural Net. Learn. Syst., 33 (2022), 6144-6157. doi: 10.1109/TNNLS.2021.3072475
    [28] H. L. Dong, M. Luo, M. Q. Xiao, Synchronization for stochastic coupled networks with Lévy noise via event-triggered control, Neural Net., 141 (2021), 40–51. https://doi.org/10.1016/j.neunet.2021.03.028 doi: 10.1016/j.neunet.2021.03.028
    [29] D. Applebaum. Lévy processes and stochastic calculus. New York: Cambridge University Press, 2009.
    [30] S. Ma, Y. M. Kang, Exponential synchronization of memristor-based delayed neutral-type neural networks with Lévy noise via impulsive control, European Phys. J. Spec. Topics, 228 (2019), 2157–2170. https://doi.org/10.1140/epjst/e2019-900031-y doi: 10.1140/epjst/e2019-900031-y
    [31] X. L. Song, X. Xin, W. P. Huang, Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions, Neural Net., 29–30 (2012), 80–90. https://doi.org/10.1016/j.neunet.2012.01.006 doi: 10.1016/j.neunet.2012.01.006
    [32] B. Liu, W. L. Lu, T. P. Chen, New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides, Neural Net., 25 (2012), 5–13. https://doi.org/10.1016/j.neunet.2011.07.007 doi: 10.1016/j.neunet.2011.07.007
    [33] H. Q. Wu, F. Tao, L. J. Qin, R. Shi, L. J. He, Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions, Nonlinear Dyna., 66 (2011), 479–487. https://doi.org/10.1007/s11071-010-9926-9 doi: 10.1007/s11071-010-9926-9
    [34] Y. Q. Sun, Y. H. Zhang, W. N. Zhou, X. Zhang, X. F. Wang, New criteria on event-triggered cluster synchronization of neutral-type neural networks with Lévy noise and non-Lipschitz condition, Neurocomputing, 384 (2020), 156–169. https://doi.org/10.1016/j.neucom.2019.11.099 doi: 10.1016/j.neucom.2019.11.099
    [35] Y. L. Wang, J. D. Cao, J. Q. Hu, Stochastic synchronization of coupled delayed neural networks with switching topologies via single pinning impulsive control, Neural Comput. Appl., 26 (2015), 1739–1749. https://doi.org/10.1007/s00521-015-1835-x doi: 10.1007/s00521-015-1835-x
    [36] W. Mao, X. R. Mao, On the approximations of solutions to neutral SDEs with Markovian switching and jumps under non-Lipschitz conditions, Appl. Math. Comput., 230 (2014), 104–119. https://doi.org/10.1016/j.amc.2013.12.093 doi: 10.1016/j.amc.2013.12.093
    [37] S. J. Wu, B. Zhou, Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-Lipschitz conditions, Acta Math. Sini. English Series, 27 (2011), 519–536. https://doi.org/10.1007/s10114-011-9753-z doi: 10.1007/s10114-011-9753-z
    [38] Y. Xu, B. Pei, G. B. Guo, Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, Appl. Math. Comput., 263 (2015), 398–409. https://doi.org/10.1016/j.amc.2015.04.070 doi: 10.1016/j.amc.2015.04.070
    [39] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific Press, 1995.
    [40] C. G. Yuan, X. R. Mao, Stability of stochastic delay hybrid systems with jumps, European J. Control, 6 (2010), 595–608. https://doi.org/10.3166/ejc.16.595-608 doi: 10.3166/ejc.16.595-608
    [41] T. Wu, S. Gorbachev, H.-K. Lam, J. H. Park, L. L. Xiong, J. D. Cao, Adaptive event-triggered space-time sampled-data synchronization for fuzzy coupled RDNNs under hybrid random cyberattacks, IEEE Trans. Fuzzy Syst., 31 (2023), 1855–1869. https://doi.org/10.1109/TFUZZ.2022.3215747 doi: 10.1109/TFUZZ.2022.3215747
    [42] T. Wu, J. D. Cao, J. H. Park, K. B. Shi, L. L. Xiong, T. W. Huang, Attack-resilient dynamic event-triggered synchronization of fuzzy reaction-diffusion dynamic networks with multiple cyberattacks, IEEE Trans. Fuzzy Syst., 32 (2024), 498–509. https://doi.org/10.1109/TFUZZ.2023.3300882 doi: 10.1109/TFUZZ.2023.3300882
    [43] T. Wu, J. D. Cao, L. L. Xiong, J. H. Park, X. G. Tan, Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication, IEEE Trans. Syst. Man Cyber., 53 (2023), 5307–5320. https://doi.org/10.1109/TSMC.2023.3258222 doi: 10.1109/TSMC.2023.3258222
    [44] H. Q. Wei, K. S. Zhang, M. Zhang, Q. Li, J. L. Wang, Dissipative synchronization of semi-Markovian jumping delayed neural networks under random deception attacks: An event-triggered impulsive control strategy, J. Franklin Inst., 361 (2024), 106835. https://doi.org/10.1016/j.jfranklin.2024.106835 doi: 10.1016/j.jfranklin.2024.106835
    [45] Q. Li, H. Q. Wei, D. L. Hua, J. L. Wang, J. X. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Proc. Lett., 56 (2024), 111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(386) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog