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Abstract: In this paper, we investigated the adaptive exponential synchronization problem of
impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under
non-Lipschitz conditions. A stochastic variable with a Bernoulli distribution was utilized to transform
the information regarding probabilistic delays into a model featuring deterministic time delays and
stochastic parameters. In the context of adaptive controllers, exponential synchronization conditions
depending on the delay, noise intensity, and impulse factor were derived using Lyapunov-Krasovskii
functions, the nature of Lévy noise, and some inequality methods. To provide further support for the
proposed approach, two numerical illustrations were presented.
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1. Introduction

Neural networks (NNs) are computational models that represent the information processing
aspect of the human brain’s neural network. NNs have been the focus of extensive studies across
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various domains in recent decades, including but not limited to automatic control [1], transmission
of biological information [2], medical image analysis [3], system identification [4], and associate
memory [5]. Synchronization is an essential tool for secure communication and biocomputing. It is
the process of maintaining consistency in a system’s dynamic signals as time passes. Synchronization,
a common collective behavior, has emerged as a significant concern in the field of NNs. Researchers
have developed various synchronization approaches, including pinning synchronization [6], finite time
synchronization [7], and exponential synchronization [8]. In contrast to solitary NNs, coupled NNs
(CNNs) exhibit more intricate and imperceptible behaviors. In recent years, researchers have made
considerable progress in studying synchronization of CNNs [9-12].

Due to the limitations caused by the speed at which signals may travel, specifically the speed
at which neuron amplifiers in NNs can switch and transmit, the system trajectory is contingent not
only on the previous state but also on the current one. The delay category, also known as neutral-
type delay, has the potential to induce instability or other undesirable dynamic behaviors [13—-15].
Furthermore, the time delays observed in CNNs may be subject to random occurrences due to the
temporal signals and synaptic voltage fluctuations transmitted by the transmitters. This can result in
extremely large time delay values, despite the extremely low probability that they will occur. A degree
of conservatism results if information regarding the range of time delay variations is the only factor
considered, without taking their probability into consideration. Thus, a succession of research findings
concerning CNNs with probabilistic time-varying latencies are available [16—18]. In addition to time
delay effects, real NNs are susceptible to impulsive effects when system states undergo instantaneous
disturbances or abrupt state changes at specific instants. These effects can have a similar impact on
systems’ dynamical behaviors as time-delay effects do. Thus far, considerable interest has been devoted
to the synchronization or stability of the coupled neutral NNs (CNNNs) [19-21] and impulsive coupled
NNs (ICNNs) [22,23].

Nerve signals are conveyed through chaotic electrical pulses in biological nervous systems,
which are susceptible to stochastic disturbances and random noises. Frequently used to model
these stochastic factors are Gaussian white noise or Brownian motion, considered reasonable
approximations. As of now, a multitude of dynamic behaviors exhibited by coupled stochastic NN,
such as synchronization and stability, have been examined through the modeling of randomness using
Brownian motion [14,16,20,24,25]. Nevertheless, rare instances are not uncommon among genuine
biological neurons. Neuronal impulses discharge and chemical processes in neuronal synaptic receivers
generate jump-type noise [26]. Therefore, the Lévy process, which expands Brownian motion to
include jump-diffusion, is a more suitable model for these circumstances compared to Brownian
motion [27-30]. Notwithstanding the augmented mathematical intricacy, the findings of this study
suggest that examining synchronization in impulsive coupled neutral stochastic NNs (ICNSNNs)
propelled by Lévy noise is more significant.

The majority of the previously published findings on the examination of NNs synchronization
necessitate the activation function to adhere to Lipschitz continuity. Nevertheless, in actual situations,
the Lipschitz conditions frequently impose excessively stringent requirements, with certain conditions
proving exceedingly challenging to fulfill [31]. There has been considerable scholarly activity aimed at
easing restrictions on activation functions, including but not limited to one-sided Lipschitz conditions
and local Lipschitz conditions [32—-34]. Accordingly, it is critical, in light of these findings, to derive
lower-limit synchronization conditions for ICNSNNs with Lévy noise.
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To attain synchronization among driver-response systems, it is customary to devise control
protocols that specifically target the desired control outcome. CNNs are capable of implementing
a wide range of control schemes, including adaptive control [13,20], impulsive control [30,35], and
event-triggered control [27,28]. It is widely acknowledged that adaptive controllers possess numerous
advantages and find utility across diverse domains. Adaptive control is appealing and intriguing due
to its robustness and ability to adjust autonomously in response to various updating laws, suitable for
systems characterized by strong nonlinearity and discontinuity on the righthand side.

Based on the preceding discussion, we consider the problem of exponential synchronization in
ICNSNNs with Lévy noise, specifically in the presence of non-Lipschitz conditions. The subsequent
text provides a concise overview of the main advancements in contrast to the existing body of research.
1) Compared to earlier neutral stochastic NN models, the model in this study incorporates impulse
effects and probabilistic delays into the coupled neutral stochastic NNs, making it more versatile and
beneficial in engineering practice.

2) The requirements necessary for synchronization analysis, which do not need Lipschitz conditions,
have been created, therefore relaxing the limitations imposed by Lipschitz conditions.

3) Due to the lack of satisfaction of the chain rule by the It6-type stochastic integral, the Dini differential
method [16,22,23,35] presents challenges in solving the proof difficulties arising from the combination
of impulsive component and neutral delay. Our technique is resistant to the aforementioned limitations
and can efliciently tackle these challenges.

4) Under the stochastic perturbations, impulses, and various delays, by resorting to an adaptive
controller, some sufficient conditions have been established to make ICNSNNs with Lévy noise achieve
exponential synchronization.

Notations: Please refer to the following Table 1 for specific symbols.

Table 1. Detailed notations.

Q, F AF }0, P) complete probability space
{Fi}is0 filtration satisfying the usual conditions
AT the transpose of a vector or matrix
| -] Euclidean norm or the matrix trace norm
x(@) left limit of function y(6) at 6
x(6) right limit of function y(0) at 6
diag(-) diagonal matrix
o) the spectral radius of matrix
N, the family of positive integers
C([-®,0];R")  the family of continuous function y from [-®, 0] to R”"
L;O([—(ﬁ, 0]; R™) the family of all bounded, Fy-measurable,

C({([-®, 0]; R")-valued random variables

2. Models and preliminaries

We consider the neutral NNs with probabilistic delays of the form
(1) = Ax(t = 6®)] = [-Br(®) + CH(¥(1) - DH(¥(1 - (1)) + Eldt, 2.1
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where the variable X(r) € R” reflects the state of neutral NNs that are connected to n neurons, and
H(%(t)) € R” is the activation function of the neurons. &(¢) is time-varying delay and satisfies
conditions & > ®(¢) > Oand 1 > G > G(). A is the neutral parameter matrix. B =
diag(by,bs,...,b,) > 0. E € R". The connection weight matrix is denoted as C, whereas the delay
connection weight matrix is denoted as D. The delay ¥(¢) in system (2.1) is bounded and meets
condition 0 < P(r) < P». Practically, there is a constant P, that satisfies 0 < B; < B,. Moreover, T(r)
assumes values within the intervals [0, D] and (T, B,] with a specific probability, as determined by
its probability distribution, i.e., P{(¢) € [0,F;]1} = K and P{B() € (B1, Pol} =1 - R, 0 < Ky < 1.
Then

Ba(),  B(t) € (P1, Pal,

where P.(¢) satisfies 1 > B, > Bi(),k = 1,2. The stochastic variable K(¢) follows a Bernoulli
distribution, denoted by P{R(r) = 1} = P{%B(¥) € [0,*B,]} and P{K(r) = 0} = P{P(¥) € (T}, B,]}. Then

5o = {wz), P(@) € [0.F4].

E{K(1)} =1Xx8K) = K.

By utilizing the new functions *$,(#) and ‘B,(¢), together with the stochastic variables R(z),
system (2.1) may be reformulated as

dlx(1) = Ax(t = 6@)] = [-Br(1) + CH(Z (1) + RODH(¥(t — $1(1)))

+(1 = K@)DH(t — Bo(1))) + Eldt. (22)

The system (2.2) is considered the drive system, with the state variable represented as y(¢). The
response system, on the other hand, is described by the following ICNSNN, with the state variable
denoted as V(7). ex(t) = yx(¢) — ¥(¢) specifies the following error vector:

(1) = At = G@)] = [-By(0) + CHG(D) + KODHG( — $1(1)))
- N .
+(1 = KRO)DHG(t — B2(1)) + 0 -21 o Yy;(1) + E + Wildt
J:

+u(er(1), ex(t = (1)), ex(r = PB1(2)), ex(t — Ba(1))dw(t)
+ [, alex(), ex(t = 6(1)), ex(t = By (1), et — o), VIN(dt, dv),
t+ o, e N,
AV(o) = k(o) = F(o7) = Jiler(o)), ex(o; — 6(07)))
+Aei(o — (o)) — Aer(o; — G(o))), t =0y

(2.3)

In system (2.3), the control input vector, denoted as ¥, = (@1, @2s---»¢1)! € R, k = 1,..,N,
represents the control inputs for a system. o > 0 is coupling strength. The configuration matrix

O = {oxj}nxn denotes the topological structure of systems. A connection from node k to j is defined
N
as og; > 0, otherwise o; = 0. Additionally, ox = — . o0;. The positive definite diagonal matrix
j=1jk
T represents the internal connection strength between two interconnected NNs. ey (o) = ex(o}) =
lim e, (r) and e;(0;) = lim e (7). Ji(-,-) € R". The impulsive time instants, denoted as o, follow
t—>0'l_

t—oy

the conditions 0 = 0y < 0 < 0 < -+ < 07 < ---,and limo; = oco. u : R" X R*" X R* x

k—oo

R" - R™ and g : R" X R" X R" Xx R" X V — R” indicate Lévy noise intensity functions. A vector
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Brownian motion is denoted by w(#), which is defined on the probability space (Q, 7, {F;}>0, P), where
{F:}:>0 meets the standard conditions. N(dt, dv) is a Poisson counting measure utilizing a characteristic
measure 77 on a measurable subset V of R, whereas N(t,v) represents a Poisson process. N(dt,dv) =
N(dt,dv) — n(dv)dt. The research operates under the assumption that stochastic processes w and N
are independent.

According to systems (2.2) and (2.3) and the quality of matrix O,

=

N N
0 2, o1 Yy;(t) =0 '21 ok Y (e;(t) + x(1)) = 0 -21 ox;Tej(t),
Jj= =

J

Il
—_

the error dynamics system can be obtained such that

dlew(t) = Aeylt = G0)] = [~Be(t) + CH(ew(t)) + KODH(ex(t = $1(1))
N

+(1 = ROMDH(e(t = $a(0)) +8 3, 01Te (1) + ¥y 1ds
/:

Hu(e(D), ex(t = 6(1)), ex(t = P1(1)), ex(t — P2 (0)))dw(r)
+ fV q(ex(t), ex(t — 6(1)), ex(t — B (1)), ex(t — P2(2)), vIN(dt, dv),
t+ o0y, leN,,
Aen(o) = ex(oy) — (o) = Jile(o)), e — G(o7)))
+Aei(o; — O(0)) — Aey(o; — G(07))), t =0y,

(2.4)

in which H(ex(1)) = HG(t))—-H (1)), H (ex(1=P1(1))) = q (et =%, ~(t)))—H (Y (@=P1(2))), and H(ex(1—
Pa(1)) = HG(t — Ba(1))) — HG(t — B(2))), where G, = max(®, D,). To establish synchronization,
we assume control is defined as

Wi = (@) — BI)(ex(t) — Ae(t — 6(1))), 2.5

where N represents a nonnegative real number. The adaptive feedback gain is denoted as ¢y (f) =

diag(pi (1), P2 (D), ... Prn(D)(k = 1, ..., N).

To determine the synchronization requirements for systems (2.2) and (2.3), we provide the
following assumptions.
A, There is a constant o > 0 that fulfills

| H(6,) — H(6:) ’'< 0w (| 6, — 6, "),

for V6,60, € R*, H) = 0, where @w(-) : R* — R* is a concave increasing continuous function with

w@(0) = 0 and fo wd(‘;) = co. Additionally, it is supposed that there exist a positive constant @, and a

nonnegative function «(#) with finite upper bound, such that
w(x) < wox + k(2),

for Vx > 0. Here, «(f) meets fot exp(ds)k(s)ds < oo for V& > 0.
A, There exist constants A; > 0, A, >0, A5 >0,I"; > 0,I', > 0, and I'; > 0 such that

trace(u(6y, 62, 03,0,)  1(61, 62, 63,6,)) < Ay | 0y P +A5 | 6 | +A3 | 65+ Ay | 64,
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and

f | ¢(01,63,65,04,v) P n(dv) <Ty | 6; F +T2 | 6, | +T3 | 65 | +T4 | 6, %,
v

hold for V6, 6,, 65,6, € R". In addition, u(0, 0,0) = 0 and ¢(0,0,0,0) = 0.
Aj There exists a constant ¢ € (0, 1), which ensures that p(A) fulfills p(A) < .
A4 The function Ji(-, -) is assumed to meet the specified conditions.

Jew(ay), elay = G(a))) Jilex(07), ex(a = 6(07) < B | ex(a7) = Aer(oy = G(o)) I,

where =; > 0.

Remark 2.1. If w(x) = x, then the Lipschitz criteria are satisfied, indicating that the assumption
A, is less stringent than the prerequisite of the Lipschitz continuity. Certain activation functions do
not meet the criteria for Lipschitz continuity, yet they do exhibit non-Lipschitz continuity in practical
applications. For example, if we are examining a function H(x) = x sin x that fails to meet the criteria
of Lipschitz continuity, we may construct the concave nondecreasing function

_[#log(1 +67), 6€]0,6),
~elog(l+6 )+ @' (€)B—¢€), 6¢€le ),

for small enough € € (0, 1)[36], so that A(x) encounters the assumption A .

According to the literature [36-38], for any initial value {e;(€) : -6y < e <0} = ¢2 €
L%([—@O,O];R”), the assumptions A;-A,4 are believed to demonstrate that the solution symbolized
by ex(t, ¢2) on t > 0 to the system (2.4) is both existent and unique. Evidently, the system (2.4) allows
for e,(t,0) = 0. The expressions e.(t, ¢2), e (t— (1)), er(t —PB1(1)), and e (t — P, (7)) will be referred to
as ex(1), exwa)» exp, (1> and ey, (), respectively, for simplicity.

Lemma 2.1. [30,39] Consider the function 6(¢), which is piecewise continuous and nonnegative. It
fulfills the condition
t
Sty <Ay + f Lowdu+ > Do),

fo to<ti<t
where ¢, are the points of discontinuity of the first type for 5(f). Additionally, we have A, > 0, A, > 0,
A3 > 0. Then, for t; < t < t;41,

5(1) < 11(1 + 3) D exp(As(t — 1p)).

Here, the notation i(#, ¢) signifies the number of points ¢; that lie inside the interval [#, f).

Definition 2.1. [20] The drive system (2.2) and the response system (2.3) are considered to be
exponentially synchronized in mean square (ESMS) if the error system (2.4) is exponentially stable
in mean square, meaning that for all ¢! € Lzﬁ([—@o, 0];R™),

t—o0

1 N
lim sup — log(E D len ) <o.
k=1

AIMS Mathematics Volume 9, Issue 9, 24912-24933.



24918

3. Exponential synchronization analysis

This section will provide the general requirements for the ESMS in systems (2.2) and (2.3) based
on the assumptions A;—A4 mentioned above.
Theorem 3.1. Assume that conditions A;—A, are satisfied. If

R, >0, -R;—m'In(l+R,)>0), (3.1
where

g N N n
Ri=1-m 1+ h)E[g(ek(O) — Aero )" (ex(0) = Aers)] + (1 +7)(1 = ©)'[Ie(1 +¢) + 267

- 0 ~ N
+6(1 +6) +2R8¢(1 = ¢) + ONOyax Yls(1 + ) + Ay + 1] f—@(m exp(¥(s + ©)) sup E 3, | ex(s) |* ds

O<s<t k=1

- ~ 0 - N
{1+ 1)1 = 1) [Rodl0m0 + As + T3] [ exp(@(s + 1) sup E 3, | ex(s) [ ds

0<s<r k=1
_ N 0 3 N
+(1+ 1)1 = B)'[(1 = Ko)dy,,, 00 + Ag + Ty] LMO) exp(d(s + %)) sup Ekzl | ex(s) > ds
O<s<t =
. 5 N
+(1 +nyo(l + 2, +d>, )N fot exp(@ds)k(s)ds +h sup E Y |ei(s) [},

—B<s<0 k=1
Ro=E1+m)(1-R) ¢+ A+,
Rs = (1 =)'+ WA + ) = 2bpin + 2 + 00 + b2, + 20w + (1 +6) —28(1 = ¢)
+ONOp Y2 +¢)+ Ay + 1 + ﬁ exp(@®)[Fs(1 +¢) + 2¢% + ¢(1 +¢)
+2R6(1 = §) + BN TIs(1 +6) + Ag + Tal + g exp(IPD[Rody,,0@0 + As + T3]
+1—1W exp(IP2)[(1 — Ko)d2, .00 + Ay + T4l},

max

bmin = min ijbmax = max bj,cmax = P(C)a dmax = p(D)aOmax = max |0kj|’
1<j<n 1<jsn 1<k,j<N

then when the adaptive controller (2.5) with update rule

1 n
Gu(1) = == exp(@n)(en (1) — ) awerdt ~ G0,

kj i=1

is applied, where vi; > 0,k = 1,..,N, j = 1,2,...,n, the systems (2.3) and (2.2) are ESMS.
Proof. Define

n

N N
V(t, er(t) — Aers) = exp(t) Z(ek(l) — Aers) (ex(t) — Aersy) + Z Ukj(p]%j-
=1 =1 =1

By adopting the general Ito’s formula [40] for the interval ¢ € (07, 0741) and doing integration on
both sides from o7 to ¢, we derive
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where

LV

Vo, ex(o)) — Aersorp) + f(:l LVds
N
+ f(:] 2]; exp(ds)(ex(s) — Aexss)”
X(er (), exw(s)> €xp,(s)> Ckpa(s))AwW(S)
, N . (3.2)
+/ L exp(s)] X (€(s) = Aekos)) + q(ex(s):s xsios €xt(9» €xtatos V)
X(ex(s) — Aersis) + q(ex(s), exw(s)s €xp i (s)> CaBa(s)> V)

N ~
- ka(ek(s) — Aegs(s)" (ex(s) — Aexs) IN(ds, dv),

=

n N
2 & '21 Ukjrjrj + 0 exp(d) kZI (ex(t) = Aersr) (ex(t) — Aegs)
J= =

N
+2 exp(J1) 1;1 (ex(t) — Aexsry) [—Bex(t) + CH(ex(1)) + S(O)DH (e 1)
N
+(1 = K())DH (exyp,1) + 0 '21 ijTej(t) + W]
]:

N
+exp(It) Y, trace(uer(t), exs» €x 1) Chpan)”
=1
X (er(t), exo (), €x,(1)s €xPa(r)))
N
+ [, exp(®@) 3 [(ex(r) — Aewsqy + qler(?), exsiys €xsi» €y V)
py

X(er(t) — Aexsry + qlex(t), exss €rp,1)» €kpar)> V)
—(ex(t) — Aers)” (ex(t) — Aegsr)
—2(ex(t) — Aersn) q(en(t), ek €xpy () Expatys V)I(AY).

Through employing Young’s inequality, one may infer that

N
[7, 9 exp@5) 3 (ex(s) = Aexs) (ex(s) = Aes)ds

N N
< 31 +¢) ﬂ] exp(ts) 1;1 er(s) ex(s)ds + 9s(1 + <) f;l exp(is) 1;1 e,f(ﬁ(s)ek(g(s)ds.

(3.3)

Based on the given assumptions A, we may conclude that

IA

IA

AIMS Mathematics

t N
2 [ exp(@s) kgl(ek(S) — Aeyo)" [=Bex(s) + CH(ex(s)))dss

I exp(ds) 3 [-2e,()" Beuls) + ex(s) CTCey(s) + Hiey(s)) Hiey(s))
! k=1

T T T pT T T
+ek®(‘v)A Aeyes) + ex(s)’ B' Beg(s) + ek(ﬁ(S)A Aeie(s)

+H(ex(5))'CTCH(ex(s))]lds (3.4)

N
f; [ exp(¥s) X [~2bpin + 2, + 0o + b2, + 2 0molen(s) ex(s)ds
k=1

g & 2T ! u 2
+ [ exp(s) 2 26wt + I, exp(@s) 1+ e )on(s)ds,

Volume 9, Issue 9, 24912-24933.
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and
N
2 ﬂl exp(ds) kgl(ek(s) — Aers ) [R(S)DH (eps,5)) + (1 — K(8))DH (egp,5))1ds
< f;l exp(35)[R(s)(ex(s) — Aexsis)” (ex(s) — Aerss) + R()H(exp, )" DT DH(exp ()
+(1 = K(5))(ex(s) = Aess)” (ex(s) = Aessy) + (1 = K()H(erpy()" D DH(erg,()1ds
N N
< ft exp(s) X, (1 + §)ex(s) ex(s)ds + f[ exp(95)s(1 +¢) 3 e, ersinds
o =N o i 0w (3.5)
+ f; exp(ds) 1;1 R(s)ciﬁlaxgwoe,{%l (5)8kP1 (A5
N ~
+ f; _exp(ds) 1;1(1 — R(Ndy 1 0T0€ g 5, hr5)DS
N
+ f; l exp(ds) k; d?, ok(s)ds.
Comparable to (3.3), it is possible to get
N
2 f(,t[ exp(ds) ];1 (ex(s) — Aerss) [-R(er(s) — Aer(s — 6G(s)))]ds
=
< f;’ exp(ds) g]l(—ZN(l — g)e,{(s)ek(s))ds 3.6)
N
+ [ exp(s) T 261 = el ensnds:
Besides, we have
N N
2 [[,exp(05) 2 (ex(s) = Aeioy)'18 3, 0k e;(1)1ds
= l:
N
< f(,ll exp(ds) kZl ONOpar Yllef (s)er(s) + (ex(s) — Aexsis)” (ex(s) — Aess)lds
Iy 3.7
N
< [, exp@5) 3 oNowal TI2 + S)ex(s) ex(s)ds
N
+ [, exp5) X, ONowarYIs (1 + §)elseuoods.
Following the assumption A,, there exist
N
t exp(s) Y, trace(u(er(s), exs(s)» € (s)» Citacs))” H(Ek(S), €k6(s)> €k%1(s)> €kPas)))
i k=1
N (3.8)
N
< fofl CXp(ﬁS) kgl [Ale,{(s)ek(s) + A2€]{®(S)€k(c,(s) + A3el§131(s)ek$1(5) + A4e,{%(s)ek»132(s)]ds,
and
N
ﬂl J, exp@) k;[(ek(f) — Aeroy + q(er(D), exsinys e > x> V) (er(t) — Aers
+q(er (1), exs(s €,y e, V) — (€x(t) — Aersn)” (ex(t) — Aers) (3.9)

=2(ex(t) — Aersw)” qler(t), exs s €,y €xprs V)IT(dV)ds

N
4 T T T T
< L_l \k‘/ exp(ﬁs) kgl[Flek (s)ek(s) + erk(ﬁ(s)ek@(s) + F3ekq3](s)ek‘l‘1(s) + I—‘4€k$2(s)€kq32(s)]ds.
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When ¢ = o, it produces

EV(oy, e(0)) — eko(o)
N

= Elexp(¥o) g‘l lex(0) + Ji(e(o)), exo(o)) + Alks(o)

N n
~Aeysor) — Aoyl + X Y vyl
k=1 j=1
N N n
< (1+E)E[exp(¥oy) kzl(ek(a;) — Aeoon) (er(07) — Aersor) + kZl _Zl k31
= =1 j=
= EEV(0y,el07) — Aersoy))s

where = = 1}1§x{1 + &;}. By replacing (3.3)—(3.9) into (3.2) and subsequently calculating the
€Ny

mathematical expectation for both sides of (3.2), it yields
EV = EV(oy,elo)) — ek(g(m)) + jf:/ LVds.

Therefore, for any values of ¢ inside the interval [0, 07, ), it follows that

EV
= E [k]é(ek(o) — Aeis0)” (ex(0) — Aerso))] + 0<§;<z EV(oy, e(01) — Aeks(o)
+ fot LVds
< E[é}l(ek(O) — Aers0)" (ex(0) — Aexs0)] + E O<§/<tEV(O-I_, ex(07) — Aeksor))

+[I(1 + ¢) — 2b,,;, + cfm + o + b+ c,znaxgwo +(1+¢)=-28(1 -¢)

max

+ONOpTI2 +.6) 4 Au + 1] [ exp(ds) X | ex(9) P ds + [95(1 4 6) + 26

#5114 6) 4 286(1 = 6) + NOwlYIs(1 +6) + Ao + T3IE [} exp®) 2 | euny [ ds
+H[Rod20@0 + Az + T31E [ exp(ds) é | e, s I* ds

H(1 = 80T + Ay + TE [[exp(@s) 3 | ey [ ds

max max

+o(l + 2, +d> )fot exp(¥s) g] k(s)ds.
=1

Since

N - N
fyexo@s) 3 e Fds < 5 [, exp@(s + ®) % lets) P ds

- N
+25 exp0) [ exp@s) X | ex(s) P ds,

N 0 5 N
b exp@s) X lewo Pds < i [, exp@(s + $1) X [ exts) P ds

~ N
+ exp@F) [[exp(@s) X | ex(s) P ds,
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k=1 k ( ) (BZ * 2( ) k=1

- N
+ 145 exp®%2) [} exp(9s) 2 lex(s) ? ds,

it can be deduced that

N
EV < E[ kZI(ek(O) Aeis0) (ex(0) — Aers0)] + sl +¢) + 267 +6(1+¢)+28¢(1 - )

FONOpax| Y1 + ¢) + Ay + Fz]f exp(d(s + ) /;1 E|eds) | ds

®(0)
~ o N
o (R0 @0 + As + T3] [ exp@(s +90) 3 E | ei(s) P ds

~ o N
+ (1 = KO om0 + A+ Tl [ 0 XRG4 3 E | els) P ds
+o(1+¢c2 + d: N fo exp(ds)k(s)ds +2 3 EV(o7, €k(0'l )— Aek@((,] )

max max
0<o-,<z

+HIH +¢) = 2b,in + cmax + o) + bmax + cmaxgwo +(1+¢)—2K8(1-¢)
+ONO0, Y2+ )+ A + T + 1% exp(ﬁ(ﬁ) (1l +¢) + 2g

+6(1 +¢) +2R8¢(1 —¢) + gNomaxl‘Y’Ig(l +o)+ A+ o]+ 5 eXP(ﬁ%l)[RodmawaO + A3

+I5]+ = exp(zﬁ?z)[(l — Ro)d>

max

owy + Ay +T4]} fo CXP(ﬂS) 1;1 E | ex(s) * ds.

In addition, employing the inequality in reference [36], it can be yielded that

i+ <A +alyi+e 'yl Yyi.y.620,

and we have
sup exp(¢s)E Z | ex(s) I*

0<s<t

(1+h)
1-¢2(1+h)h~ " exp(¥®) S<u£)t exp(ﬁS)E Z | ek(s) A€k(5(s) |

S+ exp(9®) )
+1—§2(1+h)h’lexp(ﬂ(~ﬁ) sup E Z | ex(s) |,
)<s<() k=1

where 7 > 0 is sufficiently large for i = ¢?(1 + A)h~' exp(96) < 1. Then,
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N
sup exp(9)E 3, | ex(s)
k=1

0<s<t

- N N
(1-mA +ME [kgl(ek(()) — Aero )" (ex(0) = Aep)] + (1 +1)(1 = 6)7'[I¢(1 +¢) + 267

IA

~ 0 ~ N
+6(1 +6) + 2R6(1 = 6) + INOpal Ylg(1 +6) + As + o] [ o exp(@(s + ) sup E 3, | ex(s) I ds

O<s<t k=1
T \— 5 0 5 N
+(1 10 =) Ko ,0m0 + As + T3] Ly exp@Cs + 1) sup E 3 | exls) [ ds
<s<t =
_ ~ 0 - N
+(1 411 =) (1 = K000 + Mg+ Tl [0, xp@s + %)) sup E 3 [ ew(s) [ ds
<s<t =

+(1 +h)o(l + ¢ +d> )N fot exp(Is)k(s)ds +h sup E % | ex(s) |}

max max -
—H<s<0 k=1

- - N
+EQ+n)(1-n) e+ (1 + §)_1)0 )y OSUP exp(do)E kZl | ex(o7) 12
B <0<t 0<s<t =

+(1 =)' + I + ¢) = 2bin + cﬁm + 0wy + b,znax + c,znaxgwo +(1+¢)—2K(1 -¢)

+ONOpa Y2 +6) + Ay + Ty + e exp(@®)[de(1 +¢) + 267 + 6(1 +¢)

1-6

+2R6(1 = §) + ONOwa TIs(1 +6) + Ag + Tal + g exp(IP D[Rody,,0@0 + A + T3]
~ ~ N
+1o; EXPO@P)I(1 = Ko)d,,,0@0 + Ay + T4} fot sup exp(ds)E 1;1 | ex(s) |> ds

0<s<t

I N g N
= R +R, Y supexpo)E 1;1 | ex(07) 2 +R;5 fot sup exp(Js)E 1;1 | ex(s) I* ds.

0<o <t 0<s<t 0<s<t

Thus, Lemma 2.1 subsequently results in

0<s<t

N
sup exp(ﬂs)EZ | ex(s) |P< ?3\1(1 + ang)k exp(?ax_o,t).
k=1

Based on the inequality m < ilng(omr 1 — o), we ultimately get
(S

N
sup E > | ex(s) P< Ry exp(=(@ = Ry —m ™' In(1 + Ry))0).

0<s<t =1

With respect to criterion (3.1), it may be concluded that systems (2.2) and (2.3) are ESMS.

Remark 3.1. Based on our comprehension, certain current CNNN and neutral NN models [13—
15,19,20] do not take into account the impact of impulses. This research explores a wider model
by incorporating impulsive effects. The Dini differential technique[16,22,23,35] is not applicable to
our primary problem since it involves a combination of neutral delay and impulsive factors, and It6-
type stochastic integrals do not adhere to the chain rule. The proof strategy outlined in Theorem 3.1
offers a method for resolving the difficulty.

Remark 3.2. Activation functions are required to provide Lipschitz continuity in several studies
on the synchronization or stability of CNNs, CNNNs, and neutral NNs, as indicated by the
references [13,20,22,27,35]. Theorem 3.1 provides sufficient criteria for achieving synchronization
in the drive-response system without the need for the Lipschitz situation, therefore relaxing the
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limitations imposed by Lipschitz conditions. As a result, this study extends the current findings
(see [13,20,22,27,35]).

When Lévy jump g(ei(t), ex(t — ©(1)), ex(t — B1(2)), er(t — P2(2)),v) = 0, the coupled error
system (2.4) reduced to the following form:

dlex(t) — Aer(t = 6(1)] = [-Bex(®) + CH(ex(1)) + K()DH (ex(t — B1(1)))
N
+(1 = R(1))DH (et = B2(n)) + 0 -21 o Yej(r) + Wyldt
]:

+uler(D), ex(t — 6(2)), ex(t — P 1(2)), ex(t — P2(1))dw(?) (3.10)
t+o0,l €N,

Ae(y) = ex(o) — ex(oy) = Ji(en(o)), ex(o — B(07)))
+Aei(o; — O(0)) — Ae(o; — O(07)),t = 0.

Under these circumstances, we ascertain the subsequent outcomes.
Corollary 3.1. If conditions A;—A are fulfilled, for

R, >0, ¢-Rs—m'In(1+%R,) >0,
where

~ - N _
Ri=1-nHA+ h)E[Z (ex(0) — Aexs0)" (ex(0) — Aerso)] + (1 + )1 = G) ' [Is(1 + ) + 267

+6(1 +6) + 28¢(1 = ) + ONOpax| TIs(1 + ¢) + Ao f@(o) exp(I(s + ©)) sup E Z | ex(s) > ds

O<s<t k=1
H(1+ 1)1 = 1) [RodZ0m0 + As] [ o) exp@(s + 1) sup E kzl | ex(s) I ds
<s<t
HL I =) (1= 80,00 + Adl [y, exp(s + ) sup E kz | exl(s) I ds
<s<t =

+(1 + (1 + 2, + d> )Nﬁ) exp(¥s)k(s)ds + h sup E Z | ex(s) |7},

e —B<s<0 k=1
Ro=E(1+n)(1 - s+ (1+¢™),
‘R3 =(1- h) ' + n){9a + S) — 2byin + Cmax + ow( + bmax + cmawaO +(1+¢)—2R(1 -¢)
+ONOwa:| T2+ ¢) + A1 + eXp(ﬂC5)[t9§(1 +¢)+2¢ +¢(1+¢)
+2R¢(1 —¢) + QNOmaxlTlg(l + ¢+ MAo]+ _—1 exp(IP ) [Rod2, 00 + As]
+12m @)1 = Ko)dy, 0w + Aal),

then when the adaptive controller (2.5) with update rule

1 n
Gu(1) = == exp@n)(en (1) — ) awer(t = G0,

kj i=1

is applied, where v; > 0, k=1,...,N,j=1,2,...,n, the systems (2.3) and (2.2) are ESMS.
Proof. Define

V(t, er(t) — Aers) = exp(th) Z(ek(l) Aersn)' (en(t) — Aesy) + Z Z Uk;SDkJ

k=1 j=1

Employing Theorem 3.1 readily proves the result of Corollary 3.2, hence the proof is omitted in
this context.
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4. Numerical simulations

This section presents numerical simulations to demonstrate the efficacy of our suggested strategy.
Example 4.1. Consider the following two-dimensional neutral NNs with probabilistic delays, where

H(¢(t)) = tanh(¢(1)), G(¢) = 0.4 + 0.1 cos(21),
Bi(#) = 0.35 + 0.1 cos(2t), B2(#) = 0.39 + 0.1 cos(21),

0.1 0.15 075 0 21 -03 ~3.5 0.25
A_[O.IS 0.1]’ B‘[o 0.85]’ C‘[—z.s 3.3]’ D‘[o.g —1.7]’

T = (100, 12(0)T, P{K() = 0} = 0.2, E = [0.1,0.1]7. The initial values are §(¢) = [2.3,2.6]7. The
parameters of the corresponding response system could be expressed as follows.

Jie(op), en(a = 6(a7) = Qew(oy) = Aew(oy = G(ap)), 1= 1,...,25.

H(er(1), exsry» €xpi()> Ckpan) =  diagl0.2e; (1) + 0.15ex160) + 0.2ex1,¢) + 0.1exip,0),
0.1€k2(f) + 0.156](2(;3(,) + 0.26’](2513](,) + 0.1€k2q32(t)},

q(ex(t), exsys €1 1)s €xpatnys V) = [1.3(e1 (1) + e (t — ©@))v, 1.5(ega () + exa(t — P1(0))V],
1 0 -0.35 02 0.15

T = [O 1] , O0=(012 -0.12 0
0.11 0.0.19 -0.3

O = Gu@,Fo@). 7@ = [-12,-14, 5,00 = [-1.5,-18], 55() = [-2.2,-2.4]".
i) = 0,k = 1,2,3,j = 1,2. 0 = 0.5. The approaches provided in references [13-15,19,20] are
not applicable to this particular instance. Verifying that the parameters in Example 4.1 fulfill the
constraints of Theorem 3.1 is straightforward. Consequently, Theorem 3.1 may be utilized to establish
that the response system (2.3) should be considered ESMS in theoretical analysis, together with the
driving system (2.2). The simulated findings depicted in Figures 1-4 unequivocally validate our
conclusion. We can find that the error systems in Figure 3 (a)—(b) converge to zero as time progresses.
Figure 4 depicts the evolutionary trajectory of the adaptive feedback gain ¢ ;(f)(k = 1,2,3,j = 1,2).

04 —0.15
’ Q‘[—oss 0.4]’

2.5

Figure 1. The trajectory of system (2.2).
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Py | —-—-— gz1(t) .
é | S ol 712(t)
xg ol zé'; ***** J22(t)
€H i gﬂ A T Ys2(t)
B / 15'3
= -1 =
= =2
_2 H
i =l
3 . . . . 4 . . . .
0] 10 20 30 40 50 0] 10 20 30 40 50
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Figure 2. The time evolutions of j;(#) and ¥,(?).
a b
3 @ ' N ' _(®)
e11(t)
27 — e21(t)
1 H —c es1(t) 612(0 |
= i = — e2(t)
5 ot ’\I ﬂ\% —_—— es2(t) |
Z1f 1 =
Q. e §
L) S
3 H ]
4 ] ]
i
-5 ‘ ‘ ‘ : -6 : ‘ ‘ ‘
(0] 10 20 ¢ 30 40 50 o 10 20 ¢ 30 40 50

Figure 3. The time evolutions of errors e ;(1).

P11, Pa1, P31, P12, P22, P32,

Figure 4. The trajectory of controller gain ¢y ;(1).
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Example 4.2. Consider the following two-dimensional neutral NNs with probabilistic delays, where
H(¢(1) = (1) sin(¢(1)), G(¢) = 0.4 + 0.1 cos(?),

PB1() = 0.35 + 0.1 cos(?), Bo(r) = 0.38 + 0.1 cos(),

0.09 —0.15 085 0 2.6 0.5 3.1 -05
A‘[—o.zs 0.01]’ =10 0.8]’ C_[I.S 2.3]’ D‘[—o.s 2.5]’

X0 = (R1(0), p2(0)T, P{K() = 0} = 0.2, E = [0.1,0.1]7. The initial values are ¥(¢) = [3.2,3.4]". The
parameters of the corresponding response system can be given as

Ji(e(op), en(ay = 6(07)) = Qew(oy) = Aep(oy = B(a)), 1= 1,...,25.

1(ex(), exsy exp 1) €ipan) =  diagl0.2e; () + 0.15ex164) + 0.2ex19, 1) + 0.1ex1p,0),
0.1epp(?) + 0-156k2(6(t) + O.Zekzqgl(,) + 0.1€k2q32(,)},

q(ex(D), €xsn)» €xp (1) €k V) = [1.3(ex1 (1) + e (t — G(1)))v, 1.5(exa(t) + et — PV,

~04 02 02
T:[(l) (1)] 0=|01 =025 0.15], Q:[_gis _00‘21],
025 0.15 -04 ' '

k=1,2,3.5:0) = Gu®, @) 31 = [2.2,24], 52(1) = [-1.3,-L11", 53() = [-2.6,-2.8]".
i) = 0,k = 1,2,3,j = 1,2. o = 0.5. By Remark 2.1, the activation function H(-) in this instance
does not meet the Lipschitz continuity. When € = 0.001, @, = 13, and «(¢) = exp(—2¢) are used, then
the parameters in this example fulfill the circumstances of Theorem 3.1, implying that the systems (2.2)
and (2.3) should be ESMS in the theoretical analysis. Figures 5-8 display the results of the simulation,
which amply supports our conclusion. Figure 6 shows the trajectories of the system (2.2) and the
system (2.3) among them, and it is evident that as time goes on, their trajectories become consistent.
The error’s trajectory converges to zero, as illustrated in Figure 7. Figure 8 illustrates the evolutionary
trajectory of the feedback gain ¢ ;j(1)(k = 1,2,3,j = 1,2).

35

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Figure 5. The trajectory of system (2.2).

AIMS Mathematics Volume 9, Issue 9, 24912-24933.



24928

a b
4 ' @ ' 4 ' O
u . YITAYTITNY
3 3 i
= =0 T
R R
< 1f AR EE-EY $a(0)
é o J u®) | € ol T12(t)
I% ’ = gal(t) 153 77777 J2(t)
= T R Fa1(t) = _
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Figure 6. The time evolutions of j;(#) and $;(?).
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1 @ ' N ' ()
|
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Figure 7. The time evolutions of errors e ;(1).

1
05 - e11(t) i
e @o1(t)
77777 @31(t)
5 of 3 |
Y i 21 (1)
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[0} 5 10 15 20 25 30 35 40 45 50

Figure 8. The trajectory of controller gain ¢y ;(1).
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5. Conclusions

Through adaptive controller, we address the problem of exponential synchronization in ICNSNNSs
with Lévy noise and probabilistic time delays in cases where the conditions are non-Lipschitz.
We additionally discover sufficient criteria for achieving ESMS. In this research, we enhance
the practicality of the examined model by incorporating impulse and probabilistic time-varying
delays in coupled neutral stochastic NNs, as compared to previous findings[13-15,19,20]. The
activation function’s Lipschitz continuity is not necessary for our investigation, suggesting that
our criteria acquired are less limiting than existing ones and can be used in a broader range of
situations. Furthermore, the findings of this study propose an approach to the challenge of analyzing
synchronization, which arises from the presence of both a neutral delay term and an impulse term.
Finally, we present two numerical illustrations that confirm the theoretical discoveries.

In the non-Lipschitz case, developing the discriminant criteria for the exponential synchronization
of ICNSNNs with Lévy noise is still a challenging issue. In addition, more discussion is required on
the relaxation of the time delay condition. Lately, there has been a significant focus on the dynamic
characteristics of systems that utilize event-triggered control and sliding-mode control. This is evident
in the relevant literature [41-45]. Such issues deserve extra investigation and analysis.
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