Research article Special Issues

Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays

  • Received: 16 March 2022 Revised: 15 April 2022 Accepted: 18 April 2022 Published: 07 May 2022
  • MSC : 26A33

  • This paper investigates the global synchronization problems of fractional-order complex dynamical networks with uncertain inner coupling and multiple time delays. In particular, both internal time delays and coupling time delays are introduced into our model. To overcome the difficulties caused by various delays and uncertainties, a generalized delayed comparison principle with fractional-order and impulsive effects is established by using the Laplace transform. Based on the Lyapunov stability theory and mixed impulsive control technologies, some new synchronization criteria for concerned complex dynamical networks are derived. In addition, the synchronization criteria are related to the impulsive interval, network topology structure, fractional-order, and control gains. The theoretical results obtained in this paper can enhance the value of previous related works. Finally, numerical simulations are presented to show the correctness of our main results.

    Citation: Hongguang Fan, Jihong Zhu, Hui Wen. Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays[J]. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719

    Related Papers:

  • This paper investigates the global synchronization problems of fractional-order complex dynamical networks with uncertain inner coupling and multiple time delays. In particular, both internal time delays and coupling time delays are introduced into our model. To overcome the difficulties caused by various delays and uncertainties, a generalized delayed comparison principle with fractional-order and impulsive effects is established by using the Laplace transform. Based on the Lyapunov stability theory and mixed impulsive control technologies, some new synchronization criteria for concerned complex dynamical networks are derived. In addition, the synchronization criteria are related to the impulsive interval, network topology structure, fractional-order, and control gains. The theoretical results obtained in this paper can enhance the value of previous related works. Finally, numerical simulations are presented to show the correctness of our main results.



    加载中


    [1] Z. Tang, J. H. Park, T. H. Lee, Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization, Nonlinear Dyn., 85 (2016), 2171–2181. http://dx.doi.org/10.1007/s11071-016-2822-1 doi: 10.1007/s11071-016-2822-1
    [2] D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid. Syst., 32 (2019), 294–305. http://dx.doi.org/10.1016/j.nahs.2019.01.006 doi: 10.1016/j.nahs.2019.01.006
    [3] K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Set. Syst., 394 (2020), 40–64. http://dx.doi.org/10.1016/j.fss.2019.09.001 doi: 10.1016/j.fss.2019.09.001
    [4] X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130–146. http://dx.doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
    [5] H. G. Fan, K. B. Shi, Y. Zhao, Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects, Physica A, 587 (2022), 126534. http://dx.doi.org/10.1016/j.physa.2021.126534 doi: 10.1016/j.physa.2021.126534
    [6] F. Wang, Z. W. Zheng, Y. Q. Yang, Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control, Chaos Soliton. Fract., 142 (2021), 110465. http://dx.doi.org/10.1016/j.chaos.2020.110465 doi: 10.1016/j.chaos.2020.110465
    [7] X. S. Yang, X. D. Li, J. Q. Lu, Z. S. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50 (2020), 4043–4052. http://dx.doi.org/10.1109/TCYB.2019.2938217 doi: 10.1109/TCYB.2019.2938217
    [8] Z. Tang, J. H. Park, Y. Wang, J. W. Feng, Impulsive synchronization of derivative coupled neural networks with cluster-tree topology, IEEE T. Netw. Sci. Eng., 7 (2020), 1788–1798. http://dx.doi.org/10.1109/TNSE.2019.2953285 doi: 10.1109/TNSE.2019.2953285
    [9] H. Leng, Z. Y. Wu, Impulsive synchronization of complex-variable network with distributed time delays, Physica A, 536 (2019), 122602. http://dx.doi.org/10.1016/j.physa.2019.122602 doi: 10.1016/j.physa.2019.122602
    [10] J. Y. Wang, J. W. Feng, Y. J. Lou, G. R. Chen, Synchronization of networked harmonic oscillators via quantized sampled velocity feedback, IEEE T. Automat. Contr., 66 (2021), 3267–3273. http://dx.doi.org/10.1109/TAC.2020.3014905 doi: 10.1109/TAC.2020.3014905
    [11] D. X. Peng, X. D. Li, Leader-following synchronization of complex dynamic networks via event-triggered impulsive control, Neurocomputing, 412 (2020), 1–10. http://dx.doi.org/10.1016/j.neucom.2020.05.071 doi: 10.1016/j.neucom.2020.05.071
    [12] L. P. Deng, Z. Y. Wu, Impulsive cluster synchronization in community network with nonidentical nodes, Commun. Theor. Phys., 58 (2012), 525–530. http://dx.doi.org/10.1088/0253-6102/58/4/14 doi: 10.1088/0253-6102/58/4/14
    [13] L. F. Liu, K. Liu, H. Y. Xiang, Q. Liu, Pinning impulsive cluster synchronization of complex dynamical networks, Physica A, 545 (2020), 123580. http://dx.doi.org/10.1016/j.physa.2019.123580 doi: 10.1016/j.physa.2019.123580
    [14] Z. L. Xu, X. D. Li, P. Y. Duan, Synchronization of complex networks with time-varying delay of unknown bound via delayed impulsive control, Neural Netw., 125 (2020), 224–232. http://dx.doi.org/10.1016/j.neunet.2020.02.003 doi: 10.1016/j.neunet.2020.02.003
    [15] P. F. Wang, S. Y. Li, H. Su, Stabilization of complex-valued stochastic functional differential systems on networks via impulsive control, Chaos Soliton. Fract., 133 (2020), 109561. http://dx.doi.org/10.1016/j.chaos.2019.109561 doi: 10.1016/j.chaos.2019.109561
    [16] H. M. Wang, S. K. Duan, T. W. Huang, J. Tan, Synchronization of memristive delayed neural networks via hybrid impulsive control, Neurocomputing, 267 (2017), 615–623. http://dx.doi.org/10.1016/j.neucom.2017.06.028 doi: 10.1016/j.neucom.2017.06.028
    [17] S. Liang, R. C. Wu, L. P. Chen, Comparison principles and stability of nonlinear fractional-order cellular neural networks with multiple time delays, Neurocomputing, 168 (2015), 618–625. http://dx.doi.org/10.1016/j.neucom.2015.05.063 doi: 10.1016/j.neucom.2015.05.063
    [18] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), 1–8. http://dx.doi.org/10.1016/j.heliyon.2020.e05109 doi: 10.1016/j.heliyon.2020.e05109
    [19] E. A. A. Ziada, Numerical solution for multi-term fractional delay differential equations, J. Fract. Calc. Nonlinear. Sys., 2 (2021), 1–12. http://dx.doi.org/10.48185/jfcns.v2i2.358 doi: 10.48185/jfcns.v2i2.358
    [20] M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 65 (2021), 1–17. http://dx.doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [21] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 37 (2021), 1–21. http://dx.doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
    [22] L. P. Chen, R. C. Wu, Z. B. Chu, Y. G. He, L. S. Yin, Pinning synchronization of fractional-order delayed complex networks with non-delayed and delayed coupling, Int. J. Control, 90 (2017), 1245–1255. http://dx.doi.org/10.1080/00207179.2016.1278268 doi: 10.1080/00207179.2016.1278268
    [23] P. Liu, Z. G. Zeng, J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay, IEEE T. Neural Netw. Learn. Syst., 31 (2020), 4956–4967. http://dx.doi.org/10.1109/TNNLS.2019.2962006 doi: 10.1109/TNNLS.2019.2962006
    [24] H. L. Li, Y. L. Jiang, Z. L. Wang, L. Zhang, Z. D. Teng, Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270 (2015), 269–277. http://dx.doi.org/10.1016/j.amc.2015.08.043 doi: 10.1016/j.amc.2015.08.043
    [25] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. http://dx.doi.org/10.1038/nature06932 doi: 10.1038/nature06932
    [26] P. Mani, R. Rajan, L. Shanmugam, Y. H. Joo, Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption, Inf. Sci., 491 (2019), 74–89. http://dx.doi.org/10.1016/j.ins.2019.04.007 doi: 10.1016/j.ins.2019.04.007
    [27] X. Li, L. K. Xing, Traffic flow forecast based on optimal order fractional neural network, Comput. Eng. Appl., 48 (2012), 226–230. http://dx.doi.org/10.3778/j.issn.1002-8331.2012.18.048 doi: 10.3778/j.issn.1002-8331.2012.18.048
    [28] Q. Xu, S. X. Zhuang, Y. F. Zeng, J. Xiao, Decentralized adaptive strategies for synchronization of fractional-order complex networks, IEEE-CAA J. Automatica Sin., 4 (2017), 543–550. http://dx.doi.org/10.1109/JAS.2016.7510142 doi: 10.1109/JAS.2016.7510142
    [29] H. L. Li, C. Hu, Y. L. Jiang, Z. L. Wang, Z. D. Teng, Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks, Chaos Soliton. Fract., 92 (2016), 142–149. http://dx.doi.org/10.1016/j.chaos.2016.09.023 doi: 10.1016/j.chaos.2016.09.023
    [30] Y. J. Gu, Y. G. Yu, H. Wang, Projective synchronization for fractional-order memristor-based neural networks with time delays, Neural. Comput. Appl., 31 (2019), 6039–6054. http://dx.doi.org/10.1007/s00521-018-3391-7 doi: 10.1007/s00521-018-3391-7
    [31] H. L. Li, J. D. Cao, C. Hu, L. Zhang, Z. L. Wang, Global synchronization between two fractional-order complex networks with non-delayed and delayed coupling via hybrid impulsive control, Neurocomputing, 356 (2019), 31–39. http://dx.doi.org/10.1016/j.neucom.2019.04.059 doi: 10.1016/j.neucom.2019.04.059
    [32] X. J. Chen, J. Zhang, T. D. Ma, Parameter estimation and topology identification of uncertain general fractional-order complex dynamical networks with time delay, IEEE-CAA J. Automatica Sin., 3 (2016), 295–303. http://dx.doi.org/10.1109/JAS.2016.7508805 doi: 10.1109/JAS.2016.7508805
    [33] S. Liang, R. C. Wu, L. P. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 444 (2016), 49–62. http://dx.doi.org/10.1016/j.physa.2015.10.011 doi: 10.1016/j.physa.2015.10.011
    [34] M. Dalir, N. Bigdeli, The design of a new hybrid controller for fractional-order uncertain chaotic systems with unknown time-varying delays, Appl. Soft Comput., 87 (2020), 106000. http://dx.doi.org/10.1016/j.asoc.2019.106000 doi: 10.1016/j.asoc.2019.106000
    [35] X. W. Liu, T. P. Chen, Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix, Physica A, 387 (2008), 4429–4439. http://dx.doi.org/10.1016/j.physa.2008.03.005 doi: 10.1016/j.physa.2008.03.005
    [36] X. Wu, S. Liu, R. Yang, Y. J. Zhang, X. Y. Li, Global synchronization of fractional complex networks with non-delayed and delayed couplings, Neurocomputing, 290 (2018), 43–49. http://dx.doi.org/10.1016/j.neucom.2018.02.026 doi: 10.1016/j.neucom.2018.02.026
    [37] L. Li, X. G. Liu, M. L. Tang, S. L. Zhang, X. M. Zhang, Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings, Neurocomputing, 445 (2021), 180–193. http://dx.doi.org/10.1016/j.neucom.2021.03.001 doi: 10.1016/j.neucom.2021.03.001
    [38] H. Wang, Y. G. Yu, G. G. Wen, S. Zhang, J. Z. Yu, Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, 154 (2015), 15–23. http://dx.doi.org/10.1016/j.neucom.2014.12.031 doi: 10.1016/j.neucom.2014.12.031
    [39] P. Liu, M. X. Kong, M. L. Xu, J. W. Sun, N. Liu, Pinning synchronization of coupled fractional-order time-varying delayed neural networks with arbitrary fixed topology, Neurocomputing, 400 (2020), 46–52. http://dx.doi.org/10.1016/j.neucom.2020.03.029 doi: 10.1016/j.neucom.2020.03.029
    [40] L. P. Chen, J. D. Cao, R. C. Wu, J. A. T. Machado, A. M. Lopes, H. J. Yang, Stability and synchronization of fractional-order memristive neural networks and multiple delays, Neural Netw., 94 (2017), 76–85. http://dx.doi.org/10.1016/j.neunet.2017.06.012 doi: 10.1016/j.neunet.2017.06.012
    [41] D. Li, X. P. Zhang, Impulsive synchronization of fractional order chaotic systems with time-delay, Neurocomputing, 216 (2016), 39–44. http://dx.doi.org/10.1016/j.neucom.2016.07.013 doi: 10.1016/j.neucom.2016.07.013
    [42] R. Y. Ye, X. S. Liu, H. Zhang, J. D. Cao, Global Mittag-Leffler synchronization for fractional-order BAM neural networks with impulses and multiple variable delays via delayed-feedback control strategy, Neural Process. Lett., 49 (2019), 1–18. http://dx.doi.org/10.1007/s11063-018-9801-0 doi: 10.1007/s11063-018-9801-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1681) PDF downloads(112) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog