Research article Special Issues

Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control

  • Received: 29 December 2023 Revised: 29 January 2024 Accepted: 04 February 2024 Published: 22 February 2024
  • MSC : 34A08, 34D06, 34K37, 93C23

  • We focused on the quasi-projective synchronization (QPS) and finite-time synchronization (FNTS) for a class of fractional-order memristive complex-valued delay neural networks (FOMCVDNNs). Rather than decomposing the complex-valued system into its real and imaginary components, we adopted a more streamlined approach by introducing a lemma associated with the complex-valued sign function. This innovative technique enabled us to design a simpler discontinuous controller. Then, based on the finite-time Lemma, measurable selection theorem, Lyapunov function theory, properties of the Mittag-Leffler function, and the fractional-order Razumikhin theorem, various substantial results were derived using a novel hybrid control scheme. In conclusion, we presented numerical simulations to illustrate the practical effectiveness of our theoretical findings.

    Citation: Jiaqing Zhu, Guodong Zhang, Leimin Wang. Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control[J]. AIMS Mathematics, 2024, 9(3): 7627-7644. doi: 10.3934/math.2024370

    Related Papers:

  • We focused on the quasi-projective synchronization (QPS) and finite-time synchronization (FNTS) for a class of fractional-order memristive complex-valued delay neural networks (FOMCVDNNs). Rather than decomposing the complex-valued system into its real and imaginary components, we adopted a more streamlined approach by introducing a lemma associated with the complex-valued sign function. This innovative technique enabled us to design a simpler discontinuous controller. Then, based on the finite-time Lemma, measurable selection theorem, Lyapunov function theory, properties of the Mittag-Leffler function, and the fractional-order Razumikhin theorem, various substantial results were derived using a novel hybrid control scheme. In conclusion, we presented numerical simulations to illustrate the practical effectiveness of our theoretical findings.



    加载中


    [1] W. Xu, J. Cao, M. Xiao, D. W. Ho, G. Wen, A new framework for analysis on stability and bifurcation in a class of neural networks with discrete and distributed delays, IEEE Trans. Cybern., 45 (2015), 2224–2236. https://doi.org/10.1109/TCYB.2014.2367591 doi: 10.1109/TCYB.2014.2367591
    [2] L. Wang, T. Dong, M. F. Ge, Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl. Math. Comput., 347 (2019), 293–305. https://doi.org/10.1016/j.amc.2018.11.017 doi: 10.1016/j.amc.2018.11.017
    [3] F. C. Hoppensteadt, E. M. Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11 (2000), 734–738. https://doi.org/10.1109/72.846744 doi: 10.1109/72.846744
    [4] H. Shen, Y. Zhu, L. Zhang, J. H. Park, Extended dissipative state estimation for markov jump neural networks with unreliable links, IEEE Trans. Neural Netw. Learn. Syst., 28 (2016), 346–358. https://doi.org/10.1109/TNNLS.2015.2511196 doi: 10.1109/TNNLS.2015.2511196
    [5] C. Xu, M. Liao, P. Li, Y. Guo, Q. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. https://doi.org/10.1016/j.amc.2019.05.057 doi: 10.1016/j.amc.2019.05.057
    [6] P. Liu, Z. Zeng, J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 4956–4967. https://doi.org/10.1109/TNNLS.2019.2962006 doi: 10.1109/TNNLS.2019.2962006
    [7] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, Mittag-leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci., 43 (2020), 6223–6253. https://doi.org/10.1002/mma.6367 doi: 10.1002/mma.6367
    [8] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [9] J. Zhou, X. Ma, Z. Yan, S. Arik, Non-fragile output-feedback control for time-delay neural networks with persistent dwell time switching: A system mode and time scheduler dual-dependent design, Neural Netw., 169 (2024), 733–743. https://doi.org/10.1016/j.neunet.2023.11.007 doi: 10.1016/j.neunet.2023.11.007
    [10] J. W. Smith, Complex-valued neural networks for data-driven signal processing and signal understanding, arXiv: 2309.07948, 2023. https://doi.org/10.48550/arXiv.2309.07948
    [11] R. Trabelsi, I. Jabri, F. Melgani, F. Smach, N. Conci, A. Bouallegue, Indoor object recognition in rgbd images with complex-valued neural networks for visually-impaired people, Neurocomputing, 330 (2019), 94–103. https://doi.org/10.1016/j.neucom.2018.11.032 doi: 10.1016/j.neucom.2018.11.032
    [12] M. Z. Khan, A. Sarkar, A. Noorwali, Memristive hyperchaotic system-based complex-valued artificial neural synchronization for secured communication in industrial internet of things, Eng. Appl. Artif. Intell., 123 (2023), 106357. https://doi.org/10.1016/j.engappai.2023.106357 doi: 10.1016/j.engappai.2023.106357
    [13] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fractals, 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [14] S. Yang, J. Yu, C. Hu, H. Jiang, Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks, Neural Netw., 104 (2018), 104–113. https://doi.org/10.1016/j.neunet.2018.04.007 doi: 10.1016/j.neunet.2018.04.007
    [15] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for mittag-leffler projective synchronization on foqvnns with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [16] H. L. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization of fractional-order complex networks via hybrid feedback control, Neurocomputing, 320 (2018), 69–75. https://doi.org/10.1016/j.neucom.2018.09.021 doi: 10.1016/j.neucom.2018.09.021
    [17] H. L. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization and parameter identification of uncertain fractional-order complex networks, Physica A, 533 (2019), 122027. https://doi.org/10.1016/j.physa.2019.122027 doi: 10.1016/j.physa.2019.122027
    [18] H. Yan, Y. Qiao, L. Duan, J. Miao, New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays, Chaos Solitons Fractals, 159 (2022), 112121. https://doi.org/10.1016/j.chaos.2022.112121 doi: 10.1016/j.chaos.2022.112121
    [19] H. L. Li, C. Hu, J. Cao, H. Jiang, A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118 (2019), 102–109. https://doi.org/10.1016/j.neunet.2019.06.008 doi: 10.1016/j.neunet.2019.06.008
    [20] X. Li, X. Liu, F. Wang, Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays, Chaos Solitons Fractals, 174 (2023), 113754. https://doi.org/10.1016/j.chaos.2023.113754 doi: 10.1016/j.chaos.2023.113754
    [21] Y. Cheng, T. Hu, W. Xu, X. Zhang, S. Zhong, Fixed-time synchronization of fractional-order complex-valued neural networks with time-varying delay via sliding mode control, Neurocomputing, 505 (2022), 339–352. https://doi.org/10.1016/j.neucom.2022.07.015 doi: 10.1016/j.neucom.2022.07.015
    [22] X. Song, X. Sun, J. Man, S. Song, Q. Wu, Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application, J. Franklin Inst., 358 (2021), 8207–8225. https://doi.org/10.1016/j.jfranklin.2021.08.016 doi: 10.1016/j.jfranklin.2021.08.016
    [23] K. Udhayakumar, R. Rakkiyappan, F. A. Rihan, S. Banerjee, Projective multi-synchronization of fractional-order complex-valued coupled multi-stable neural networks with impulsive control, Neurocomputing, 467 (2022), 392–405. https://doi.org/10.1016/j.neucom.2021.10.003 doi: 10.1016/j.neucom.2021.10.003
    [24] J. Yang, H. L. Li, L. Zhang, C. Hu, H. Jiang, Quasi-projective and finite-time synchronization of delayed fractional-order bam neural networks via quantized control, Math. Methods Appl. Sci., 46 (2023), 197–214. https://doi.org/10.1002/mma.8504 doi: 10.1002/mma.8504
    [25] N. Yao, M. Hui, J. Zhang, J. Yan, W. Wu, Complete synchronization of delayed fractional-order complex-valued neural networks via adaptive control, In: 2022 5th International conference on artificial intelligence and big data, 2022, 173–178. https://doi.org/10.1109/ICAIBD55127.2022.9820317
    [26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006.
    [27] X. Yang, J. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Model., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012
    [28] L. Feng, J. Yu, C. Hu, C. Yang, H. Jiang, Nonseparation method-based finite/fixed-time synchronization of fully complex-valued discontinuous neural networks, IEEE Trans. Cybern., 51 (2020), 3212–3223. https://doi.org/10.1109/TCYB.2020.2980684 doi: 10.1109/TCYB.2020.2980684
    [29] Q. Gan, L. Li, J. Yang, Y. Qin, M. Meng, Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 5542–5556. https://doi.org/10.1109/TNNLS.2021.3070966 doi: 10.1109/TNNLS.2021.3070966
    [30] B. Zheng, C. Hu, J. Yu, H. Jiang, Finite-time synchronization of fully complex-valued neural networks with fractional-order, Neurocomputing, 373 (2020), 70–80. https://doi.org/10.1016/j.neucom.2019.09.048 doi: 10.1016/j.neucom.2019.09.048
    [31] A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized mittag-leffler function and generalized fractional calculus operators, Integral Transform. Spec. Funct., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717
    [32] J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-69512-4
    [33] A. F. Filippov, Differential equations with discontinuous righthand sides: Control systems, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-015-7793-9
    [34] G. Zhang, Z. Zeng, D. Ning, Novel results on synchronization for a class of switched inertial neural networks with distributed delays, Inf. Sci., 511 (2020), 114–126. https://doi.org/10.1016/j.ins.2019.09.048 doi: 10.1016/j.ins.2019.09.048
    [35] D. Baleanu, S. Sadati, R. Ghaderi, A. Ranjbar, T. Abdeljawad, F. Jarad, Razumikhin stability theorem for fractional systems with delay, Abstr. Appl. Anal., 2010 (2010), 124812. https://doi.org/10.1155/2010/124812 doi: 10.1155/2010/124812
    [36] J. Jia, Z. Zeng, Lmi-based criterion for global mittag-leffler lag quasi-synchronization of fractional-order memristor-based neural networks via linear feedback pinning control, Neurocomputing, 412 (2020), 226–243. https://doi.org/10.1016/j.neucom.2020.05.074 doi: 10.1016/j.neucom.2020.05.074
    [37] Y. Fan, X. Huang, Z. Wang, Y. Li, Improved quasi-synchronization criteria for delayed fractional-order memristor-based neural networks via linear feedback control, Neurocomputing, 306 (2018), 68–79. https://doi.org/10.1016/j.neucom.2018.03.060 doi: 10.1016/j.neucom.2018.03.060
    [38] Y. Shen, S. Zhu, X. Liu, S. Wen, Multiple mittag-leffler stability of fractional-order complex-valued memristive neural networks with delays, IEEE Trans. Cybern., 53 (2022), 5815–5825. https://doi.org/10.1109/TCYB.2022.3194059 doi: 10.1109/TCYB.2022.3194059
    [39] M. Syed Ali, G. Narayanan, Z. Orman, V. Shekher, S. Arik, Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays, Neural Process. Lett., 51 (2020), 407–426. https://doi.org/10.1007/s11063-019-10097-7 doi: 10.1007/s11063-019-10097-7
    [40] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 31 (2023), 3906–3920. https://doi.org/10.1109/TFUZZ.2023.3271348 doi: 10.1109/TFUZZ.2023.3271348
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(734) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog