Research article

Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays

  • Received: 24 March 2022 Revised: 05 May 2022 Accepted: 20 May 2022 Published: 27 May 2022
  • MSC : 34D06, 34D23, 34K13, 34K24

  • This paper proposes a class of quaternion-valued high-order Hopfield neural networks with delays. By using the non-decomposition method, non-reduced order method, analytical techniques in uniform convergence functions sequence, and constructing Lyapunov function, we obtain several sufficient conditions for the existence and global exponential synchronization of anti-periodic solutions for delayed quaternion-valued high-order Hopfield neural networks. Finally, an example and its numerical simulations are given to support the proposed approach. Our results play an important role in designing inertial neural networks.

    Citation: Jin Gao, Lihua Dai. Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays[J]. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775

    Related Papers:

  • This paper proposes a class of quaternion-valued high-order Hopfield neural networks with delays. By using the non-decomposition method, non-reduced order method, analytical techniques in uniform convergence functions sequence, and constructing Lyapunov function, we obtain several sufficient conditions for the existence and global exponential synchronization of anti-periodic solutions for delayed quaternion-valued high-order Hopfield neural networks. Finally, an example and its numerical simulations are given to support the proposed approach. Our results play an important role in designing inertial neural networks.



    加载中


    [1] P. Shi, L. Dong, Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses, Appl. Math. Comput., 216 (2010), 623–630. https://doi.org/10.1016/j.amc.2010.01.095 doi: 10.1016/j.amc.2010.01.095
    [2] W. Wang, Anti-periodic solution for impulsive high-order Hopfield neural networks with time-varying delays in the leakage terms, Adv. Differ. Equations, 2013 (2013), 1–15. https://doi.org/10.1186/1687-1847-2013-273 doi: 10.1186/1687-1847-2013-273
    [3] L. Zhao, Y. Li, B. Li, Weighted pseudo-almost automorphic solutions of high-order Hopfield neural networks with neutral distributed delays, Neural Comput. Appl., 29 (2018), 513–527. https://doi.org/10.1007/s00521-016-2553-8 doi: 10.1007/s00521-016-2553-8
    [4] C. Aouiti, E. A. Assali, Stability analysis for a class of impulsive high-order Hopfield neural networks with leakage time-varying delays, Neural Comput. Appl., 31 (2018), 7781–7803. https://doi.org/10.1007/s00521-018-3585-z doi: 10.1007/s00521-018-3585-z
    [5] L. Yang, Y. Fei, W. Wu, Periodic solution for $\nabla$-stochastic high-order Hopfield neural networks with time delays on time scales, Neural Process. Lett., 49 (2018), 1681–1696. https://doi.org/10.1007/s11063-018-9896-3 doi: 10.1007/s11063-018-9896-3
    [6] Z. He, C. Li, H. Li, Q. Zhang, Global exponential stability of high-order Hopfield neural networks with state-dependent impulses, Phys. A: Stat. Mech. Appl., 542 (2020), 123434. https://doi.org/10.1016/j.physa.2019.123434 doi: 10.1016/j.physa.2019.123434
    [7] L. Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, J. Exp. Theor. Artif. Intell., 33 (2021), 47–61. https://doi.org/10.1080/0952813X.2020.1721571 doi: 10.1080/0952813X.2020.1721571
    [8] Y. Liu, D. Zhang, J. Lu, J. Cao, Global $\mu$-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Inf. Sci., 360 (2016), 273–288. https://doi.org/10.1016/j.ins.2016.04.033 doi: 10.1016/j.ins.2016.04.033
    [9] Y. Liu, D. Zhang, J. Lu, Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dynam., 87 (2017), 553–565. https://doi.org/10.1007/s11071-016-3060-2 doi: 10.1007/s11071-016-3060-2
    [10] Z. Tu, J. Cao, A. Alsaedi, T. Hayat, Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Networks, 89 (2017), 97–104. https://doi.org/10.1016/j.neunet.2017.01.006 doi: 10.1016/j.neunet.2017.01.006
    [11] J. Zhu, J. Sun, Stability of quaternion-valued neural networks with mixed delays, Neural Process. Lett., 49 (2019), 819–833. https://doi.org/10.1007/s11063-018-9849-x doi: 10.1007/s11063-018-9849-x
    [12] Z. Tu, X. Yang, L. Wang, N. Ding, Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method, Phys. A: Stat. Mech. Appl., 535 (2019), 122358. https://doi.org/10.1016/j.physa.2019.122358 doi: 10.1016/j.physa.2019.122358
    [13] Y. Li, X. Meng, Existence and global exponential stability of pseudo almost periodic solutions for neutral type quaternion-valued neural networks with delays in the leakage term on time scales, Complexity, 2017 (2017), 1–15. https://doi.org/10.1155/2017/9878369 doi: 10.1155/2017/9878369
    [14] Y. Li, X. Meng, Almost automorphic solutions for quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays, J. Syst. Sci. Complex., 33 (2020), 100–121. https://doi.org/10.1007/s11424-019-8051-1 doi: 10.1007/s11424-019-8051-1
    [15] Y. Li, J. Qin, B. Li, Anti-periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays, Neural Process. Lett., 49 (2018), 1217–1237. https://doi.org/10.1007/s11063-018-9867-8 doi: 10.1007/s11063-018-9867-8
    [16] N. Huo, B. Li, Y. Li, Existence and exponential stability of anti-periodic solutions for inertial quaternion-valued high-order Hopfield neural networks with state-dependent delays, IEEE Access, 7 (2019), 60010–60019. https://doi.org/10.1109/ACCESS.2019.2915935 doi: 10.1109/ACCESS.2019.2915935
    [17] Z. Cai, L. Huang, L. Zhang, New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations, Neural Networks, 65 (2015), 105–114. https://doi.org/10.1016/j.neunet.2015.02.001 doi: 10.1016/j.neunet.2015.02.001
    [18] W. Yang, W. Yu, J. Cao, F. E. Alsaadi, T. Hayat, Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses, Neural Networks, 98 (2018), 122–153. https://doi.org/10.1016/j.neunet.2017.11.001 doi: 10.1016/j.neunet.2017.11.001
    [19] L. Ke, W. Li, Exponential synchronization in inertial neural networks with time delays, Electronics, 8 (2019), 356–369. https://doi.org/10.3390/electronics8030356 doi: 10.3390/electronics8030356
    [20] U. Kumar, S. Das, C. Huang, J. Cao, Fixed-time synchronization of quaternion-valued neural networks with time-varying delay, Proc. Royal Soc. A: Math., Phys. Eng. Sci., 476 (2020). https://doi.org/10.1098/rspa.2020.0324 doi: 10.1098/rspa.2020.0324
    [21] Z. Cai, L. Huang, D. Wang, L. Zhang, Periodic synchronization in delayed memristive neural networks based on Filippov syetems, J. Franklin Inst., 352 (2015), 4638–4663. https://doi.org/10.1016/j.jfranklin.2015.07.014 doi: 10.1016/j.jfranklin.2015.07.014
    [22] Y. Li, Y. Fang, J. Qin, Anti-periodic synchronization of quaternion-valued generalized cellular neural networks with time-varying delays and impulsive effects, Int. J. Control, Autom. Sys., 17 (2019), 1191–1208. https://doi.org/10.1007/s12555-018-0385-2 doi: 10.1007/s12555-018-0385-2
    [23] Y. Li, H. Wang, X. Meng, Almost automorphic synchronization of quaternion-valued high-order Hopfield neural networks with time-varying and distributed delays, IMA J. Math. Control Infor., 36 (2019), 983–1013. https://doi.org/10.1093/imamci/dny015 doi: 10.1093/imamci/dny015
    [24] K. L. Babcock, R. M. Westervelt, Dynamics of simple electronic neural networks, Phys. D, 28 (1987), 305–316. https://doi.org/10.1016/0167-2789(87)90021-2 doi: 10.1016/0167-2789(87)90021-2
    [25] C. Huang, L. Yang, B. Liu, New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method, Neural Process. Lett., 50 (2019), 595–606. https://doi.org/10.1007/s11063-019-10055-3 doi: 10.1007/s11063-019-10055-3
    [26] C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019), 1950016. https://doi.org/10.1142/S1793524519500165 doi: 10.1142/S1793524519500165
    [27] C. Huang, Exponential stability of inertial neural networks involving proportional delays and non-reduced order method, J. Exp. Theor. Artif. Intell., 32 (2019), 133–146. https://doi.org/10.1080/0952813X.2019.1635654 doi: 10.1080/0952813X.2019.1635654
    [28] L. Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, J. Exp. Theor. Artif. Intell., 32 (2021), 47–61. https://doi.org/10.1080/0952813X.2020.1721571 doi: 10.1080/0952813X.2020.1721571
    [29] Q. Cao, X. Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, AIMS Math., 5 (2020), 5402–5421. https://doi.org/10.3934/math.2020347 doi: 10.3934/math.2020347
    [30] S. Chen, H. Jiang, B. Lu, Z. Yu, L. Li, Pinning bipartite synchronization for inertial coupled delayed neural networks with signed digraph via non-reduced order method, Neural Networks, 129 (2020), 392–402. https://doi.org/10.1016/j.neunet.2020.06.017 doi: 10.1016/j.neunet.2020.06.017
    [31] X. Wei, Z. Zhang, C. Lin, J. Chen, Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays, Appl. Math. Comput., 403 (2021), 126194. https://doi.org/10.1016/j.amc.2021.126194 doi: 10.1016/j.amc.2021.126194
    [32] Y. Yu, Z. Zhang, M. Zhong, Z. Wang, Pinning synchronization and adaptive synchronization of complex-valued inertial neural networks with time-varying delays in fixed-time interval, J. Franklin Inst., 359 (2022), 1434–1456. https://doi.org/10.1016/j.jfranklin.2021.11.036 doi: 10.1016/j.jfranklin.2021.11.036
    [33] X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
    [34] K. Ratchagit, Asymptotic stability of delay-difference system of hopfield neural networks via matrix inequalities and application, Int. J. Neural Syst., 17 (2007), 425–430. https://doi.org/10.1142/S0129065707001263 doi: 10.1142/S0129065707001263
    [35] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci., 43 (2020), 6223–6253. https://doi.org/10.1002/mma.6367 doi: 10.1002/mma.6367
    [36] R. Sriraman, G. Rajchakit, C. Lim, P. Chanthorn, R. Samidurai, Discrete-time stochastic quaternion-valued neural networks with time delays: An asymptotic stability analysis, Symmetry, 12 (2020), 936. https://doi.org/10.3390/sym12060936 doi: 10.3390/sym12060936
    [37] Q. Zhou, J. Shao, Positive almost periodic solutions for a single population model with hereditary effect and mixed delays, Math. Methods Appl. Sci., 38 (2015), 4982–5004. https://doi.org/10.1002/mma.3419 doi: 10.1002/mma.3419
    [38] Y. Yu, S. Gong, Z. Ning, New studies on dynamic analysis of asymptotically almost periodic recurrent neural networks involving mixed delays, Adv. Differ. Equations, 2018 (2018), 417. https://doi.org/10.1186/s13662-018-1872-8 doi: 10.1186/s13662-018-1872-8
    [39] J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Differ. Equations, 2020 (2020), 120. https://doi.org/10.1186/s13662-020-02566-4 doi: 10.1186/s13662-020-02566-4
    [40] X. Wang, H. Wu, J. Cao, Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth, Nonlinear Anal.: Hybrid Syst., 37 (2020), 100888. https://doi.org/10.1016/j.nahs.2020.100888 doi: 10.1016/j.nahs.2020.100888
    [41] R. Li, H. Wu, J. Cao, Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations, Acta Math. Sci., 42 (2022), 737–754. https://doi.org/10.1007/s10473-022-0219-4 doi: 10.1007/s10473-022-0219-4
    [42] B. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Methods Appl. Sci., 40 (2016), 167–174. https://doi.org/10.1002/mma.3976 doi: 10.1002/mma.3976
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(90) Cited by(5)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog