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1. Introduction

Hopfield neural networks model, which was first discussed by Babcock and Westervelt, has been
widely applications such as signal processing, pattern recognition, associative memory, and so on.
Since high-order Hopfield neural networks have stronger approximation properties, faster
convergence speed, and larger storage capacity, numerous works have intensively analyzed high-order
Hopfield neural networks in recent years. In particular, many good results are explored by some
authors, especially the existence and stability of solutions for Hopfield neural networks [1-7].

As is well known, a new multidimensional neural networks model, which has been described
quaternion-valued neural networks model, is 4-dimensional and represents a generalization of the
real-valued and complex-valued neural networks. Quaternion-valued neural networks have received
the interest of many scholars and there are some good research results about dynamic behaviors. For
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instance, in [8—12], some authors have discussed the stability of quaternion-valued neural networks
with delays. In [13,14], some authors have discussed the existence and global exponential stability of
pseudo almost periodic solutions and almost automorphic solutions for quaternion-valued neural
networks with delays and leakage terms. In [15,16], some authors have discussed the existence and
exponential stability of anti-periodic solutions for quaternion-valued neural networks.

Synchronization has played a key role in network control and system design. Synchronization has
become a very hot topic across many research fields such as neural networks, information processing,
biological systems, and so on. Recently, in [17-20], some authors have explored the synchronization
of neural networks with time-varying delays. In [21-23], some authors have explored periodic
synchronization, anti-periodic synchronization, and almost automorphic synchronization for delayed
neural networks. Anti-periodic synchronization is one of the dynamic properties of neural networks.
So far, there are many research results about synchronization, but there are few involved in
counter-periodic synchronization. Therefore, it is of great significance to study the anti-periodic
synchronization of neural networks.

As well known, neural network models are often described by first-order differential equations.
However, inertial electronic neural networks, which were introduced by Babcock and Westervelt
(see [24]), are modeled by second-order differential equations. Their dynamics can be more complex
compared with first-order neural network models. Recently, in [25-30], many authors have explored
the inertial neural networks, and there are many research results. In [31], some authors have explored
the complex-valued inertial neural networks by applying the reduced-order and Lyapunov functional
methods. In [32], some authors have explored the complex-valued inertial neural networks by using
the non-reduced order method and establishing a novel Lyapunov function.

With the inspiration from the previous research, to fill the gap in the research field of
quaternion-valued high-order Hopfield neural networks, the work of this article comes from three
main motivations. (1) Recently, in [16], some authors have discussed the existence and exponential
stability of anti-periodic solutions for inertial quaternion-valued high-order Hopfield neural networks
by using the non-decomposition method and reduced-order method; in [22], some authors have
discussed the anti-periodic synchronization of quaternion-valued generalized cellular neural networks
by using decomposition method. However, using the reduced-order method or decomposition method
will increase the complexity of the calculation. (2) In [25-30], some authors have discussed the
stability of solutions for high-order real-valued neural networks by the non-reduced order method. Up
to now, there has been no paper about high-order quaternion-valued neural networks yet by using the
non-reduced order method. (3) In practical applications, synchronization is an interesting and
significant dynamical property for differential equations, thus it is worth studying the anti-periodic
synchronization of quaternion-valued neural network models. Therefore, in this paper, to overcome
the complexity of the calculation, we will investigate the existence and exponential synchronization of
anti-periodic solutions for quaternion-valued high-order Hopfield neural networks by using the
non-decomposition method, non-reduced order method, analytical techniques in uniform convergence
functions sequence, and Lyapunov function method.

Compared with the previous kinds of literature, the main contributions of this paper are listed as
follows. (1) Firstly, to the best of our knowledge, without separating the quaternion-valued neural
networks into real-valued neural networks. Therefore, the results are less conservative and more
general. (2) Secondly, this paper, considering the model as a whole, applies the non-reduced order
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method to investigate differential equations. (3) Thirdly, our method in this paper can be used to study
the anti-periodic synchronization for other types of quaternion-valued neural networks.

This paper is organized as follows: In Section 2, we introduce some definitions and preliminary
lemmas. In Section 3, we establish some sufficient conditions for the existence anti-periodic solutions
of system (2.1), global exponential synchronization for system (2.1) and system (3.7). In Section 4,
one numerical example is provided to verify the effectiveness of the theoretical results. Finally, we
draw a conclusion in Section 5.

Notations: R denotes the set of real numbers, R, = [0, +00) denotes the set of non-negative real
numbers, H denotes the set of quaternion numbers, H" denotes the n dimensional quaternion numbers,
| - |lz represents the vector quaternion norm. For x € H, we define ||x|lzy = sup {Ix(t)l} and for

te[0,w]

n
x = (x1, %2, ,x,)" € H", we define ||xllgs = Y} |Ix,llz. For u € H". Let
r=1

3 in @y oo\ wy_
X = {xe c'([o, S1H ) :x(r+ 5) = —x(t),t € R}
be one Banach space equipped with the norms
Il = max {llxllze, |15l .
2. Preliminaries

In this section, we shall first recall some fundamental definitions and lemmas.
The algebra of quaternion is defined as

H::{x:x:xR+ixI+jxj+ka},

where x*, x/, x’, xX € R and the three imaginary units 7, j and k obey the Hamolton’s multiplication
rules:

L. . g . S Ty Ry R T N

ij=—ji=k, jk=—kj=1i, ki=—-ik=j,i"=j =k =-1.
For every x € H, the conjugate of quaternion x is defined as ¥ = x® — ix! — jx/ — kxX, its norm as
Il = V= VR + ()7 + () + (R

In this paper, we will study the solutions of quaternion-valued high-order Hopfield neural networks

with delays in the following model of differential equations:

xp(t) = _ap(t)xp(t) - bp(t)xp(t) + Z cpq(t)fq(xq(t)) + Z dpq(t)
g=1 q=1

X2q(Xg(t = ¥pgD)) + D" > epu(DDhy(g(t = ap (1))

g=1 =1

XhL(xL(t _ﬁpqt(t))) + Up(t)a (21)

where p = 1,2,--- ,n, x;(t) € H is the state vector of the pth unit at time ¢, a,(t) > 0, b,() >
0 represent the rate with which the pth unit will reset its potential to the resting state in isolation
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when disconnected from the network and external inputs, c,;, d,;, €, € H denote the strength of
connectivity, the activation functions f;, g,,h, € H show how the gth neuron reacts to input, time-
varying delay factors satisfy that y,,(?), @pe (1), Bpe(t) € R, U, € H denotes the pth component of an
external input source introduced from outside the network to the unit p at time .

The initial value of system (2.1) is the following

xp(8) = @, (9), Xp(8) = ¢, (), s €[-7,0], (2.2)

where ga}‘,(s), Y, € C([—T,O],H),p =1,2,---,n, 7 = max{y,a,ﬁ}, Yy = 123’;{2[1351”"’(”}’ o =

max { sup apqt(t)},,B: max { s[lgp]ﬁpqt(t)}.

1<p.gsn ® yef0,0] 1<p.gusn ® 4e
To study the existence of %-anti-periodic solution of system (2.1), we need the following

assumptions:

(Hy) For p,q,o. = 1,2,-+-,n, ap,bp,Ypgs ¥pg- Ppg - R = Ry, ¢p,dy,e,0,U, : R — H, there exists
w > 0 such that

a,(t + %) = a,(1), by(t+ %) = b,(1), U,(t+ %) = U, (1),

Vot + 3) = Va0 @pult + ) = a0 Bt + 5 = By,
Cpalt + D0) = =Cpy D fy (0, dpyft + T)4(10) = = (D)8 (~0),

epqt(t + %)hq(u)ht(v) = _epqL(t)hq(_u)hL(_V);

(Hy) Forp,q,e =1,2,--- ,n,t € R, y,,(t), @,q(2), Bpqe(?) are continuously differentiable defined on R,
and 1 —73,,(1) > 0, 1 = &, (1) > 0, 1 = B,,(t) > 0, there exist positive constants ¥,,, &pq» Bpq SUCh
that

Ypq = Max { sup j’pq(l)},

1<p,gsn 1€[0,w]

C‘qut = max { Sup d’pqt(t)}’
1<p.q.t<n te[0,w]

:qut =  max { sup ,qut(f)};

1<p,g.i<n te[0,w]

(H3) Forg =1,2,---,n, there exist positive constants L, L,, L, such that
q p 1o Lig
|fg(u) = foW)| < Lylu — v,

lgq(u) — g, < Lglu — vl
|hy(w) = hy(V)| < Lylu — vl
(H,) There exist positive constants M, M, M such that |f,(u)| < M), 18,0 < ME, |h,(u)| < M},
VMGH,q: ]’2,... N
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(Hs) There exists a positive constant A such that

20+4-2a; - 2b7 + Z(c;q)szc(Z/l +3)

)2(L )2 2y n (epq[)2L (Mh)Z 2

d,
+Z 1 =7pq ZZ 1 =g

g=1 g=1 =1
(epqL)ZLZ(Mh)2 2/113

Z Z _ﬁpqL <0,

g=1 =1

where

a, = inf a,(1), a = sup ap(1), b = 1nfb (1), b+ = sup b,(1),
[0.] [0.0] [0.0]

+
¢’ = max ||c,,(t U, = max ||U,(¢t
ba = max llepOlls, Uy = max U0k

d+ = max ||d,,(t €+ = max e t .
o= e Ol €l = max flepg0ls

Definition 2.1. A continuous function x = (x1,x, -+, xn)T : [0, +00] — H" is said to be a solution of
system (2.1), if

(i) x(s) = ¢*(s),x(s) = Y*(s) for s € [-1,0], where ¢* = (¢f,¢5," - ,goﬁ)T, ¢, € C([-7,0],H),

W= s ) wh € CU-1,0LH), p= 1,2, ,n;
(ii) x(¢) satisfies system (2.1) fort > 0.

Definition 2.2. A solution x of system (2.1) is said to be 5-anti-periodic solution of system (2.1), if
there exists w > 0 such that o
x(t+ 5) = —x(1).

Definition 2.3. The drive system (2.1) and the response system (3.7) are said to be globally
exponentially synchronized, if there exist constants € > 0 and N > 0 such that

Iy(®) — x®)llx < Nllyllxe™, Y > 0,

where x = (x1, X2, , x,)! is a solution of system (2.1) with the initial value ¢* = (tp’f,(p“;, e ,(pj)r
and y* = (i, 45, ,wﬁ)T, y =0y, ,yn)T is a solution of system (3.4) with the initial value

(py = (‘10)1)’9027 "pﬁ)T al’ldlﬁy = (éby,%’ J/’%)T,
Ibelle = max {llg” = @b " = e},

Lemma 2.1. [33] For all u,v € H, av + yu < au + vv.

Lemma 2.2. Suppose that (H,)—(Hs) hold. Let x = (x1, X2, -+ ,x,)" and x* = (x},x},- -+, x3)" are two
solutions of (2.1) with initial value

T

O = (ol o) W = s )
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and
x* X x x\T ,x X x* x\T
"2 :(901 2R ’(pn) ,lﬁ = (l/’1 ’(//2 st ’wn) .
Then for Nt > 0, there exist two constants M > 1 and A > 0 such that

1X(0) = X Dl < Mligllxe™,

and
14() — "Dl < Mlipllxce™,
where

gl = max {llg* = ¢ llz, Il = Il

Proof. Denote x(t) = (x1(2), x2(t), -, x,(£))T and x*(¢) = (x7(0), x5(1), - - - ,x5(0)T are two solutions
of (2.1). Let w,(1) = x(r) — x,,(1), then

WD) = =ap (1) = by OW,(0) + D cpg(O(fy(5g(0) = f(x5(0)
g=1
> (85t = ¥pg(1) = 8o}t = ¥pg(1)))
g=1

+ Z Z epqt(t)(hq(xq(t - apql(t)))hl(xL(l _ﬂpqt(t)))

g=1 =1

_hq(x;(t - a’pqt(t)))ht(xf(t _IquL(t))))- (23)

We define a Lyapunov function as follows:

V@) = Z M0 (0) + Y D (ep LT (D)W, (1)
p=1 ¢g=1
(d+ )2(L )2 21y

Z Z f e”slwq(s)lzds
1 - 7["] I_qu([)

p=1 g=1
(6 )2L2(Mh)2 2

D e
1 - apq[ t_[lpqt(t)

p=1 g=1 =1

n n n (€+ L)2L21(Mh)282/lﬂ t
+ e h 4 f e*w,(s)*ds. 2.4)
Bpa(t)

p:] q:] =1 1_ﬁPQL

Fort >0, p,q,t. =1,2,--- ,n,by (2.3), (2.4) and Lemma 2.1, we can gain

Z—;V(t) = Z 2”{2/lwp(t)wp(t) + wp(t)wp(t) + wp(t)wp(t)}

p=1

>y Z(c;q)zL]%ez’“{Z/M/q(t)wq(t) + W (Dw,(t) + Wq(t)wq(t)}

r=1 ¢=1
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14057

n (d+ )Z(Lg)Z 2y (d+ )Z(L )2 2y

Z Z — “lw, (O - Z Z =

p=1 ¢=1 pr=1 q=1

NN NP o o S

p=1 g=1 =1
(6 )2L (Mh)2 2

LZ(Mh)Z 20 2/1
NSNS t t2 pqt
WP o - 3 3 BT HHOL

p=1 g=1 =1

Xez/l(z—apq(t))lwq(t _ a/pq(t))|2(l — Cqu(t)) + Z Z Z(e;QL)Z

p=1 g=1 =1
(e )2L (Mh)Z 248

w0 - Z Z Z —
_ﬁpqt

p=1 g=1 =1
o eZA(t—qu<f))|wl(t = B (1 = By (1))

n

Z eZ/ll{z/qu(t)lZ _ 2a;|Wp(l)|2 — b;(lwp(t)lz + |Wp(t)|2)

p=1

LZ(Mh)Z 218

IA

+ D (3 P LY 24wy OF + 2wy (P + bingOF) + vy ()P

g=1
L, (O + iy (O + Z Z(e,,qg

D

g=1 g=1 =1

LZ Mh 2 2
( BT O + b0 + ZZ(e,,qJ

g=1 =1

(d+ )2(L )2 2y

h( h)2 218

X—
ﬂpq‘

> e {aa 4 - 24, -2, + Z(cpq)sz(za +3)

p=1

W) + b, ()] }

IA

(d+ )2(Lg)2 2y n (epqL)ZLZ(Mh)Z 2

~ Vpq ~ Apq
+Z 1 ZZ 1-a

g=1 g=1 =1
(6 )2L2(Mh)2 218

+ Z Z s . } - max {Iw,,(t)|2, |Wp(t)|2}

g=1 =1

< 0,

which implies that V(7) < V(0) and we can get that

V(0) Z Wy (O, (0) + Z Z(c,,q> F94(0)wq(0)

p=1 g=1

d+ 2 L 2 2/1y 0
Z Z ( I Ey) f ez’lslwq(s)lzds
Pq

p=1 g=1 ~¥pq(0)
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(6 )2L (Mh)2 2«

M)

0
pqt 1 f 62/ls|Wq(S)|2dS
— Apy ~pgi(0)

p=1 g=1 =1
n (epq[)ZLZ(Mh)Z 2/1/% f o
+ eV \w,(s)ds
; ; ; 1- ﬁpqt ~Bpa(0)
< Z iy () + Z Z(cpq) Llwy (s,
p=1 g=1
(d+ )2 )2 2y
ZZ TR G
p=1 g=1 -
n (epqt)zL h)282/la
+ , lIwg (Il
;;Z‘ 20(1 = tpy) T
(epq[)ZLZ( h)2 218
+ lIw ()15
; ; LZ]: 2/1(1 _IquL)
< Z MP(IWp (I + wp (I,
p=1
where s € [-T1,0],
M? = max{l,A},
and
n d+ 2 L 2 2/17 n 2L2 Mh 2 2
i T T 0=, ~Vp) GG 20 - dpg)
Z $h Ch M
g=1 =1 2/1(1 _IquL)
On the other hand,
SN, < MP(,p(9)lIE + IIw,()IIZ)
2
< MP(INp()l + Iwp(9)llz)
and
(3 L3 w,OF < MP(hp(9)llE + wp(9)IE)
2
< Myl + wp(o)llz)
that is,
WDl < MW ()l + [Iwp()ll)e ™,
and
Wyl £ ———Wp($)lliz + W ($)ll)e™
pa—f
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Hence, for r > 0,we have that

1x(5) = X" (Olln < 2M | pllxe™,

and
(1) = X (@Ol < )
Ly
where
gl = max {llg* — ¢ llz, Il — Il .
The proof is completed. O

3. Main results

In this section, we will investigate the existence and global exponential synchronization of anti-
periodic solutions of quaternion-valued high-order Hopfield neural networks with delays (2.1).

w

Theorem 3.1. Assume that assumptions (Hy)—(Hs) hold. Then system (2.1) has at least an %-anti-
periodic solution.

Proof. Let u(t) = (ui(£), us(2), - - ,u,(t))" € H" be a solution of system (2.1) with initial conditions
up(s) = @i(s), ip(s) =y (s), s€[-70], (3.1

where p = 1,2, -+ ,n,¢}(s), ¥, (s) € H.
For any nonnegative integer m, from (H,), we can get that

(=1 (1 + %(m + D))’
= —(-)"ayr+ %(m + 1) (w1 + %(m + D))
~(=1)" by (1 + %(m 1)y ((1+ %(m + 1))

G Do %(m + D) fy (a1 + %(m + 1))
g=1

£ (1) 1+ %(m + 1) gt + %(m +1)

g=1

—’ypq(t+ ~(m+ 1)) ZZ( D" eyt + 3 Zim+ 1)

g=1 =1
(gt + %(m 1) = @+ %(m + 1))
xhl(ul(t + %(m +1) _ﬁpql(t + %(’" + 1))))
H=D" Ut + S+ 1)

~a, (=1 (1 + %(m + 1))
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by (=1 (1 + %(m +D)))

3 g F (1" (1 + %(m +1)))
g=1

3 dpg (g1 (1 + %(m +1) = 7,0))

g=1
30 eph (=1 (1 + %(m +1) = apu0))
g=1 =1
xhy((=1)" u(t + %(m + 1) = Bpg®)) + Up(0), (3.2)

where p=1,2,--- ,n, 1+ $(m+1) 2 0.
Hence, For 7 + $(m + 1) > 0, (—l)m”u(t + 5(m + 1)) is a solution of system (2.1). Clearly,

v(t) = —u(t + %) is a solution of system (2.1) with initial conditions

vp(8) = @,(8), Vp(s) = ¥ (s), s €[-7,0],

where p = 1,2,--+ ,n, golv,(s), w;(s) € H.
By Lemma 2.2, we can choice a constant M > 1 such that

llu(®) = vl < MlIBllze™,

and
llit(r) = V(@) < MlIgllce ™,
where
lglle = max {llg" = ", Il = “Ilx}-
Therefore,
m w m+1 w
H(—l) u(t + Em) — (=1 + S (m+ D) .
< Mllgllxe 3™ (3.3)
and
m w ! m+1 w ’
H((—l) u(t + Em)) = (=1 u(t + Sm+ D)) .
< Mlglle 5™, (3.4)
Consequently,

(1) + Zm: {(—I)V”up(t + 20+ D)

(_1)m+1up(t + %(m + 1)) 2.

~( Dt + %v)} (3.5)

AIMS Mathematics Volume 7, Issue 8, 14051-14075.
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and

(=1 (1 + %(m +D)) = w+ Z:; {((—1)"+1u1,(t + %(v + D))

4 w !
(e 2 . (3.6)
Therefore, (3.3) and (3.4) suggest that (—1)’””u,,(t + £(m + 1)) and ((—l)m“u,,(t + 5(m + 1)))/ are
uniformly convergent to a differentiable function u*(r) = (uj(®),u5(1),--- Jui )’ € H" and its
derivative (u*)'(f) = ((u}) (1), (u3)' (1), - - - , () (1)" € H" on any compact set of R.
Furthermore,
* wy m w W
w1 + 5) = lim (-1) w1 + >+ Em)
_ : m+1 w
= _mli}}—loo(_l) up(t + E(m + 1))
= —u,(1),

entails that u*(¢) is $-anti-periodic on R.
According to (H;)-(Hs) and the continuity of the right side of (3.2), we can easily show that

n”
((—1)’"+‘u(t + 5(m + 1))) uniformly converges to a continuous function on any compact set of R.
Therefore, for any compact set of R, letting m — +o0o, we can obtain

W) (1) = —ap (O, (0) = byOuy() + Y coyf, 1)

q=1

) dp (02,1 = VD) + D epe(0)
gq=1

g=1 =1

Xho (U, (1 = @pg (D), ((t = Bpg (1)) + U (1),

which implies that u*(¢) is an $-anti-periodic solution of system (2.1).
By Lemma 2.2, it is easy to see that u*(¢) is globally exponentially stable. This completes the
proof. m|

Remark 3.1. Considering the object model as an entirety, unlike the method in literature [16], we
show that system (2.1) has an % -anti-periodic solution by applying the same way as that in Theorem 3.1
of [25-30], namely, the non-reduced order method and analytical techniques in uniform convergence
functions sequence. Therefore, this will bring us great convenience in the calculation.

Next, to investigate drive-response synchronization, we will consider the neural network
system (2.1) as the master system, and the slave system is given by

$o) = =a,5,(0) = b0y (D) + > Cpgfy(g(D) + D dp()
g=1 q=1

X2t = Ypg) + DY epa Oyt = e (1))

g=1 =1

AIMS Mathematics Volume 7, Issue 8, 14051-14075.
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Xh(y.(t = Bpa (1)) + Up(1) + £,(1), (3.7

where p = 1,2,--- ,n, y,(t) : R — H denotes the state of the response system, €,(¢) € H is a state-
feedback controller, other notations are the same as those in system (2.1).
System (3.7) is supplemented with initial values given by

V() = @1(8), 3p(8) = Y(s), s € [T, 0],
where ¢),(s), u(s) € C([-7,0LH),p = 1,2,--- ,n

We are now in a position to discuss the problem of systems (2.1) and (3.7). Letz, =y, — x,, p =
1,2,...,n, then from (2.1) and (3.7), the error system is given by

(0 = —a)0zp(0) = byD0) + D cgO(Fy(g(D) = fy(x, 1))
gq=1
+ Z dpq(t)(gq(yq(t - ypq(t))) - gq(xq(t - ypq(t))))
q=1

+ Z Z epqL(t)(hq(yq(t - apqt(t)))ht(yL(t _ﬁpqt(t)))

g=1 =1

_hq(xq(t - a’pqt(t)))ht(xt(t _ﬁpqt(t)))) + gp(t)- (38)
In order to realize synchronization between (2.1) and (3.7), the controller g, is designed as
gp(l) = _O-p(l)zp(t) + Z ﬁpq(t)zq(t) + Zﬂpq(t)gq(zq(t - qu(t)))» (39)
g=1 g=1

where p=1,2,--- ,n,0,,0,, : R — R, ¥, 1,0, € H.
System (3.5) is supplemented with initial values given by

2p(8) = @,(8) = @, (5), 2,(5) = Y, (8) = Y, (), s € [-7,0]. (3.10)
Theorem 3.2. Assume that (H,)—(Hs) hold. If the following conditions are satisfied:
(He) For p = 1,2,-+- ,n, 0,0, : R — Ry, By, tpg.04 € H, there exists a positive constant w > 0
such that w w
O-p(t + 5) = O-p(l)a ﬁpq(t + 5) = ﬂpq(t),
w w
qu(t + 5) = qu(t), ,upq(t + E)Qq(u) = _/Jpq(t)Qq(_u);

(H7) For p =1,2,--- ,n,0,(0) = 0, there exists a positive constant L, such that
log(u) — 0,V < Lylu — vl;
(Hg) There exists a positive constant € such that
(d+ )2L2 2ey

2e+6-2a,-20,+0,)+ Z(c;q)2L2(3 +2e) + Z =9,

g=1
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n

)2L (Mh)2 2¢eB

+ Z Z(epqt) Lz(Mh e+ v i

g=1 =1 l_apqL q=1 =1 1_ﬁpqt

+ D W+ D G LI <0
g=1 gq=1

where
o, = inf o ,(1), 0' = sup o,(1),
fG[O w] te[0,w]
950 = max 19,y 415, = max ljapy(Dllz, 6= sup B()
1<g<n 1€[0,w]

Then the drive system (2.1) and the response system (3.7) are globally exponentially synchronized.

Proof. We define a Lyapunov function as follows:

V(@) = Z ezazp(t)zp(t) + Z Z(Cpq) L262E[Zq(t)zq(t)
p=1 g=1
)Z(L )2 2ey

d,
Z Z f &z, (s)dss
1 - 717‘1 l_ypq(l)

p=1 g=1
n (epq[)ZL (Mh)Z 2ex

+ Z Z Z —a, ft ; ez, (s)|*ds
. —pg

(epqL)ZL (Mh)2 2¢B

+ Z Z Z .y fﬁ ()ezeslzt(s)lzds.
Pt =Ppal

p=1 g=1 =1

Fort >0, p,qg,t =1,2,--- ,n, from (3.11) and by Lemma 2.1, we can gain

%V(z‘) = > 2“{26zp(t)zp(t)+Zp(t)zp(t)+zp(t)zp(t)}

p=1

¥ Z Z(cpq)2L2 21262,(02,(0) + L (02,0 + 2,020

p=1 g=1

(d; )2(L Per Ay, >2(L re
Z Z )z, (D - Z Z -
LiZ. =S Ypa
x> D |z(t =y (O (1 = (D) + Z Z Z(e;q‘)z
p= 1 q= 1 =1
Li(Mth)ZeZG(l . (epqL)ZLZ Mh)Z 2ea
Xe2s(t—apq(t))|zq(t _ Q’pq(t))|2(1 - dpq(f)) + Z Z Z(equ)Z
p= 1 q= 1 =1

LZ( h)2 2¢e8 (epqL)QLZ(Mh)Z 25ﬁ

=y ¢ 08 IHHY .

p=1 g=1 =1

(3.11)
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XeZE(t—,qu(l))lzl(t _ﬁpq(t))|2(l - qu[(t))

n

Z ezet{zelzp(t)ll _ 2a;|zp(t)|2 — (b; + O'I_,)(|Zp(l)|2

p=1

IA

)22

+zp (0 + Z(c,,quzq(r)ﬁ +12p(OF + Z -

(¢ L)2L2<Mh>2
Xe* |z, (D + [2,(D) +ZZ pql—a
pqt

g=1 =1
(6 L)2L2 Mh)Z 2¢e
XDz, (O + |z,(1)P +ZZ T
pqt

g=1 =1

Xl (OF + 120 + Y (€l PL2(2eleg(OF + 24P
=1
He(P) + 3 @5, PlegOF + 15 OF + Y (uf,)PL2
g=1 g=1

Iz (O + |z,,<r>|2}
Z esz{ze +6-2a —20b- +0)+ Z((:* VL3 + 2¢€)
P p p Pq f

p=1

IA

(d+ )2L2 2ey n (6 )2L2(Mh)2 2ex

+Z 1 =7¥pq ZZ pqtl_“pqt

g=1 g=1 =1

(e )ZLZ(Mh)Z 2eB n

Py o Zw;qn;ezfe}

g=1 =1 g=1

x max {1z, (. 15, (0))
< 0,

which implies that V(#) < V(0) and we can get that

AIMS Mathematics

V(0) Z 2,(0)2,(0) + Z Z(cpq)2L2zq(0)zq(0)

r=1 ¢=1

(d; ) (Ly)* e 0 ,
Py e 3 [ oo
Pq -

p=1 g=1 Ypa(0)

n (e L)ZLZ(Mh)Z 2ea 0
+ Z Z Z Pq — f e2ES|Zq(S)|2dS
— pqt

—Qpq )

n (6 )2L2(Mh)2 2¢f

RSB [ o
_ﬁ pqt (O)

p=1 g=1 =1 1_18171#
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<

<

where s € [—T, 0],

Z £p(0)2,(0) + Z Z(c,,p 724(0)74(0)

p=1 g=1

d+ 2 L 2 25)/ 0
+ZZ% | eeoras
= rq

i
n 2L2 Mh 2 2ea 0
+Z Z Z (epqL)l _(al ) f e2ES|Zq(S)|2dS
= = pqt -
2L2 Mh 2 ,2¢B
Z Z Z (epqt)l _(18 ) fﬁ 2€S|ZL(S)|2dS
pqt ~

p=1 g=1 =1

Z Izp ()1 + Z Z(cpq) Hlzg()IE;

p=1 g=1
(d+ )Z(Lg)Z 2ey

ZZ 207,

(6 )2L2 h)2 2ea

IIZq(S)Ilﬁ

+;;Zl s O
n n 2 h 2 ,2¢6
33 S G BT e

2e (1 _qut)

D Mz () + Nz (I,
p=1

N? := max {1,B},

and
n (d+ )2(L )2 2ey n (e L)ZLZ(Mh)Z 2ea
B = (C+ )2L2 Pq
; pas I ; 2€(1 = pg) ;ZA 2€(1 — drpy)
Z Z (epqt)sz(Mh)z ZGB
g=1 =1 26(1 _ﬁpqt) .
On the other hand,
ez < N2 (I + llzp(9)IIF)
2
< N*(llzp (Ol + llzp(s)lkz)
and
(c; )’ L3, (OF < N*(Izp()IIE + llzp(9)IIF)
2
< N(Ilp(9lls + lzp(9llz)
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that is,

12,1 < N(UIzp()llex + llzp($)lle)e™,

and

N
|2p(D] < %—Lf(llzp(s)”H + llzp($)llme™.

Hence, for ¢t > 0,we have that
N

+ .
Cpqu

||y - x“X < 2max {N, }II,\/IIXe_“,

where

il = max {llg" = @Iz, Il = 9k}

Therefore, the drive system (2.1) and the response system (3.7) are globally exponentially
synchronized. The proof is complete. m|

Remark 3.2. Compared with real-valued and complex-valued neural networks, the multiplication of
quaternion-valued neural networks does not satisfy the commutative rule. The dynamical research
of quaternion-valued neural networks is more difficult than real-valued neural networks. Even so, to
overcome the complexity of calculation, we do not need to separate the quaternion-valued system into
4 real-valued systems.

Remark 3.3. In this paper, like the method in literature [34-36], we gain our main results by
constructing an appropriate Lyapunov function.  However, compared with [35,36], we gain
anti-periodic synchronization of quaternion-valued inertial neural networks by using the
non-decomposition, non-reduced order, and Lyapunov function method. Therefore, the obtained
results in this paper are more general.

Remark 3.4. In [37-41], some authors have obtained stability and synchronization of neural
networks by using the Lyapunov function method and inequality technique. In [42], some authors
have obtained finite-time stability of CNNs with neutral networks by using the proof by contradiction
and inequality technique. However, unlike the method of the above papers paper, we obtain the
anti-periodic synchronization of quaternion-valued inertial neural networks by using the
non-decomposition method, non-reduced order method, and analytical techniques in uniform
convergence functions sequence, and constructing the Lyapunov function. Therefore, this paper aims
on investigating the synchronization of quaternion-valued inertial neural networks.

4. Illustrative example

In this section, we give one example to illustrate the feasibility and effectiveness of the main results.

Example 4.1. Consider the following delayed quaternion-valued neural networks with two neurons as
the drive system:

AIMS Mathematics Volume 7, Issue 8, 14051-14075.
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2
() = —ap0)iy(1) = byOx) (D) + ) gD f(x,(1)
g=1

2 2 2
) dpg(D84(%g(t = YpgD) + > D epu®)
q=1

g=1 =1

Xhg(Xg(t = @pg(D))h(x(1 = By (1)) + Up(0). 4.1)

The corresponding response system is given by

2
$p) = =ap(5,(0) = by0)yy (1) + Y Cpyfy(3y (1)
g=1

2 2 2
+ ) Ay 08404t = Ypg ) + D > )
gq=1

g=1 =1

Xhg(g(t = @p(ONh (Y (E = Bpa (1)) + Up(D) + £,(1) (4.2)

and the controller is as follows:

2 2
£p(1) =~ (D21 + 3 Dpg(D2,(0) + D (0,2t = Bpg(D)). 43)
g=1 g=1

where p = 1,2, a;(t) =2.5+0.35sin2t, a,(t) =3 +sin2t, by(t) =3+ 0.5sin2¢, by(t) = 2.5 + 0.5s1in 2z,

o1(t) = 1.8+0.3sin2¢, 05(1) =2+ 0.28in2t, ypy = % + % Sin2t, apy = % + % sin2t, By = % + % sin 2¢,
Opg = % + % sin 2t, and
(o )s = 0.1sint + 0.5isint+ 0.3jsint 0.2sinz + 0.3isint + 0.1k sin¢
“ra)22 =\ 0 35int + 0.1jsint+0.2ksint 0.2isint +0.3jsint+ 0.2ksint )’
(A )per = 0.4sint+0.2isint + 0.3ksint  0.3sinz+0.1lisint + 0.1jsin¢
P22 =\ 0. 1isinz + 0.3jsint + 0.2ksins 0.4sint +0.2jsinz + 0.2ksinz |’
€ )as = 0.3isint +0.1jsint+ 0.1ksint 0.5sin? + 0.2jsinz + 0.3k sin ¢t
€ra)22 =\ 0 3sing +0.2isint+0.1jsin  0.2sint+0.1isint +0.1ksint |’
Crn)ner = 0.3sin7+0.1isint+ 0.2jsint 0.lisint + 0.2jsinz + 0.3k sin ¢
€ra2)2>2 =\ 0 1isint+0.2)sint + 0.2ksin¢  0.2sin¢+0.1isinz +0.2jsint |’
(0 s = 0.5isint + 0.3jsint + 0.2ksint 0.3sin¢+ 0.2jsint + 0.2k sin ¢
PP T\ 02sint+0.1isint +0.2jsint  0.4sint+0.2isint +0.2ksinz )’
(o )rs = 0.3sint+ 0.2jsint + 0.1ksint 0.5isint + 0.2jsinz + 0.3k sin ¢t
PP =\ 04sins+02isins+0.2jsinz  0.3sinz+ 0.2isin7 +0.1sin¢

U,=05sint+04isint+0.6jsint + ksint,
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fy = %sin)dqe + %isinxé + %jsinx{l + %ksinxf,
g, = %sinx;e + %isinxg + %jsinx; + %ksinxf,
h, = %sinxfj + %isinx(’j + éjsinx; + %ksinx(lj,
04 = %sinzf; + %isinz{z + éjsinz; + %ksinzf.

Let A = € = 0.5, and by calculating, we have

V35
a, =2, b =2, o =1.5, ¢ _,

10
s_N® VB . VB V3
rq 10 > ra 10 > “ra 10 ° Hpq 10 °

1 1 1 1
Lf = Z9 Lg §’Lh 59 LQ = ga w = 27{»
4 4 4
f = — h _
M=1. M{=3 My=<. Mj=<.

20+4-2a; - 2b7 + Z(c L2222 +3)
g=1
(d+ )2(L )2 2y n (epqL)ZLZ(Mh)Z 2/1(2
+
; 1 =¥pq ; [Z; 1 —apg
(6 )2L2(Mh)2 228

ZZ ”q‘l 5 ~ —1.8125 <0,
~ Ppq

g=1 =1

26+ 6= 2a, = 2b, + 075) + Y (¢}, L33 + 2€)
q=1

. iw ) L;I 1 o 3y
q=

g=1 =1

1 - c'qut e Z Z(emt)

g=1 =1

xLﬁ(Mh) P Z(ﬁ

+ Z(]Jpq) L26* ~ ~1.2920 < 0.

g=1

It is not difficult to verify that all conditions (H,)-(Hg) are satisfied. Therefore, by Theorem 3.1 and
Theorem 3.2, we have that system (4.1) has a unique m-anti-periodic solution, and the systems (4.1)
and (4.2) are globally exponentially synchronized, which is shown in Figures 1-5.
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0.75
Y
05 dt dt
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Figure 2. The states of dx/(t)/dt, dx} (1)/dt, x)(t) and x5 (1), p = 1,2.
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Figure 3. The states of dy(1)/dt, dy,(1)/dt, yi(1) and yl(1), p = 1,2.
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Figure 5. Synchronization errors dz(t)/dt and z(¢).

Remark 4.1. By Theorem 3.1, from Figures 1 and 2, we can see system (4.1) has a unique m-anti-
periodic solution that is globally exponentially stable. From Figures 3 and 4, we can see system (4.2)
has a unique m-anti-periodic solution that is globally exponentially stable.

Remark 4.2. When applying the controller (4.3), from Figure 5, we can see the master and slave
system can reach globally exponentially synchronized.

5. Conclusions

This paper considers a class of delayed quaternion-valued high-order Hopfield neural networks.
Although the multiplication of quaternion algebra does not satisfy the commutativity, without
decomposing the quaternion-valued neural networks into real-valued neural networks. By using the
non-reduce order method, analytical techniques in uniform convergence functions sequence, and the
Lyapunov function method, we obtain several sufficient conditions for the existence of anti-periodic
solutions for quaternion-valued high-order Hopfield neural networks, and by Lyapunov function, we
establish the global exponential synchronization of anti-periodic solutions for quaternion-valued
high-order Hopfield neural networks, one example is given. And in future research, I will study the
almost periodicity of inertial quaternion-valued neural networks models by using the non-reduced
order method.
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