In this paper, some generalized fixed point results of Banach and $ \acute{C} $iri$ \acute{c} $ type in the context of extended fuzzy $ b $-metric spaces are established. For authenticity of the aforesaid results a nontrivial supporting example is also provided. Eventually, an application for the existence of a solution for an integral equation is established which shows corporeality of the obtained results. The presented work generalizes some well known fixed point results from the existing literature.
Citation: Badshah-e-Rome, Muhammad Sarwar, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad. Some generalized fixed point results of Banach and $ \acute{C} $iri$ \acute{C} $ type in extended fuzzy $ b $-metric spaces with applications[J]. AIMS Mathematics, 2022, 7(8): 14029-14050. doi: 10.3934/math.2022774
In this paper, some generalized fixed point results of Banach and $ \acute{C} $iri$ \acute{c} $ type in the context of extended fuzzy $ b $-metric spaces are established. For authenticity of the aforesaid results a nontrivial supporting example is also provided. Eventually, an application for the existence of a solution for an integral equation is established which shows corporeality of the obtained results. The presented work generalizes some well known fixed point results from the existing literature.
[1] | M. Abbas, I. Chema, A. Razani, Existence of common fixed point for b-metric rational type contraction, Filomat, 30 (2016), 1413–1429. http://dx.doi.org/10.2298/FIL1606413A doi: 10.2298/FIL1606413A |
[2] | G. Abd-Elhamed, Fixed point results for $(\beta, \alpha)$-implicit contractions in two generalized b-metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 39–47. http://dx.doi.org/10.22436/jnsa.014.01.05 doi: 10.22436/jnsa.014.01.05 |
[3] | I. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[4] | S. Banach, Sur les op$\acute{e}$rations dans les ensembles abstraits et leur application aux $\acute{e}$quations int$\acute{e}$grales, Fund. Math., 3 (1922), 133–181. |
[5] | C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. http://dx.doi.org/10.1016/0022-247X(68)90057-7 doi: 10.1016/0022-247X(68)90057-7 |
[6] | L. Ciric, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. |
[7] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. inf. Univ. Ostraviensis, 1 (1993), 5–11. |
[8] | T. Došenovic, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in $b$-fuzzy metric spaces, Novi Sad J. Math., 47 (2017), 77–88. http://dx.doi.org/10.30755/NSJOM.04361 doi: 10.30755/NSJOM.04361 |
[9] | T. Došenovic, D. Rakić, M. Brdar, Fixed point theorem in fuzzy metric spaces using altering distance, Filomat, 28 (2014), 1517–1524. http://dx.doi.org/10.2298/FIL1407517D doi: 10.2298/FIL1407517D |
[10] | E. El-sayed, S. $\ddot{O}$$\breve{g}$rekçi, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Math. Comput. Sci., 22 (2021), 325–332. http://dx.doi.org/10.22436/jmcs.022.04.02 doi: 10.22436/jmcs.022.04.02 |
[11] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. http://dx.doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[12] | A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Set. Syst., 90 (1997), 365–368. http://dx.doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2 |
[13] | R. George, S. Radenovi$\acute{c}$, K. Reshma, S. Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 6 (2015), 1005–1013. http://dx.doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11 |
[14] | A. Georgieva, Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method, Demonstr. Math., 54 (2021), 11–24. http://dx.doi.org/10.1515/dema-2021-0005 doi: 10.1515/dema-2021-0005 |
[15] | D. Gopal, C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 95–107. http://dx.doi.org/10.22111/IJFS.2014.1572 doi: 10.22111/IJFS.2014.1572 |
[16] | D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967. http://dx.doi.org/10.1016/j.amc.2014.01.135 doi: 10.1016/j.amc.2014.01.135 |
[17] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. http://dx.doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[18] | V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 125 (2002), 245–252. http://dx.doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9 |
[19] | O. Hadžić, A fixed point theorem in menger spaces, Publ. I. Math., 26 (1979), 107–112. |
[20] | O. Hadžić, E. Pap, Fixed point theory in probablistic metric spaces, Dordrecht: Springer, 2001. http://dx.doi.org/10.1007/978-94-017-1560-7 |
[21] | O. Hadžić, E. Pap, M. Budinčević, Countable extension of triangular norms and their application to the fixed point theory in probablistic metric space, Kybernetika, 38 (2002), 363–382. |
[22] | Z. Hassanzadeh, S. Sedghi, Relation between $b$-metric and fuzzy metric spaces, Mathematica Moravica, 22 (2018), 55–63. http://dx.doi.org/10.5937/MatMor1801055H doi: 10.5937/MatMor1801055H |
[23] | R. Kannan, Some results on fixed points, Bull. Culcutta Math. Soc., 60 (1968), 71–76. |
[24] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[25] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Cham: Springer, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5 |
[26] | E. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. http://dx.doi.org/10.1007/978-94-015-9540-7 |
[27] | F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
[28] | D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Set. Syst., 144 (2004), 431–439. http://dx.doi.org/10.1016/S0165-0114(03)00305-1 doi: 10.1016/S0165-0114(03)00305-1 |
[29] | R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. http://dx.doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2 |
[30] | D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Set. Syst., 158 (2007), 915–921. http://dx.doi.org/10.1016/j.fss.2006.11.012 doi: 10.1016/j.fss.2006.11.012 |
[31] | U. Mishra, C. Vetro, P. Kumam, On modified $\alpha$-$\psi$-fuzzy contractive mappings and an application to integral equations, J. Inequal. Appl., 2016 (2016), 67. http://dx.doi.org/10.1186/s13660-016-1007-2 doi: 10.1186/s13660-016-1007-2 |
[32] | Z. Mitrovic, A note on the result of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl., 21 (2019), 24. http://dx.doi.org/10.1007/s11784-019-0663-5 doi: 10.1007/s11784-019-0663-5 |
[33] | S. N$\check{a}$d$\check{a}$ban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281. http://dx.doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443 |
[34] | T. Phong, L. Long, Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator, J. Math. Comput. Sci., 26 (2022), 357–367. http://dx.doi.org/10.22436/jmcs.026.04.04 doi: 10.22436/jmcs.026.04.04 |
[35] | D. Rakic, A. Mukheimer, T. Došenovic, Z. Mitrovic, S. Radenovic, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020), 99. http://dx.doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3 |
[36] | A. Razani, Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces, Chaos, Soliton. Fract., 30 (2006), 367–373. http://dx.doi.org/10.1016/j.chaos.2005.10.010 doi: 10.1016/j.chaos.2005.10.010 |
[37] | A. Razani, A fixed point theorem in the Menger probabilistic metric space, New Zealand Journal of Mathematics, 35 (2006), 109–114. |
[38] | A. Razani, Fixed points for total asymtotically nonexpansive mappings in a new version of bead space, Int. J. Ind. Math., 6 (2014), 329–332. |
[39] | A. Razani, An iterative process of generalized Lipschitizian mappings in uniformly convex Banach spaces, Miskolc Math. Notes, 22 (2021), 889–901. http://dx.doi.org/10.18514/MMN.2021.3615 doi: 10.18514/MMN.2021.3615 |
[40] | A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl., 2005 (2005), 427012. http://dx.doi.org/10.1155/FPTA.2005.257 doi: 10.1155/FPTA.2005.257 |
[41] | A. Roldán, J. Martinez-Moreno, C. Roldán, Tripled fixed point theorem in fuzzy metric spaces and applications, Fixed Point Theory Appl., 2013 (2013), 29. http://dx.doi.org/10.1186/1687-1812-2013-29 doi: 10.1186/1687-1812-2013-29 |
[42] | S. Rolewicz, Metric linear spaces (German), Warszawa: Polish Scientific Publishers, 2002. |
[43] | B. Rome, M. Sarwar, T. Abdeljawad, $\mu$-extended fuzzy $b$-metric spaces and related fixed point results, AIMS Mathematics, 5 (2020), 5184–5192. http://dx.doi.org/10.3934/math.2020333 doi: 10.3934/math.2020333 |
[44] | R. Saadati, S. Vaezpour, Some results on fuzzy Banach spaces, JAMC, 17 (2005), 475–484. http://dx.doi.org/10.1007/BF02936069 doi: 10.1007/BF02936069 |
[45] | R. Shahkoohi, A. Razani, Fixed point theorems for semi $\lambda$-subadmissible contractions in bmetric spaces, Journal of Linear and Topological Algebra, 4 (2015), 65–85. |
[46] | R. Shahkoohi, A. Razani, Some fixed point theorems for rational Geraghty contractive mappings in ordered $b$-metric spaces, J. Inequal. Appl., 2014 (2014), 373. http://dx.doi.org/10.1186/1029-242X-2014-373 doi: 10.1186/1029-242X-2014-373 |
[47] | T. Suzuki, Basic inequality on a $b$-metric space and its applications, J. Inequal. Appl., 2017 (2017), 256. http://dx.doi.org/10.1186/s13660-017-1528-3 doi: 10.1186/s13660-017-1528-3 |
[48] | R. Vasuki, P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Set. Syst., 135 (2003), 415–417. http://dx.doi.org/10.1016/S0165-0114(02)00132-X doi: 10.1016/S0165-0114(02)00132-X |
[49] | N. Wairojjana, T. Došenovic, D. Rakic, D. Gopal, P. Kumam, An altering distance function in fuzzy metric fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 69. http://dx.doi.org/10.1186/s13663-015-0318-1 doi: 10.1186/s13663-015-0318-1 |
[50] | L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[51] | S. Zhang, On the theory of probabilistic metric spaces with applications, Acta Math. Sin., 1 (1985), 377. http://dx.doi.org/10.1007/BF02564846 doi: 10.1007/BF02564846 |
[52] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 36. |