In this paper, some fixed point results for multivalued contractions are established in setting $ G $-complete extended fuzzy $ b $-metric spaces. An example is furnished to demonstrate the validity of results. An application of integral type inclusion is given to authenticate the theorems. Our results extend and generalize many existing results in literature.
Citation: Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf. Some results for multivalued mappings in extended fuzzy $ b $-metric spaces[J]. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
In this paper, some fixed point results for multivalued contractions are established in setting $ G $-complete extended fuzzy $ b $-metric spaces. An example is furnished to demonstrate the validity of results. An application of integral type inclusion is given to authenticate the theorems. Our results extend and generalize many existing results in literature.
[1] | M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130 |
[2] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals, Fund. Math., 3 (1922), 133–181. |
[3] | S. Batul, F. Mehmood, A. Hussain, H. Aydi, A. Mukheimer, Multivalued contraction maps on fuzzy $b$-metric spaces and an application, AIMS Math., 7 (2022), 5925–5942. https://doi.org/10.3934/math.2022330 doi: 10.3934/math.2022330 |
[4] | P. Diamond, Theory and applications of fuzzy Volterra integral equations, IEEE T. Fuzzy Syst., 10 (2002), 97–102. https://doi.org/10.1109/91.983284 doi: 10.1109/91.983284 |
[5] | I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[6] | N. Bourbaki, Eléments de mathématique, Hermann, Paris, 1965. |
[7] | M. Boriceanu, A. Petrusel, I. A. Rus, Fixed point theorems for some multi-valued generalized contraction in $b$-metric spaces, Int. J. Math. Stat., 6 (2010), 65–76. |
[8] | S. Czerwick, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11. |
[9] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[10] | R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11 |
[11] | D. Gopal, C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 95–107. |
[12] | M. Grabeic, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[13] | D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Dordrecht: Kluwer Academic Publishers, 1996. |
[14] | V. Gupta, N. Mani, A. Saini, Fixed point theorems and its applications in fuzzy metric spaces, Proceedings of the conference AEMDS-2013, 2013. |
[15] | A. Jerri, Introduction to integral equations with applications, John Wiley & Sons, 1999. |
[16] | N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719–739. https://doi.org/10.22436/jnsa.008.05.24 doi: 10.22436/jnsa.008.05.24 |
[17] | I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326–334. |
[18] | F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
[19] | S. N. Mishra, S. N. Sharma, S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Int. J. Math. Sci., 17 (1994), 915450. https://doi.org/10.1155/S0161171294000372 doi: 10.1155/S0161171294000372 |
[20] | S. Nădăban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. |
[21] | J. Rodŕiguez-López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007 |
[22] | A. F. Roldán-López-de-Hierro, E. Karapinar, S. Manro, Some new fixed point theorems in fuzzy metric space, J. Intell. Fuzzy Syst., 27 (2014), 2257–2264. https://doi.org/10.3233/IFS-141189 doi: 10.3233/IFS-141189 |
[23] | A. Shahzad, A. Shoaib, Q. Mahmood, Fixed point results for the multivalued mapping in Hausdorff fuzzy metric space, J. Fixed Point Theory, 2017 (2017), 3. |
[24] | C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Sets Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018 |
[25] | D. Shehwar, S. Batul, T. Kamran, A. Ghiura, Caristis fixed point theorem on $C^{*}$-algebra valued metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 584–588. https://doi.org/10.22436/jnsa.009.02.22 doi: 10.22436/jnsa.009.02.22 |
[26] | Y. Tanaka, Y. Mizuno, T. Kado, Chaotic dynamics in the Friedmann equation, Chaos Solitons Fract., 24 (2005), 407–422. https://doi.org/10.1016/j.chaos.2004.09.034 doi: 10.1016/j.chaos.2004.09.034 |
[27] | T. Kamran, M. Samreen, Q. ul Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[28] | T. Kamran, M. Postolache, A. Ghiura, S. Batul, R. Ali, The Banach contraction principle in $C^{*}$-algebra-valued $b$-metric spaces with application, Fixed Point Theory Appl., 1 (2016), 10. https://doi.org/10.1186/s13663-015-0486-z doi: 10.1186/s13663-015-0486-z |
[29] | C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Sets Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018 |
[30] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[31] | Z. Qiu, S. Hong, Coupled fixed points for multivalued mappings in fuzzy metric spaces, J. Fixed Point Theory, 2013 (2013), 162. https://doi.org/10.1186/1687-1812-2013-162 doi: 10.1186/1687-1812-2013-162 |