The aim of this paper is to study the multiplicity of solutions for a nonlocal $ p(x) $-Kirchhoff type problem with Steklov boundary value in variable exponent Sobolev spaces. We prove the existence of at least three solutions and a nontrivial weak solution of the problem, using the Ricceri's three critical points theorem together with Mountain Pass theorem.
Citation: Zehra Yucedag. Variational approach for a Steklov problem involving nonstandard growth conditions[J]. AIMS Mathematics, 2023, 8(3): 5352-5368. doi: 10.3934/math.2023269
The aim of this paper is to study the multiplicity of solutions for a nonlocal $ p(x) $-Kirchhoff type problem with Steklov boundary value in variable exponent Sobolev spaces. We prove the existence of at least three solutions and a nontrivial weak solution of the problem, using the Ricceri's three critical points theorem together with Mountain Pass theorem.
[1] | A. G. Afrouzi, A. Hadijan, S. Heidarkhani, Steklov problem involving the $p(x)-$Laplacian, Electron. J. Diff. Equ., 134 (2014), 1–11. |
[2] | M. Allaoui, A. R. El Amrouss, A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the $p(x)-$ Laplace operator, Electron. J. Diff. Equ., 32 (2012), 1–12. |
[3] | S. N. Antontsev, J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, 52 (2006), 19–36. http://dx.doi.org/10.1007/s11565-006-0002-9 doi: 10.1007/s11565-006-0002-9 |
[4] | S. N. Antontsev, S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60 (2005), 515–545. http://dx.doi.org/10.1016/j.na.2004.09.026 doi: 10.1016/j.na.2004.09.026 |
[5] | M. Avci, Solutions of a nonlocal elliptic problem involving $p(x)-$Kirchhoff-type equation, Appl. Math., 3 (2013), 56–60. http://dx.doi.org/10.5923/j.am.20130302.04 doi: 10.5923/j.am.20130302.04 |
[6] | A. Ayoujil, On the superlinear Steklov problem involving the $p(x)-$Laplacian, Electron. J. Qual. Theory Differ. Equ., 38 (2014), 1–13. http://dx.doi.org/10.14232/ejqtde.2014.1.38 doi: 10.14232/ejqtde.2014.1.38 |
[7] | K. B. Ali, Existence results for Steklov problem involving the $p(x)-$Laplacian, Complex. Var. Elliptic, 63 (2018), 1–12. http://dx.doi.org/10.1080/17476933.2017.1403425 doi: 10.1080/17476933.2017.1403425 |
[8] | G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the $p-$Laplacian, Archiv Math., 80 (2003), 424–429. http://dx.doi.org/10.1007/s00013-003-0479-8 doi: 10.1007/s00013-003-0479-8 |
[9] | R. Chammem, A. Ghanmi, A. Sahbani, Existence and multiplicity of solutions for some Steklov problem involving p(x)-Laplacian operator, Appl. Anal., 101 (2022), 2401–2417. http://dx.doi.org/10.1080/00036811.2020.1807014 doi: 10.1080/00036811.2020.1807014 |
[10] | X. F. Cao, B. Ge, B. L. Zhang, On a class of $p(x)-$Laplacian equations without any growth and Ambrosetti-Rabinowitz conditions, Adv. Diff. Equ., 26 (2021), 259–280. |
[11] | Y. Chen, S. Levine, M. Rao, Variable exponent linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383–1406. http://dx.doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[12] | C. Chen, J. Huang, L. Liu, Multiple solutions to the nonhomogeneous $p-$Kirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett., 26 (2013), 754–759. |
[13] | N. T. Chung, Multiple solutions for an anisotropic elliptic equation of Kirchhoff type in bounded domain, Results Nonlinear Anal., 1 (2018), 116–127. |
[14] | C. Chu, Positive solutions for a class of $p(x)-$Laplacian equation involving concave-convex nonlinearities, Adv. Diff. Equ., 26 (2021), 341–362. |
[15] | S. G. Deng, Eigenvalues of the $p(x)-$Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925–937. http://dx.doi.org/10.1016/j.jmaa.2007.07.028 doi: 10.1016/j.jmaa.2007.07.028 |
[16] | G. Dai, R. Hao, Existence of solutions for a $p(x)-$ Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. http://dx.doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031 |
[17] | D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. http://dx.doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293 |
[18] | X. L. Fan, D. Zhao, On the spaces $L^{p\left(x\right) }(\Omega)$ and $W^{m, p\left(x\right) }(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. http://dx.doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[19] | M. K. Hamdani, N. T. Chung, D. D. Repovš, New class of sixth-order nonhomogeneous $p(x)-$Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal., 10 (2021), 1117–1131. |
[20] | S. Heidarkhani, A. L. A. De Araujo, Afrouzi, A. Salari, Infinitely many solutions for nonlocal problems with variable exponent and nonhomogeneous neumann condition, Bol. Soc. Paran. Mat., 38 (2020), 71–96. http://dx.doi.org/10.5269/bspm.v38i4.41664 doi: 10.5269/bspm.v38i4.41664 |
[21] | M. Hsini, N. Irzi, K. Kefi, Nonhomogeneous $p(x)-$ Laplacian Steklov problem with weights, Complex Var. Elliptic, 65 (2020), 440–454. http://dx.doi.org/10.1080/17476933.2019.1597070 doi: 10.1080/17476933.2019.1597070 |
[22] | G. Kirchhoff, Vorlesungen über Mechanik. Germany: Teubner-Leipzig, 1883. |
[23] | O. Kovăčik, J. Răkosnik, On spaces $ L^{p\left(x\right) }(\Omega)$ and $W^{k, p\left(x\right) }(\Omega)$, Czechoslovak Math. J., 41 (1991), 592–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493 |
[24] | B. Karim, A. Zerouali, O. Chakrone, Steklov eigenvalue problem with $a-$harmonic solutions and variable exponents, Georgian Math. J., 28 (2020), 363–373. http://dx.doi.org/10.1515/gmj-2019-2079 doi: 10.1515/gmj-2019-2079 |
[25] | B. Karim, A. Zerouali, O. Chakrone, Existence and multiplicity of $a-$harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 36 (2018), 125–136. http://dx.doi.org/10.5269/bspm.v36i2.31071 doi: 10.5269/bspm.v36i2.31071 |
[26] | R. Ma, G.Dai, C. Gao, Existence and multiplicity of positive solutions for a class of $p(x)-$Kirchhoff type equations, Bound. Value Probl., 1 (2012), 1–16. |
[27] | R. A. Mashiyev, B. Cekic, M. Avci, Z. Yücedag, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Var. Elliptic, 57 (2012), 579–595. |
[28] | A. Ourraoui, Existence and uniqueness of solutions for Steklov problem with variable exponent, Adv. Theory Nonlinear Anal. Appl., 1 (2021), 158–166. http://dx.doi.org/10.31197/atnaa.688047 doi: 10.31197/atnaa.688047 |
[29] | M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)-$Laplace operator, Nonlinear Anal., 67 (2007), 1419–1425. |
[30] | M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math., 1748 (2000), Springer, Berlin. http://dx.doi.org/10.1007/BFb0104030 doi: 10.1007/BFb0104030 |
[31] | S.Taarabti, Positive solutions for the $p(x)-$ Laplacian: Application of the Nehari method, Discrete Cont. Dyn.-S., 15 (2022), 229–243. http://dx.doi.org/10.3934/dcdss.2021029 doi: 10.3934/dcdss.2021029 |
[32] | Z. Wei, Z. Chen, Existence results for the $p(x)-$ Laplacian with nonlinear boundary condition, Appl. Math., (2012). http://dx.doi.org/10.5402/2012/727398 doi: 10.5402/2012/727398 |
[33] | M. Willem, Minimax Theorems, Birkhauser: Verlag-Basel, 1996. |
[34] | Z. Yucedag, M. Avci, R. Mashiyev, On an elliptic system of $p(x)-$Kirchhoff-Type under Neumann Boundary condition, Math. Model. Anal., 17 (2012), 161–170. http://dx.doi.org/10.3846/13926292.2012.655788 doi: 10.3846/13926292.2012.655788 |
[35] | Z. Yucedag, Infinitely many solutions for a $p(x)-$Kirchhoff-Type equation with Steklov boundary value, Miskolc Math. Notes, 23 (2022), 987–999. http://dx.doi.org/10.18514/MMN.2022.4078 doi: 10.18514/MMN.2022.4078 |
[36] | B. L. Zhang, B. Ge, X. F. Cao, Multiple solutions for a class of new $p(x)-$Kirchhoff problem without the Ambrosetti-Rabinowitz conditions, Mathematics, 8 (2020), 2068. http://dx.doi.org/10.3390/math8112068 doi: 10.3390/math8112068 |
[37] | A. Zerouali, B. Karim, O. Chakrone, A. Anane, Existence and multiplicity results for elliptic problems with nonlinear boundary conditions and variable exponents, Bol. Soc. Paran. Mat., 33 (2015), 121–131. http://dx.doi.org/10.5269/bspm.v33i2.23355 doi: 10.5269/bspm.v33i2.23355 |
[38] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 9 (1987), 33–66. http://dx.doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958 |