A cubic bipolar fuzzy set (CBFS) is by far the most efficient model for handling bipolar fuzziness because it carries both single-valued (SV) and interval-valued (Ⅳ) bipolar fuzzy numbers at the same time. The sine trigonometric function possesses two consequential qualities, namely, periodicity and symmetry, both of which are helpful tools for matching decision makers' conjectures. This article aims to integrate the sine function and cubic bipolar fuzzy data. As a result, sine trigonometric operational laws (STOLs) for cubic bipolar fuzzy numbers (CBFNs) are defined in this article. Premised on these laws, a substantial range of aggregation operators (AOs) are introduced. Certain features of these operators, including monotonicity, idempotency, and boundedness, are explored as well. Using the proffered AOs, a novel multi-criteria group decision-making (MCGDM) strategy is developed. An extensive case study of carbon capture and storage (CCS) technology has been provided to show the viability of the suggested method. A numerical example is provided to manifest the feasibility of the developed approach. Finally, a comparison study is executed to discuss the efficacy of the novel MCGDM framework.
Citation: Anam Habib, Zareen A. Khan, Nimra Jamil, Muhammad Riaz. A decision-making strategy to combat CO2 emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input[J]. AIMS Mathematics, 2023, 8(7): 15092-15128. doi: 10.3934/math.2023771
[1] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[2] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[3] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[4] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[5] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[6] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[7] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265 |
[8] | Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722 |
[9] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[10] | Vidushi Gupta, Jaydev Dabas . Nonlinear fractional boundary value problem with not instantaneous impulse. AIMS Mathematics, 2017, 2(2): 365-376. doi: 10.3934/Math.2017.2.365 |
A cubic bipolar fuzzy set (CBFS) is by far the most efficient model for handling bipolar fuzziness because it carries both single-valued (SV) and interval-valued (Ⅳ) bipolar fuzzy numbers at the same time. The sine trigonometric function possesses two consequential qualities, namely, periodicity and symmetry, both of which are helpful tools for matching decision makers' conjectures. This article aims to integrate the sine function and cubic bipolar fuzzy data. As a result, sine trigonometric operational laws (STOLs) for cubic bipolar fuzzy numbers (CBFNs) are defined in this article. Premised on these laws, a substantial range of aggregation operators (AOs) are introduced. Certain features of these operators, including monotonicity, idempotency, and boundedness, are explored as well. Using the proffered AOs, a novel multi-criteria group decision-making (MCGDM) strategy is developed. An extensive case study of carbon capture and storage (CCS) technology has been provided to show the viability of the suggested method. A numerical example is provided to manifest the feasibility of the developed approach. Finally, a comparison study is executed to discuss the efficacy of the novel MCGDM framework.
FDEs, which provide a very important class of DEs for describing many processes in the real world, differ from ODEs. FDEs can be found in a variety of areas, including control theory, physics, et cetera. In the literature, many authors focused on R-L and Caputo type derivatives in investigating fractional differential equations. A generalization of derivatives of both R-L and Caputo was given by Hilfer in [1], the known as the Hilfer fractional derivative of order α and a type β∈[0,1], which interpolates between the R-L and Caputo derivative, respectively. This justify the utilization of the Hilfer fractional operator and their generalization in integro-differential equations. In recent years, many researchers have studied the existence, uniqueness and stability of different boundary value problems via Hilfer operators and their generalization.
Asawasamrit et al. [2] studied the ψ-Caputo (or, more appropriately, ψ-Liouville-Caputo) fractional derivative and non-instantaneous impulsive BVPs. Abdo et al. [3] discussed the ψ-Hilfer fractional derivative involving boundary conditions. Ali et al. in [4] found solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method. Anguraj et al. in [5] established new existence results for FIDEs with impulsive and integral conditions. Agarwal et al. in [6] investigated non-instantaneous impulses in Caputo FDEs. Abdo et al. in [7] considered fractional BVP with ψ-Caputo fractional derivative. Kailasavalli et al. in [8] derived existence of solutions for fractional BVPs involving integro-differential equations in Banach spaces. Karthikeyan et al. in [9] investigated existence results for fractional impulsive integro differential equations with integral conditions of Katugampola type. Nuchpong et al. in [10] considered BVPs of Hilfer-type FIDEs and inclusions with nonlocal integro-multipoint boundary conditions. Kilbas et al. in [11] give some basic theory and applications of FDEs. Podlubny in [12] investigated some FDEs. Srivastava in [13] overview recent developments of fractional-order derivatives and integrals. Srivastava in [14] considered some parametric and argument variations of the operators of fractional calculus and related special functions, and integral transformations. Srivastava in [15] give an introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions.
Recent theories regarding IDEs arise in many fields like, biology, physics, engineering and medicine, where objects change their state rapidly at certain points, see [16,17,18,19,20]. Hernandez et al. in [21] introduced non-instantaneous IDE. Practical problems in the area of psychology related to non-instantaneous impulses can be found in [22,23,24,25,26,27]. Asawasamrit et al. [28] considered the nonlocal BVPs for Hilfer FDEs. Mahmudov et al. [29] investigated the fractional-order BVPs with the so-called Katugampola (or, equivalently, the Erdélyi-Kober type) fractional integral conditions. da Costa Sousa et al. [30] studied a Gronwall inequality via the ψ-Hilfer operator. Phuangthong et al. [31] investigated the nonlocal sequential BVPs for Hilfer type FIDEs and inclusions. Sitho et al. in [32], studied the BVPs regarding ψ-Hilfer type sequential FDEs. Sudsutad et al. in [33], investigated the existence and stability results for ψ-Hilfer FIDE. Subashini et al. [34] obtained some results of fractional order regarding Hilfer integro-differential equations. Wang et al. [35] studied the existence results for FDEs with integral and multipoint boundary conditions. Yu [36] investigated β-Ulam-Hyers stability for a special class of FDEs. Zhang et al. [37] studied the FDEs with not instantaneous impulses. ψ-Hilfer FDEs with impulsive conditions were studied in [38,39].
Abbas [16] studied the following proportional fractional derivatives:
a1Dp,q,gℏ(ȷ)=Y(ȷ,ℏ(ȷ),a1Ir,q,gℏ(ȷ)),ȷ∈(rk,ȷk+1],ℏ(ȷ)=ψk(ȷ,ℏ(t+k)),ȷ∈(ȷk,rk],k=1,⋯,ϱ,I1−p,q,gℏ(a1)=ℏ0∈R, |
where a1Dp,q,g and a1Ir,q,g denote the proportional fractional derivative and the proportional fractional integral and the function Y is continuous.
Nuchpong et al. [10] discussed the Hilfer fractional derivative with non-local boundary conditions of the form given by
HDp,qℏ(ȷ)=Y(ȷ,ℏ(ȷ),Iδℏ(ȷ)), ȷ∈[a1,a2],ℏ(a1)=0, ℘+∫a2a1ℏ(ı)dı=ϱ−2∑k=1ςkℏ(ϑk), |
where we have used the HDp,q-Hilfer fractional derivative and the Iδ-R-L, and the function Y is continuous.
Salim et al. [23] studied the BVP for implicit fractional-order generalized Hilfer-type fractional derivative with non-instantaneous impulses of the form:
(αDp,qτ+ℏ)(ȷ)=Y(ȷ,ℏ(ȷ),(αDp,qℏ)(ȷ)), ȷ∈Jk,ℏ(ȷ)=Hk(ȷ,ℏ(ȷ)), ȷ∈(ȷk,rk], k=1,⋯,ϱ,φ1(αI1−ϵa+1)(a1)+φ2(αI1−ϵτ+)(a2)=φ3, |
where αDp,qτ+ and αI1−ϵa+1 are the generalized Hilfer-type fractional derivative and fractional integral and the function Y is continuous.
Inspired by the above works, we study here new important class of FIDEs namely ψ-Hilfer FIDEs with non-instantaneous impulsive multi-point boundary conditions of the form given by
HDp,q;ψℏ(ȷ)=Y(ȷ,ℏ(ȷ),ψℏ(ȷ)),ȷ∈(rk,ȷk+1], | (1.1) |
ℏ(ȷ)=Hk(ȷ,ℏ(ȷ)), ȷ∈(ȷk,rk], k=1,⋯,ϱ, | (1.2) |
ℏ(0)=0, ℏ(T⋆)=ϱ∑k=1νkIςkℏ(υk), νk∈R, υk∈[0,T⋆], | (1.3) |
where the order p∈(1,2) and with the parameters q∈[0,1], νk∈R, υk∈[0,T⋆], and Iςk-is ψ-R-L of order ςk>0, and 0=r0<ȷ1≦ȷ2<⋯<ȷϱ≦rϱ≦rϱ+1=T⋆, which is pre-fixed, Y:[0,T⋆]×R×R⟶R with Hk:[ȷk,rk]×R⟶R that are continuous. Moreover, ψℏ(ȷ)=∫ȷ0k(ȷ,ı)ℏ(ı)dı and k∈C(D,R+) with domain D:={(ȷ,r)∈R2:0≦r≦ȷ≦T⋆}.
Motivated from above results, we introduce ψ-Hilfer FIDEs class with multi-point boundary conditions via the ψ-Hilfer fractional derivative. Moreover, we investigate via Krasnoselskii's and Banach's fixed point theorems, the existence and uniqueness of solutions of the problem given by the Eqs (1.1)–(1.3). Also, we extend the results studied in [28] by including the ψ-Hilfer fractional derivative, nonlinear integral terms and non-instantaneous impulsive conditions.
This paper is organized as follows: In Section 2, we recall several known results. In Section 3, we use the suitable conditions for existence and uniqueness of solution for the problem given by the Eqs (1.1)–(1.3). Moreover, we prove its boundedness of the method. In Section 4, we consider an application to explain the consistency of our theoretical results.
Let the space PC([0,T⋆],R):={ℏ:[0,T⋆]→R:ℏ∈C(ȷk,ȷk+1],R} be continuous. Suppose that there exists ℏ(ȷ−k) and ℏ(ȷ+k), where ℏ(ȷ−k)=ℏ(ȷ+k) is equipped with the norm given by ‖ℏ‖PC:=sup{|ℏ(ȷ)|:0≦ȷ≦T⋆}. Set
PC∞([0,T⋆],R):={ℏ∈PC([0,T⋆],R):ℏ′∈PC([0,T⋆],R)} |
with norm ‖ℏ‖PC∞:=max{‖ℏ‖PC,‖ℏ′‖PC}. Clearly, PC∞([0,T⋆],R) equipped with ‖.‖PC∞.
Definition 2.1. [11,12,13,14,15] The R-L derivative of Y with order p>0 is defined by
Dp0+Y(ȷ)=1Γ(σ−p)(ddȷ)σ∫ȷ0(ȷ−ı)σ−p−1Y(ı)dı,σ−1<p<σ. |
Definition 2.2. [11,12,13,14,15] The R-L integral of Y with order p>0 is given as follows:
IpY(ȷ)=1Γ(p)∫ȷ0(ȷ−ı)p−1Y(ı)dı, |
with Γ(p)=∫∞0exp(−ı)ıp−1dı.
Definition 2.3. [30] The R-L integrals and derivatives of Y with regard to another function ψ are defined by
Ip;ψY(ȷ)=1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1Y(ı)dı |
and
Dp;ψY(ȷ)=(1ψ′(ȷ)ddȷ)σIσ−p;ψY(ȷ)=1Γ(σ−p)(1ψ′(ȷ)ddȷ)σ∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))σ−p−1Y(ı)dı, |
respectively.
Definition 2.4. [3] Let σ−1<p<σ, where σ∈N and Y,ψ∈PC([a1,a2],R) such that ψ is increasing, and ψ′(ȷ)≠0 for all ȷ∈[a1,a2]. The ψ-Hilfer fractional derivative HDp,q;ψ(.) of function Y with order p and parameter 0≦q≦1 is given by
HDp,q;ψY(ȷ)=Iq(σ−p);ψ(1ψ′(ȷ)ddȷ)σI(1−q)(σ−p);ψY(ȷ), |
where σ=[p]+1,[p] represents the integer part of the real number p.
Lemma 2.1. [3] Let p,ι>0 and δ>0. Then
(1) Ip;ψIι;ψℏ(ȷ)=Ip+ι;ψℏ(ȷ), (semigroup property);
(2) Ip;ψ(ψ(ȷ)−ψ(0))δ−1=Γ(δ)Γ(p+δ)(ψ(ȷ)−ψ(0))p+δ−1.
Note: HDp,q;ψ(ψ(ȷ)−ψ(0))θ−1=0.
Lemma 2.2. [3] Let Y∈L(a1,a2),σ−1<p≦σ,σ∈N with θ=p+σq−pq, and I(σ−p)(1−q)Y∈ACk[a1,a2]. Then
(Ip;ψ;ψHDp,q;ψY)(ȷ)=Y(ȷ)−σ∑k=1−(ψ(ȷ)−ψ(0)Γ(θ−k+1)Y[σ−k]ψlimȷ⟶a1+(I(σ−p)(1−q);ψY)(ȷ), |
where Y[σ−k]ψ=(1ψ′(ȷ)ddȷ)σ−kY(ȷ).
Assume that ϵ>0 be a real number. Let σ−1<p<σ, where σ∈N and Y,ψ∈PC([a1,a2],R) such that ψ is increasing, and ψ′(ȷ)≠0 for all ȷ∈[a1,a2], where the parameter 0≦q≦1.
We consider the following inequality:
|HDp,q;ψℏ(ȷ)−Y(ȷ,ℏ(ȷ),ψℏ(ȷ))|≤ϵ. | (2.1) |
Definition 2.5. [33,40] The problem given by the Eqs (1.1)–(1.3) is said to be Ulam-Hyers stable (see [41]), if there exists a real number MY>0 such that for every ϵ>0 and for each solution ℏ∈PC([a1,a2],R) of the inequality (2.1), there exists a solution ℏ1∈PC([a1,a2],R) of the problem given by the Eqs (1.1)–(1.3) with
|ℏ(ȷ)−ℏ1(ȷ)|≤MYϵ,∀ȷ∈[a1,a2]. | (2.2) |
Fixed point theorems play a major role in establishing the existence theory for the problem given by the Eqs (1.1)–(1.3). The following two well-known fixed point theorems will be used in the sequel.
Theorem 2.1. (Banach's Fixed Point Theorem [42]) Let C([0,T⋆],R) be a Banach space and let N:R→R be a contraction mapping. If C is a nonempty closed subset of C([0,T⋆],R), then N has a unique fixed point.
Theorem 2.2. (Krasnoselskii's Fixed Point Theorem [42]) Let U be a Banach space and E be a closed convex, bounded and nonempty subset of U. Suppose that Q and R are two operators that satisfy the following conditions:
(1) Qx1+Rx2∈E,∀x1,x2∈E;
(2) Q is completely continuous operator;
(3) Q is contraction operator.
Then there exists at least one fixed point z1∈E such that z1=Qz1+Rz1.
Other recently published papers related fixed point results can be found in [43,44,45,46].
Lemma 2.3 below is our first result.
Lemma 2.3. A function ℏ∈PC([0,T⋆],R) given by
ℏ(ȷ):={Hk(rϱ)+1Γ(p)∫ȷa1ψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı+(ψ(ȷ)−ψ(0))θ−1ΔΓ(p)[∑ϱk=1νk∫υk0ψ′(ȷ)(ψ(υk)−ψ(ı))p−1ω(ı)dı], ȷ∈[0,ȷ1],Hk(ȷ),ȷ∈(ȷk,rk],k=1,2,⋯,ϱ,Hk(rk)+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı−1Γ(p)∫rk0ψ′(ı)(ψ(rk)−ψ(r))p−1ω(ı)dı, ȷ∈(rk,ȷk+1],k=1,2,⋯,ϱ | (2.3) |
is a solution of the following system:
HDp,q;ψℏ(ȷ)=ω(ȷ),ȷ∈(rk,ȷk+1]⊂[0,T⋆],0<p<1,ℏ(ȷ)=Hk(ȷ),ȷ∈(ȷk,rk],k=1,⋯,ϱ,ℏ(0)=0, ℏ(T⋆)=ϱ∑k=1νkIςkℏ(υk), | (2.4) |
where
Δ:=(ψ(ȷ)−ψ(0))θ−1ϱ∑k=1νk(ψ(υk)−ψ(0))θ−1≠0. |
Proof. Assume that ℏ(ȷ) is satisfies for Eq (2.4). Integrating the first equation of (2.4) for ȷ∈[0,ȷ1], we have
ℏ(ȷ)=ℏ(T⋆)+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı. | (2.5) |
On other hand, if ȷ∈(rk,ȷk+1],k=1,2,⋯,ϱ, after integrating again (2.4), we get
ℏ(ȷ)=ℏ(ık)+1Γ(p)∫ȷrkψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı. | (2.6) |
Applying impulsive condition, ℏ(ȷ)=Hk(ȷ), ȷ∈(ȷk,rk], we obtain
ℏ(ık)=Hk(rk). | (2.7) |
Consequently, from (2.6) and (2.7), we get
ℏ(ȷ)=Hk(rk)+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı, | (2.8) |
and
ℏ(ȷ)=Hk(rk)+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1ω(ı)dı−1Γ(p)∫rk0(ψ′(ı)ψ(rk)−ψ(r))p−1ω(ı)dı. | (2.9) |
Now, we prove that ℏ satisfies the boundary conditions (2.4). Obviously, ℏ(0)=0.
ϱ∑k=1νkIφkℏ(υk)=ϱ∑k=1νk(ψ(ȷ)−ψ(0))p−1ΔΓ(θ)[ϱ∑k=1νkIp+φk;ψω(υk)−Iα;ψω(a2)]+ϱ∑k=1νkIα+φkω(υk)=(ψ(ȷ)−ψ(0))θ−1Δ[ϱ∑k=1νkIp+φk;ψω(υk)]+Ip;ψω(T⋆)=ℏ(T⋆). | (2.10) |
Now, it's clear that (2.5), (2.9) and (2.10) ⇒ (2.3), which completes the proof.
First main result is Theorem 3.1 below.
Theorem 3.1. Let the assumption below holds true:
(Al1): There exists L,G,M,Lhk>0, such that
|Y(ȷ,ℏ1,ω1)−Y(ȷ,ℏ2,ω2)|≦L|ℏ1−ℏ2|+G|ω1−ω2|,for ȷ∈[0,T⋆], ℏ1,ℏ2,ω1,ω2∈R.|k(ȷ,ı,ϑ)−k(ȷ,ı,ν)|≦M|ϑ−ν|,for ȷ∈[ȷk,rk],ϑ,ν∈R.|Hk(ȷ,v1)−Hk(ȷ,v2)|≦Lhk|v1−v2|,for v1,v2∈R. |
If
Z:=max{maxk=1,2,⋯,ϱLhk+(L+GM)Γ(p+1)(ȷpk+1+rpk),Lhk+(L+GM){(ψ(ȷ)−ψ(0))θ−1|Δ|Γ(θ)[ϱ∑k=1|νk|(ψ(υk)−ψ(0))p+φk;ψΓ(p+φk+1)]+(ψ(ȷ)−ψ(0))pΓ(p+1)}}<1, | (3.1) |
then the problem given by (1.1) to (1.3) has a unique solution on [0,T⋆].
Proof. Let expand N:PC([0,T⋆],R)⟶PC([0,T⋆],R) by
(Nℏ)(ȷ):={Hϱ(rϱ,ℏ(ıϱ))+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1Y(ı,ℏ(ı),Bℏ(ı))dı+(ψ(ȷ)−ψ(0))θ−1Δ[∑ϱk=1νk∫υk0ψ′(ȷ)(ψ(υk)−ψ(ı))p−1Y(υk,ℏ(υk),Bℏ(υk)], ȷ∈[0,ȷ1],Hk(ȷ),ȷ∈(ȷk,rk],k=1,2,⋯,ϱ,Hk(rk)+1Γ(p)∫ȷ0ψ′(ı)(ψ(ȷ)−ψ(ı))p−1Y(ı,ℏ(ı),Bℏ(ı))dı−1Γ(p)∫rk0ψ′(ı)(ψ(rk)−ψ(r))p−1Y(ı,ℏ(ı),Bℏ(ı))dı, ȷ∈(rk,ȷk+1],k=1,2,⋯,ϱ. |
It is evident that N is well-defined and Nℏ∈PC([0,T⋆],R). We now prove that N is a contraction.
Case 1. Taking ℏ,¯ℏ∈PC([0,T⋆],R) and ȷ∈[0,ȷ1], we have
|(Nℏ)(ȷ)−(N¯ℏ)(ȷ)|≦Lhk+(L+GM){(ψ(ȷ)−ψ(0))θ−1|Δ|Γ(θ)[ϱ∑k=1|νk|(ψ(υk)−ψ(0))p+φk;ψΓ(p+φk+1)]+(ψ(ȷ)−ψ(0))pΓ(p+1)}‖ℏ−¯ℏ‖PC. |
Case 2. Choosing ȷ∈(ȷk,rk], we get
|(Nℏ)(ȷ)−(N¯ℏ)(ȷ)|≦|Hk(ȷ,ℏ(ȷ))−Hk(ȷ,¯ℏ(ȷ))|≦Lhk‖ℏ−¯ℏ‖PC. |
Case 3. Letting ȷ∈(rk,ȷk+1], we obtain
|(Nℏ)(ȷ)−(N¯ℏ)(ȷ)|≦|Hk(rk,ℏ(ık)−Hk(ık,¯ℏ(rk)|+1Γ(p)∫ȷ0(ȷ−ı)p−1|Y(ı,ℏ(ı),Bℏ(ı))−Y(ı,ℏ(ı),Bℏ(ı))|dı+1Γ(p)∫rk0(rk−r)p−1|Y(ı,ℏ(ı),Bℏ(ı))−Y(ı,ℏ(ı),Bℏ(ı))|dı≦[Lhk+(L+GM)Γ(p+1)(ȷpk+1+rpk)]‖ℏ−¯ℏ‖PC. |
Therefore, N is a contraction since
Z=[Lhk+(L+GM)Γ(p+1)(ȷpk+1+rpk)]<1. |
Thus, clearly, the problem given by the Eqs (1.1)–(1.3) has a unique solution for each ℏ∈PC([0,T⋆],R).
Second main result is Theorem 3.2 below.
Theorem 3.2. Let (Al1) be satisfied and let the assumption below hold true:
(Al2): There exists Lgk>0 such that
|Y(ȷ,W1,ω1)|≦Lgk(1+|W1|+|ω1|), ȷ∈[rk,ȷk+1],∀W1,ω1∈R. |
(Al3): A function κk(ȷ),k=1,2,⋯,ϱ exists, with
|Hk(ȷ,W1,ω1)|≦κk(ȷ), ȷ∈[ȷk,rk],∀W1,ω1∈R. |
Assume that Mk:=supȷ∈[ȷk,rk]κk(ȷ)<∞ and K:=maxLgk<1 for all k=1,2,⋯,ϱ. Then the problem given by (1.1) to (1.3) has at least one solution on [0,T⋆].
Proof. Let us set
Bp,r:={ℏ∈PC([0,T⋆],R):‖ℏ‖PC≦r}. |
Also let \mathcal{Q} and \mathcal{R} be two operators on \mathcal{B}_{\mathrm{p}, \mathrm{r}} defined as follows:
\begin{align*} \mathcal{Q}\hbar\mathrm{(\jmath)}: = \begin{cases} &\mathcal{H}_{\mathrm{\varrho}}(\mathrm{r}_{\mathrm{\varrho}},\hbar\mathrm{(\imath}_{\mathrm{\varrho}})), \quad \mathrm{\jmath} \in [0,\mathrm{\jmath}_{1}],\\ &\mathcal{H}_{\mathrm{k}}\mathrm{(\jmath},\hbar\mathrm{(\jmath)}), \quad \mathrm{\jmath} \in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}],\; \mathrm{k} = 1,2,\cdots,\mathrm{\varrho},\\ &\mathcal{H}_{\mathrm{k}}(\mathrm{r}_{\mathrm{k}},\hbar\mathrm{(\imath}_{\mathrm{k}})), \quad \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}],\; \mathrm{k} = 1,2,\cdots,\mathrm{\varrho}, \end{cases} \end{align*} |
and
\begin{align*} \mathcal{R}\hbar\mathrm{(\jmath)}: = \begin{cases} &\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{\jmath}}_{\mathrm{a_{1}}}{\psi}'\mathrm{(\imath)}({\psi}\mathrm{(\jmath)}-{\psi}\mathrm{(\imath)})^{\mathrm{p}-1}\mathcal{Y}\mathrm{(\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath))d\imath}\\ &+\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\theta-1}}{\Delta}\Big[\sum^{\mathrm{\varrho}}_{\mathrm{k} = 1}\nu_{\mathrm{k}}\int^{\upsilon_{\mathrm{k}}}_{0}{\psi}'\mathrm{(\jmath)}({\psi}(\upsilon_{\mathrm{k}})-{\psi}\mathrm{(\imath)})^{\mathrm{p}-1}\mathcal{Y}(\upsilon_{\mathrm{k}},\hbar(\upsilon_{\mathrm{k}}),\mathcal{B} \hbar(\upsilon_{\mathrm{k}}))\Big],\ \ \mathrm{\jmath} \in [0,\mathrm{\jmath}_{1}],\\ & 0,\; \mathrm{\jmath} \in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}],\; \mathrm{k} = 1,2,\cdots,\mathrm{\varrho},\\ &\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{\jmath}}_{0}{\psi}'\mathrm{(\imath)}({\psi}\mathrm{(\jmath)}-{\psi}\mathrm{(\imath)})^{\mathrm{p}-1}\mathcal{Y}\mathrm{(\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath))d\imath}\\ &-\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{r}_\mathrm{k}}_{0} {\psi}'\mathrm{(\imath)}({\psi}(\mathrm{r}_{\mathrm{k}})-{\psi}\mathrm{(\imath)})^{\mathrm{p}-1}\mathcal{Y}\mathrm{(\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath))d\imath}, \ \ \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}],\; \mathrm{k} = 1,2,\cdots,\mathrm{\varrho}. \end{cases} \end{align*} |
Step 1. For \hbar \in \mathcal{B}_{\mathrm{p}, \mathrm{r}}, we have \mathcal{Q}\hbar+\mathcal{R}\hbar \in \mathcal{B}_{\mathrm{p}, \mathrm{r}} .
Case 1. For \mathrm{\jmath} \in [0, \mathrm{\jmath}_{1}], we have
\begin{align*} \left|\mathcal{Q}\hbar+\mathcal{R}\overline{\hbar}\right|& \leqq \left|\mathcal{H}_{\mathrm{\varrho}}(\mathrm{r}_{\mathrm{\varrho}},\hbar\mathrm{(\imath}_{\mathrm{\varrho}}))\right|+\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{\jmath}}_{0}\mathrm{(\jmath-\imath)}^{\mathrm{p}-1}\left|\mathcal{Y}\mathrm{(\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath)})\right|\mathrm{d\imath}\\ &+\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\theta-1}}{\Delta}\Big[\sum^{\mathrm{\varrho}}_{\mathrm{k} = 1}\nu_{\mathrm{k}}\int^{\upsilon_{\mathrm{k}}}_{0}{\psi}'\mathrm{(\jmath)}({\psi}(\upsilon_{\mathrm{k}})-{\psi}\mathrm{(\imath)})^{\mathrm{p}-1}\mathcal{Y}(\upsilon_{\mathrm{k}},\hbar(\upsilon_{\mathrm{k}}),\mathcal{B} \hbar(\upsilon_{\mathrm{k}}))\mathrm{d}\upsilon_{\mathrm{k}}\Big],\\ &\leqq \Big[\mathcal{L}_{\mathrm{h}_{\mathrm{k}}} +\mathcal{(L+GM)}\Big\{\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\mathrm{p}}}{\Gamma(\mathrm{p}+1)}+\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\theta-1}}{\left|\Delta\right|\Gamma(\theta)}\\ &\times\Big[\sum^{\mathrm{\varrho}}_{\mathrm{k} = 1}\left|\nu_{\mathrm{k}}\right|\frac{({\psi}(\upsilon_{\mathrm{k}})-{\psi}(0))^{\mathrm{p}+\varphi_{\mathrm{k}};{\psi}}}{\Gamma(\mathrm{p}+\varphi_{\mathrm{k}}+1)}\Big]\Big\}\Big](1+\mathrm{r})\leqq \mathrm{r}. \end{align*} |
Case 2. For each \mathrm{\jmath} \in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}], we have
\begin{align*} \left|\mathcal{Q}\hbar+\mathcal{R}\overline{\hbar}\right|\leqq \left|\mathcal{H}_{\mathrm{k}}\mathrm{(\jmath},\mathrm{W}_{1}\mathrm{(\jmath)})\right|\leqq \mathcal{M}_{\mathrm{k}}. \end{align*} |
Case 3. For every \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}] ,
\begin{align*} \left|\mathcal{Q}\hbar+\mathcal{R}\overline{\hbar}\mathrm{(\jmath)}\right|&\leqq \left|\mathcal{H}_{\mathrm{k}}(\mathrm{r}_{\mathrm{k}},\hbar\mathrm{(\imath}_{\mathrm{k}}))\right|+\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{\jmath}}_{0}\mathrm{(\jmath-\imath)}^{\mathrm{p}-1}\left|\mathcal{Y}\mathrm{(\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath)})\right|\mathrm{d\imath}\\ &+\frac{1}{\Gamma(\mathrm{p})}\int^{\mathrm{r}_{\mathrm{k}}}_{0}(\mathrm{r}_{\mathrm{k}}-\mathrm{r})^{\mathrm{p}-1}\left|\mathcal{Y}(\mathrm{\imath},\hbar\mathrm{(\imath)},\mathcal{B} \hbar\mathrm{(\imath)})\right|\mathrm{d\imath},\\ &\leqq \mathcal{M}_{\mathrm{k}}+\left[\frac{\mathcal{L}_{\mathrm{g}_{\mathrm{k}}}(\mathrm{r}^{\mathrm{p}}_{\mathrm{k}}+\mathrm{\jmath}^{\mathrm{p}}_{\mathrm{k}+1})}{\Gamma(\mathrm{p}+1)}\right](1+\mathrm{r})\leqq \mathrm{r}. \end{align*} |
Thus
\begin{equation*} \mathcal{Q}\hbar+\mathcal{R}\hbar \in \mathcal{B}_{\mathrm{p},\mathrm{r}}. \end{equation*} |
Step 2. \mathcal{Q} is contraction on \mathcal{B}_{\mathrm{p}, \mathrm{r}} .
Case 1. Let \hbar_{1}, \hbar_{2} \in \mathcal{B}_{\mathrm{p}, \mathrm{r}} . Then, by taking \mathrm{\jmath}\in [0, \mathrm{\jmath}_{1}] , we have
\begin{align*} \left|\mathcal{Q}\hbar_{1}\mathrm{(\jmath)}-\mathcal{Q}\hbar_{2}\mathrm{(\jmath)}\right|\leqq \mathcal{L}_{\mathrm{g}_{\mathrm{\varrho}}}\left|\hbar_{1}(\mathrm{r}_{\mathrm{\varrho}})-\hbar_{2}(\mathrm{r}_{\mathrm{\varrho}})\right|\leqq \mathcal{L}_{\mathrm{g}_{\mathrm{\varrho}}}\left\|\hbar_{1}-\hbar_{2}\right\|_{\mathrm{PC}}. \end{align*} |
Case 2. For each \mathrm{\jmath} \in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}], \; \mathrm{k} = 1, 2, \cdots, \mathrm{\varrho} , we get
\begin{align*} \left|\mathcal{Q}\hbar_{1}\mathrm{(\jmath)}-\mathcal{Q}\hbar_{2}\mathrm{(\jmath)}\right|\leqq \mathcal{L}_{\mathrm{g}_{\mathrm{k}}}\left\|\hbar_{1}-\hbar_{2}\right\|_{\mathrm{PC}}. \end{align*} |
Case 3. For every \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}] , we obtain
\begin{align*} \left|\mathcal{Q}\hbar_{1}\mathrm{(\jmath)}-\mathcal{Q}\hbar_{2}\mathrm{(\jmath)}\right|\leqq \mathcal{L}_{\mathrm{g}_{\mathrm{k}}}\left\|\hbar_{1}-\hbar_{2}\right\|_{\mathrm{PC}}. \end{align*} |
Hence, we deduce the following inequality:
\begin{align*} \left|\mathcal{Q}\hbar_{1}\mathrm{(\jmath)}-\mathcal{Q}\hbar_{2}\mathrm{(\jmath)}\right|\leqq \mathcal{K}\left\|\hbar_{1}-\hbar_{2}\right\|_{\mathrm{PC}}. \end{align*} |
Consequently, \mathcal{Q} is a contraction.
Step 3. Let demonstrate that \mathcal{R} be continuous.
Let \hbar_{\mathrm{\sigma}} be a \ni \; \hbar_{\mathrm{\sigma}}\rightarrow \overline{\hbar} sequence in \mathrm{PC}([0, \mathrm{T_{\star}}], \mathrm{R}) .
Case 1. For each \mathrm{\jmath}\in [0, \mathrm{\jmath}_{1}] , we have
\begin{align*} \left|\mathcal{Q}\hbar_{\mathrm{\sigma}}\mathrm{(\jmath)}-\mathcal{Q}\hbar\mathrm{(\jmath)}\right|& \leqq \left[\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\theta-1}}{\left|\Delta\right|\Gamma(\theta)}\Big[\sum^{\mathrm{\varrho}}_{\mathrm{k} = 1}\left|\nu_{\mathrm{k}}\right|\frac{({\psi}(\upsilon_{\mathrm{k}})-{\psi}(0))^{\mathrm{p}+\varphi_{\mathrm{k}};{\psi}}}{\Gamma(\mathrm{p}+\varphi_{\mathrm{k}}+1)}\Big]+\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\mathrm{p}}}{\Gamma(\mathrm{p}+1)}\right]\\ &\times\left\|\mathcal{Y}(.,\hbar_{\mathrm{\sigma}}(.),.,)-\mathcal{Y}(.,\hbar(.),.,)\right\|_{\mathrm{PC}}. \end{align*} |
Case 2. For every \mathrm{\jmath}\in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}] , we get
\begin{align*} \left|\mathcal{Q}\hbar_{\mathrm{\sigma}}\mathrm{(\jmath)}-\mathcal{Q}\hbar\mathrm{(\jmath)}\right| = 0. \end{align*} |
Case 3. For each \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}], \; \mathrm{k} = 1, 2, \cdots, \mathrm{\varrho} , we obtain
\begin{align*} \left|\mathcal{Q}\hbar_{\mathrm{\sigma}}\mathrm{(\jmath)}-\mathcal{Q}\hbar\mathrm{(\jmath)}\right| \leqq \frac{(\mathrm{\jmath}_{\mathrm{k}+1}-\mathrm{r}_{\mathrm{k}})}{\Gamma(\mathrm{p}+1)}\left\|\mathcal{Y}(.,\hbar_{\mathrm{\sigma}}(.),.,)-\mathcal{Y}(.,\hbar(.),.,)\right\|_{\mathrm{PC}}. \end{align*} |
We thus conclude from the above cases that \left\|\mathcal{Q}\hbar_{\mathrm{\sigma}}\mathrm{(\jmath)}-\mathcal{Q}\hbar\mathrm{(\jmath)}\right\|_{\mathrm{PC}}\longrightarrow 0 as \mathrm{\sigma}\rightarrow \infty .
Step 4. Finally, let us prove that \mathcal{Q} is compact.
Firstly, \mathcal{Q} is uniformly bounded on \mathcal{B}_{\mathrm{p}, \mathrm{r}} .
Since \left\|\mathcal{Q}\hbar\right\|\leqq \frac{\mathcal{L}_{\mathrm{g}_{\mathrm{k}}}\mathcal{(T)}}{\Gamma(1+\mathrm{p})} < \mathrm{r} , therefore, we have \mathcal{Q} is uniformly bounded on \mathcal{B}_{\mathrm{p}, \mathrm{r}} .
We prove that \mathcal{Q} maps a bounded set to a \mathcal{B}_ {\mathrm{p}, \mathrm{r}} equicontinuous set.
Case 1. For interval \mathrm{\jmath} \in [0, \mathrm{\jmath}_{1}], \; 0 \leqq \mathcal{E}_{1} \leqq \mathcal{E}_{2} \leqq \mathrm{\jmath}_{1}, \hbar \in \mathcal{B}_{\mathrm{r}} , we have
\begin{align*} \left|\mathcal{Q}\mathcal{E}_{2}-\mathcal{Q}\mathcal{E}_{1}\right| \leqq \frac{\mathcal{L}_{\mathrm{g}_{\mathrm{k}}}(1+\mathrm{r})}{\Gamma(\mathrm{p}+1)}(\mathcal{E}_{2}-\mathcal{E}_{1}). \end{align*} |
Case 2. For each \mathrm{\jmath} \in (\mathrm{\jmath}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}], \; \mathrm{\jmath}_{\mathrm{k}} < \mathcal{E}_{1} < \mathcal{E}_{2} \leqq \mathrm{r}_{\mathrm{k}}, \; \hbar \in \mathcal{B}_{\mathrm{p}, \mathrm{r}} , we get
\begin{align*} \left|\mathcal{Q}\mathcal{E}_{2}-\mathcal{Q}\mathcal{E}_{1}\right| = 0. \end{align*} |
Case 3. For every \mathrm{\jmath} \in (\mathrm{r}_{\mathrm{k}}, \mathrm{\jmath}_{\mathrm{k}+1}], \; \mathrm{r}_{\mathrm{k}} < \mathcal{E}_{1} < \mathcal{E}_{2} \leqq \mathrm{\jmath}_{\mathrm{k}+1}, \; \hbar \in \mathcal{B}_{\mathrm{p}, \mathrm{r}} , we obtain
\begin{align*} \left|\mathcal{Q}\mathcal{E}_{2}-\mathcal{Q}\mathcal{E}_{1}\right| \leqq \frac{\mathcal{L}_{\mathrm{g}_{\mathrm{k}}}(1+\mathrm{r})}{\Gamma(\mathrm{p}+1)}(\mathcal{E}_{2}-\mathcal{E}_{1}). \end{align*} |
From the above cases, we deduce that \left|\mathcal{Q}\mathcal{E}_{2}-\mathcal{Q}\mathcal{E}_{1}\right|\longrightarrow 0 as \mathcal{E}_{2}\longrightarrow\mathcal{E}_{1} and \mathcal{Q} is equicontinuous. As a result, \mathcal{Q}(\mathcal{B}_{\mathrm{p}, \mathrm{r}}) is relatively compact and \mathcal{Q} is compact, by using the Ascoli–Arzela theorem. Hence, the problem given by (1.1) to (1.3) has at least one fixed point on [0, \mathrm{T_{\star}}] .
Let as consider the following {\psi} -Caputo (or, more appropriately, {\psi} -Liouville–Caputo) fractional boundary value problem:
\begin{align} &D^{\mathrm{p,q};{\psi}}\hbar\mathrm{(\jmath)} = \frac{\exp(-\mathrm{\jmath})\left|\hbar\mathrm{(\jmath)}\right|}{9+\exp(-\mathrm{\jmath})(1+\left|\hbar\mathrm{(\jmath)}\right|)}+\frac{1}{3}\int^{\mathrm{\jmath}}_{0}\mathrm{e}^{-(\mathrm{\imath}-\mathrm{\jmath})}\hbar\mathrm{(\imath)}\mathrm{d\imath},\ \ \mathrm{\jmath} \in (0,1], \end{align} | (4.1) |
\begin{align} &\hbar\mathrm{(\jmath)} = \frac{\left|\hbar\mathrm{(\jmath)}\right|}{2(1+\left|\hbar\mathrm{(\jmath)}\right|)}, \ \mathrm{\jmath} \in \left(\frac{1}{2},1\right], \end{align} | (4.2) |
\begin{align} & \hbar(0) = 0,\ \ \hbar(1) = \frac{1}{2}\mathcal{I}^{\frac{2}{3}}\hbar\left(\frac{7}{5}\right)+\frac{2}{3}\mathcal{I}^{\frac{4}{5}}\hbar\left(\frac{9}{5}\right)+\frac{5}{2}\mathcal{I}^{\frac{3}{4}}\hbar\left(\frac{7}{2}\right), \end{align} | (4.3) |
together with \mathcal{L} = \mathcal{G} = \frac{1}{10}, \; \mathcal{M} = \frac{1}{3}, \; \mathrm{p} = \frac{5}{7}, \; \theta = \frac{2}{5}, \; \mathcal{L}_{\texttt{h}_{1}} = \frac{1}{3}, \; \nu_{1} = \frac{1}{2}, \; \nu_{2} = \frac{2}{3}, \; \nu_{3} = \frac{2}{5}, \; \upsilon_{1} = \frac{2}{7}, \; \upsilon_{2} = \frac{5}{9}, \; \upsilon_{3} = \frac{1}{7}, \; \varphi_{1} = \frac{2}{3}, \; \varphi_{2} = \frac{4}{5}, \; \varphi_{3} = \frac{3}{4} . We shall check the condition (3.1), for value \mathrm{p}\in (1, 2) . Indeed, by using Theorem 3.1, we determine that
\begin{align*} &\mathcal{L}_{\mathrm{h}_{\mathrm{k}}} +\frac{\mathcal{(L+GM)}}{\Gamma(\mathrm{p}+1)}(\mathrm{\jmath}^{\mathrm{p}}_{\mathrm{k}+1}+\mathrm{r}^{\mathrm{p}}_{\mathrm{k}})\approx 0.41 < 1,\\ &\mbox{and}\\ &\mathcal{L}_{\mathrm{h}_{\mathrm{k}}} +\mathcal{(L+GM)}\Big\{\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\mathrm{p}}}{\Gamma(\mathrm{p}+1)}+\frac{({\psi}(\mathrm{\jmath})-{\psi}(0))^{\theta-1}}{\left|\Delta\right|\Gamma(\theta)}\Big[\sum^{\mathrm{\varrho}}_{\mathrm{k} = 1}\left|\nu_{\mathrm{k}}\right|\frac{({\psi}(\upsilon_{\mathrm{k}})-{\psi}(0))^{\mathrm{p}+\varphi_{\mathrm{k}};{\psi}}}{\Gamma(\mathrm{p}+\varphi_{\mathrm{k}}+1)}\Big]\Big\}\approx 0.485 < 1. \end{align*} |
Hence, from Theorem 3.1 the problem given by (4.1) to (4.3) has a unique solution on [0, \mathrm{T_{\star}}] .
We have discussed in this paper {\psi} -Hilfer FIDEs class with non-instantaneous impulsive conditions and with an R-L integral boundary condition. Furthermore, the existence and uniqueness of the derived solution is investigated via two well-known fixed point theorems. Moreover, we have proved its boundedness of the method in Section 3, and hence we don't need stability analysis. Finally, the consistency of our results was demonstrated with an example. For future work, we will give the numerical algorithm for the R-L integral BVPs via different kinds of fractional derivatives. Also, interested researchers can improve our results by using the resolvents operators as well.
This research has received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand, and the first author would like to thank Prince Sultan University for the support through the TAS research lab.
The authors declare that they have no conflicts interests.
[1] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
![]() |
[3] |
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
![]() |
[4] |
X. D. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
![]() |
[5] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[6] |
R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[7] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1220–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
![]() |
[8] | F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, DE, USA, 1999, 1–141. |
[9] |
B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
![]() |
[10] |
F. K. Gundogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
![]() |
[11] |
X. Gou, Z. Xu, P. Ren, The properties of continuous Pythagorean fuzzy information, Int. J. Intell. Syst., 31 (2016), 401–424. https://doi.org/10.1002/int.21788 doi: 10.1002/int.21788
![]() |
[12] |
X. Gou, Z. Xu, Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets, Inform. Sci., 372 (2016), 407–427. https://doi.org/10.1016/j.ins.2016.08.034 doi: 10.1016/j.ins.2016.08.034
![]() |
[13] |
X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
![]() |
[14] | W. R. Zhang, Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA94, Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115 |
[15] | W. R. Zhang, (Yin)(Yang) bipolar fuzzy sets, In: IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, IEEE, Anchorage, AK, USA, 1 (1998), 835–840. https://doi.org/10.1109/FUZZY.1998.687599 |
[16] | Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Annal. Fuzzy Math. Inform., 4 (2012), 83–98. |
[17] | H. Garg, G. Kaur, Cubic intuitionistic fuzzy sets and its fundamental properties, J. Mult.-Valued Log. S., 33 (2019), 507–537. |
[18] |
H. Garg, G. Kaur, TOPSIS based on nonlinear-programming methodology for solving decision-making problems under cubic intuitionistic fuzzy set environment, Comput. Appl. Math., 38 (2019), 1–19. https://doi.org/10.1007/s40314-019-0869-6 doi: 10.1007/s40314-019-0869-6
![]() |
[19] |
H. Garg, G. Kaur, Algorithm for solving the decision-making problems based on correlation coefficients under cubic intuitionistic fuzzy information: A case study in watershed hydrological system, Compl. Intell. Syst., 8 (2022), 179–198. https://doi.org/10.1007/s40747-021-00339-4 doi: 10.1007/s40747-021-00339-4
![]() |
[20] |
S. Z. Abbas, M. S. A. Khan, S. Abdullah, H. Sun, F. Hussain, Cubic Pythagorean fuzzy sets and their application to multi-attribute decision making with unknown weight information, J. Intell. Fuzzy Syst., 37 (2019), 1529–1544. https://doi.org/10.3233/JIFS-18382 doi: 10.3233/JIFS-18382
![]() |
[21] |
F. Wang, X. Zhao, Prospect-theory and geometric distance measure-based Pythagorean cubic fuzzy multicriteria decision-making, Int. J. Intell. Syst., 36 (2021), 4117–4142. https://doi.org/10.1002/int.22453 doi: 10.1002/int.22453
![]() |
[22] |
M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data, Comput. Appl. Math., 38 (2019), 1–25. https://doi.org/10.1007/s40314-019-0843-3 doi: 10.1007/s40314-019-0843-3
![]() |
[23] |
M. Riaz, S. T. Tehrim, Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 2473–2494. https://doi.org/10.3233/JIFS-182751 doi: 10.3233/JIFS-182751
![]() |
[24] |
M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy set with application to multi-criteria group decision making using geometric aggregation operators, Soft Comput., 24 (2020), 16111–16133. https://doi.org/10.1007/s00500-020-04927-3 doi: 10.1007/s00500-020-04927-3
![]() |
[25] |
N. Jan, L. Zedam, T. Mahmood, K. Ullah, Cubic bipolar fuzzy graphs with applications, J. Intell. Fuzzy Syst., 37 (2019), 2289–2307. https://doi.org/10.3233/JIFS-182579 doi: 10.3233/JIFS-182579
![]() |
[26] |
N. Jamil, M. Riaz, Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I, Int. J. Biomath., 15 (2022), 2250030. https://doi.org/10.1142/S1793524522500309 doi: 10.1142/S1793524522500309
![]() |
[27] |
M. Riaz, N. Jamil, Topological structures on cubic bipolar fuzzy sets with linear assignment model and SIR method for healthcare, J. Intell. Fuzzy Syst., 44 (2023), 1191–1212. https://doi.org/10.3233/JIFS-222224 doi: 10.3233/JIFS-222224
![]() |
[28] |
Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
![]() |
[29] |
Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
![]() |
[30] |
T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751
![]() |
[31] |
T. Senapati, Approaches to multi-attribute decision-making based on picture fuzzy Aczel-Alsina average aggregation operators, Comput. Appl. Math., 41 (2022), 40. https://doi.org/10.1007/s40314-021-01742-w doi: 10.1007/s40314-021-01742-w
![]() |
[32] |
C. Tian, J. J. Peng, Z. Q. Zhang, J. Q. Wang, M. Goh, An extended picture fuzzy MULTIMOORA method based on Schweizer-Sklar aggregation operators, Soft Comput., 26 (2022), 3435–3454. https://doi.org/10.1007/s00500-021-06690-5 doi: 10.1007/s00500-021-06690-5
![]() |
[33] |
F. Xiao, J. Wen, W. Pedrycz, Generalized divergence-based decision making method with an application to pattern classification, IEEE T. Knowl. Data Eng., 2022. https://doi.org/10.1109/TKDE.2022.3177896 doi: 10.1109/TKDE.2022.3177896
![]() |
[34] |
F. Xiao, GIQ: A generalized intelligent quality-based approach for fusing multisource information, IEEE T. Fuzzy Syst., 29 (2021), 2018–2021. https://doi.org/10.1109/TFUZZ.2020.2991296 doi: 10.1109/TFUZZ.2020.2991296
![]() |
[35] |
F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man. Cyber. Syst., 51 (2021), 3980–3992, https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
![]() |
[36] |
M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
![]() |
[37] |
H. Kamaci, D. Marinkovic, S. Petchimuthu, M. Riaz, S. Ashraf, Novel distance-measures-based extended TOPSIS method under linguistic linear Diophantine fuzzy information, Symmetry, 14 (2022), 2140. https://doi.org/10.3390/sym14102140 doi: 10.3390/sym14102140
![]() |
[38] |
M. Akram, Bipolar fuzzy graphs, Inf. Sci., 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037
![]() |
[39] |
M. A. Alghamdi, N. O. Alshehri, M. Akram, Multicriteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-018-0499-y doi: 10.1007/s40815-018-0499-y
![]() |
[40] |
M. Akram, Shumaiza, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Comput. Appl. Math., 39 (2020), 1–21. https://doi.org/10.1007/s40314-019-0980-8 doi: 10.1007/s40314-019-0980-8
![]() |
[41] |
H. Garg, Sine trigonometric operational laws and its based Pythagorean fuzzy aggregation operators for group decision-making process, Artif. Intell. Rev., 54 (2021), 4421–4447. https://doi.org/10.1007/s10462-021-10002-6 doi: 10.1007/s10462-021-10002-6
![]() |
[42] |
H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties, Neural Comput. Appl., 32 (2020), 15077–15099. https://doi.org/10.1007/s00521-020-04859-x doi: 10.1007/s00521-020-04859-x
![]() |
[43] |
M. Qiyas, S. Abdullah, Sine trigonometric spherical fuzzy aggregation operators and their application in decision support system, TOPSIS, VIKOR, Korean J. Math., 29 (2021), 137–167. https://doi.org/10.11568/kjm.2021.29.1.137 doi: 10.11568/kjm.2021.29.1.137
![]() |
[44] |
S. Ashraf, S. Abdullah, S. Zeng, H. Jin, F. Ghani, Fuzzy decision support modeling for hydrogen power Plant selection based on single valued neutrosophic sine trigonometric aggregation operators, Symmetry, 12 (2020), 298. https://doi.org/10.3390/sym12020298 doi: 10.3390/sym12020298
![]() |
[45] |
M. W. Lin, C. Huang, Z. S. Xu, R. Chen, Evaluating IoT platforms using integrated probabilistic linguistic MCDM method, IEEE Int. Things J., 7 (2020), 11195–11208. https://doi.org/10.1109/JIOT.2020.2997133 doi: 10.1109/JIOT.2020.2997133
![]() |
[46] |
C. Huang, M. W. Lin, Z. S. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: Its application in multicriteria decision making process, Knowl. Inform. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
![]() |
[47] |
M. W. Lin, C. Huang, Z. S. Xu, TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its application to multiple attribute decision making, Complexity, 2019 (2019), 6967390. https://doi.org/10.1155/2019/6967390 doi: 10.1155/2019/6967390
![]() |
[48] |
M. Riaz, D. Pamucar, A. Habib, N. Jamil, Innovative bipolar fuzzy sine trigonometric aggregation operators and SIR method for medical tourism supply chain, Math. Probl. Eng., 2022 (2022), 1–17. https://doi.org/10.1155/2022/4182740 doi: 10.1155/2022/4182740
![]() |
[49] |
C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process, J. Amb. Intel. Hum. Comp., 10 (2019), 3533–3549. https://doi.org/10.1007/s12652-018-1076-9 doi: 10.1007/s12652-018-1076-9
![]() |
[50] |
M. Riaz, A. Habib, M. Saqlain, M. S. Yang, Cubic bipolar fuzzy-VIKOR method using new distance and entropy measures and Einstein averaging aggregation operators with application to renewable energy, Int. J. Fuzzy Syst., 25 (2023), 510–543. https://doi.org/10.1007/s40815-022-01383-z doi: 10.1007/s40815-022-01383-z
![]() |
[51] |
G. Kaur, H. Garg, Cubic intuitionistic fuzzy aggregation operators, Int. J. Uncert. Quant., 8 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020471 doi: 10.1615/Int.J.UncertaintyQuantification.2018020471
![]() |
1. | Cemil Tunç, Osman Tunç, Ching‐Feng Wen, Jen‐Chi Yao, On the qualitative analyses solutions of new mathematical models of integro‐differential equations with infinite delay, 2023, 46, 0170-4214, 14087, 10.1002/mma.9306 | |
2. | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami, Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense, 2024, 9, 2473-6988, 9926, 10.3934/math.2024486 | |
3. | Chenkuan Li, Reza Saadati, Donal O'Regan, Radko Mesiar, Andrii Hrytsenko, A nonlinear fractional partial integro‐differential equation with nonlocal initial value conditions, 2023, 46, 0170-4214, 17010, 10.1002/mma.9486 | |
4. | Bakhtawar Pervaiz, Akbar Zada, Ioan‐Lucian Popa, Sana Ben Moussa, Afef Kallekh, Exponential stability and relative controllability of first‐order delayed integro‐differential systems with impulses, 2024, 47, 0170-4214, 7590, 10.1002/mma.9992 | |
5. | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami, Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system, 2024, 9, 2473-6988, 16203, 10.3934/math.2024784 | |
6. | Muhammad Zain Yousaf, Hari Mohan Srivastava, Muhammad Abbas, Tahir Nazir, Pshtiwan Othman Mohammed, Miguel Vivas-Cortez, Nejmeddine Chorfi, A Novel Quintic B-Spline Technique for Numerical Solutions of the Fourth-Order Singular Singularly-Perturbed Problems, 2023, 15, 2073-8994, 1929, 10.3390/sym15101929 | |
7. | H. M. Srivastava, Kanika Dhawan, Ramesh Kumar Vats, Ankit Kumar Nain, Well-posedness of a nonlinear Hilfer fractional derivative model for the Antarctic circumpolar current, 2024, 75, 0044-2275, 10.1007/s00033-024-02192-0 | |
8. | Simasri Deka, Anupam Das, Bhuban Chandra Deuri, Existence of solutions of infinite system of hybrid fractional integro-differential equation, 2024, 18, 1982-6907, 231, 10.1007/s40863-024-00409-8 | |
9. | Manal Elzain Mohamed Abdalla, Hasanen A. Hammad, Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques, 2025, 10, 2473-6988, 6168, 10.3934/math.2025281 |