Research article Special Issues

A decision-making strategy to combat CO$ _2 $ emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input

  • Received: 26 February 2023 Revised: 26 March 2023 Accepted: 11 April 2023 Published: 23 April 2023
  • MSC : 03E72, 94D05, 90B50

  • A cubic bipolar fuzzy set (CBFS) is by far the most efficient model for handling bipolar fuzziness because it carries both single-valued (SV) and interval-valued (Ⅳ) bipolar fuzzy numbers at the same time. The sine trigonometric function possesses two consequential qualities, namely, periodicity and symmetry, both of which are helpful tools for matching decision makers' conjectures. This article aims to integrate the sine function and cubic bipolar fuzzy data. As a result, sine trigonometric operational laws (STOLs) for cubic bipolar fuzzy numbers (CBFNs) are defined in this article. Premised on these laws, a substantial range of aggregation operators (AOs) are introduced. Certain features of these operators, including monotonicity, idempotency, and boundedness, are explored as well. Using the proffered AOs, a novel multi-criteria group decision-making (MCGDM) strategy is developed. An extensive case study of carbon capture and storage (CCS) technology has been provided to show the viability of the suggested method. A numerical example is provided to manifest the feasibility of the developed approach. Finally, a comparison study is executed to discuss the efficacy of the novel MCGDM framework.

    Citation: Anam Habib, Zareen A. Khan, Nimra Jamil, Muhammad Riaz. A decision-making strategy to combat CO$ _2 $ emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input[J]. AIMS Mathematics, 2023, 8(7): 15092-15128. doi: 10.3934/math.2023771

    Related Papers:

  • A cubic bipolar fuzzy set (CBFS) is by far the most efficient model for handling bipolar fuzziness because it carries both single-valued (SV) and interval-valued (Ⅳ) bipolar fuzzy numbers at the same time. The sine trigonometric function possesses two consequential qualities, namely, periodicity and symmetry, both of which are helpful tools for matching decision makers' conjectures. This article aims to integrate the sine function and cubic bipolar fuzzy data. As a result, sine trigonometric operational laws (STOLs) for cubic bipolar fuzzy numbers (CBFNs) are defined in this article. Premised on these laws, a substantial range of aggregation operators (AOs) are introduced. Certain features of these operators, including monotonicity, idempotency, and boundedness, are explored as well. Using the proffered AOs, a novel multi-criteria group decision-making (MCGDM) strategy is developed. An extensive case study of carbon capture and storage (CCS) technology has been provided to show the viability of the suggested method. A numerical example is provided to manifest the feasibility of the developed approach. Finally, a comparison study is executed to discuss the efficacy of the novel MCGDM framework.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [3] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [4] X. D. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [6] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [7] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1220–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [8] F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, DE, USA, 1999, 1–141.
    [9] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [10] F. K. Gundogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [11] X. Gou, Z. Xu, P. Ren, The properties of continuous Pythagorean fuzzy information, Int. J. Intell. Syst., 31 (2016), 401–424. https://doi.org/10.1002/int.21788 doi: 10.1002/int.21788
    [12] X. Gou, Z. Xu, Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets, Inform. Sci., 372 (2016), 407–427. https://doi.org/10.1016/j.ins.2016.08.034 doi: 10.1016/j.ins.2016.08.034
    [13] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [14] W. R. Zhang, Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA94, Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115
    [15] W. R. Zhang, (Yin)(Yang) bipolar fuzzy sets, In: IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, IEEE, Anchorage, AK, USA, 1 (1998), 835–840. https://doi.org/10.1109/FUZZY.1998.687599
    [16] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Annal. Fuzzy Math. Inform., 4 (2012), 83–98.
    [17] H. Garg, G. Kaur, Cubic intuitionistic fuzzy sets and its fundamental properties, J. Mult.-Valued Log. S., 33 (2019), 507–537.
    [18] H. Garg, G. Kaur, TOPSIS based on nonlinear-programming methodology for solving decision-making problems under cubic intuitionistic fuzzy set environment, Comput. Appl. Math., 38 (2019), 1–19. https://doi.org/10.1007/s40314-019-0869-6 doi: 10.1007/s40314-019-0869-6
    [19] H. Garg, G. Kaur, Algorithm for solving the decision-making problems based on correlation coefficients under cubic intuitionistic fuzzy information: A case study in watershed hydrological system, Compl. Intell. Syst., 8 (2022), 179–198. https://doi.org/10.1007/s40747-021-00339-4 doi: 10.1007/s40747-021-00339-4
    [20] S. Z. Abbas, M. S. A. Khan, S. Abdullah, H. Sun, F. Hussain, Cubic Pythagorean fuzzy sets and their application to multi-attribute decision making with unknown weight information, J. Intell. Fuzzy Syst., 37 (2019), 1529–1544. https://doi.org/10.3233/JIFS-18382 doi: 10.3233/JIFS-18382
    [21] F. Wang, X. Zhao, Prospect-theory and geometric distance measure-based Pythagorean cubic fuzzy multicriteria decision-making, Int. J. Intell. Syst., 36 (2021), 4117–4142. https://doi.org/10.1002/int.22453 doi: 10.1002/int.22453
    [22] M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data, Comput. Appl. Math., 38 (2019), 1–25. https://doi.org/10.1007/s40314-019-0843-3 doi: 10.1007/s40314-019-0843-3
    [23] M. Riaz, S. T. Tehrim, Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 2473–2494. https://doi.org/10.3233/JIFS-182751 doi: 10.3233/JIFS-182751
    [24] M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy set with application to multi-criteria group decision making using geometric aggregation operators, Soft Comput., 24 (2020), 16111–16133. https://doi.org/10.1007/s00500-020-04927-3 doi: 10.1007/s00500-020-04927-3
    [25] N. Jan, L. Zedam, T. Mahmood, K. Ullah, Cubic bipolar fuzzy graphs with applications, J. Intell. Fuzzy Syst., 37 (2019), 2289–2307. https://doi.org/10.3233/JIFS-182579 doi: 10.3233/JIFS-182579
    [26] N. Jamil, M. Riaz, Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I, Int. J. Biomath., 15 (2022), 2250030. https://doi.org/10.1142/S1793524522500309 doi: 10.1142/S1793524522500309
    [27] M. Riaz, N. Jamil, Topological structures on cubic bipolar fuzzy sets with linear assignment model and SIR method for healthcare, J. Intell. Fuzzy Syst., 44 (2023), 1191–1212. https://doi.org/10.3233/JIFS-222224 doi: 10.3233/JIFS-222224
    [28] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [29] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [30] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751
    [31] T. Senapati, Approaches to multi-attribute decision-making based on picture fuzzy Aczel-Alsina average aggregation operators, Comput. Appl. Math., 41 (2022), 40. https://doi.org/10.1007/s40314-021-01742-w doi: 10.1007/s40314-021-01742-w
    [32] C. Tian, J. J. Peng, Z. Q. Zhang, J. Q. Wang, M. Goh, An extended picture fuzzy MULTIMOORA method based on Schweizer-Sklar aggregation operators, Soft Comput., 26 (2022), 3435–3454. https://doi.org/10.1007/s00500-021-06690-5 doi: 10.1007/s00500-021-06690-5
    [33] F. Xiao, J. Wen, W. Pedrycz, Generalized divergence-based decision making method with an application to pattern classification, IEEE T. Knowl. Data Eng., 2022. https://doi.org/10.1109/TKDE.2022.3177896 doi: 10.1109/TKDE.2022.3177896
    [34] F. Xiao, GIQ: A generalized intelligent quality-based approach for fusing multisource information, IEEE T. Fuzzy Syst., 29 (2021), 2018–2021. https://doi.org/10.1109/TFUZZ.2020.2991296 doi: 10.1109/TFUZZ.2020.2991296
    [35] F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man. Cyber. Syst., 51 (2021), 3980–3992, https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [36] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [37] H. Kamaci, D. Marinkovic, S. Petchimuthu, M. Riaz, S. Ashraf, Novel distance-measures-based extended TOPSIS method under linguistic linear Diophantine fuzzy information, Symmetry, 14 (2022), 2140. https://doi.org/10.3390/sym14102140 doi: 10.3390/sym14102140
    [38] M. Akram, Bipolar fuzzy graphs, Inf. Sci., 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037
    [39] M. A. Alghamdi, N. O. Alshehri, M. Akram, Multicriteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-018-0499-y doi: 10.1007/s40815-018-0499-y
    [40] M. Akram, Shumaiza, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Comput. Appl. Math., 39 (2020), 1–21. https://doi.org/10.1007/s40314-019-0980-8 doi: 10.1007/s40314-019-0980-8
    [41] H. Garg, Sine trigonometric operational laws and its based Pythagorean fuzzy aggregation operators for group decision-making process, Artif. Intell. Rev., 54 (2021), 4421–4447. https://doi.org/10.1007/s10462-021-10002-6 doi: 10.1007/s10462-021-10002-6
    [42] H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties, Neural Comput. Appl., 32 (2020), 15077–15099. https://doi.org/10.1007/s00521-020-04859-x doi: 10.1007/s00521-020-04859-x
    [43] M. Qiyas, S. Abdullah, Sine trigonometric spherical fuzzy aggregation operators and their application in decision support system, TOPSIS, VIKOR, Korean J. Math., 29 (2021), 137–167. https://doi.org/10.11568/kjm.2021.29.1.137 doi: 10.11568/kjm.2021.29.1.137
    [44] S. Ashraf, S. Abdullah, S. Zeng, H. Jin, F. Ghani, Fuzzy decision support modeling for hydrogen power Plant selection based on single valued neutrosophic sine trigonometric aggregation operators, Symmetry, 12 (2020), 298. https://doi.org/10.3390/sym12020298 doi: 10.3390/sym12020298
    [45] M. W. Lin, C. Huang, Z. S. Xu, R. Chen, Evaluating IoT platforms using integrated probabilistic linguistic MCDM method, IEEE Int. Things J., 7 (2020), 11195–11208. https://doi.org/10.1109/JIOT.2020.2997133 doi: 10.1109/JIOT.2020.2997133
    [46] C. Huang, M. W. Lin, Z. S. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: Its application in multicriteria decision making process, Knowl. Inform. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
    [47] M. W. Lin, C. Huang, Z. S. Xu, TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its application to multiple attribute decision making, Complexity, 2019 (2019), 6967390. https://doi.org/10.1155/2019/6967390 doi: 10.1155/2019/6967390
    [48] M. Riaz, D. Pamucar, A. Habib, N. Jamil, Innovative bipolar fuzzy sine trigonometric aggregation operators and SIR method for medical tourism supply chain, Math. Probl. Eng., 2022 (2022), 1–17. https://doi.org/10.1155/2022/4182740 doi: 10.1155/2022/4182740
    [49] C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process, J. Amb. Intel. Hum. Comp., 10 (2019), 3533–3549. https://doi.org/10.1007/s12652-018-1076-9 doi: 10.1007/s12652-018-1076-9
    [50] M. Riaz, A. Habib, M. Saqlain, M. S. Yang, Cubic bipolar fuzzy-VIKOR method using new distance and entropy measures and Einstein averaging aggregation operators with application to renewable energy, Int. J. Fuzzy Syst., 25 (2023), 510–543. https://doi.org/10.1007/s40815-022-01383-z doi: 10.1007/s40815-022-01383-z
    [51] G. Kaur, H. Garg, Cubic intuitionistic fuzzy aggregation operators, Int. J. Uncert. Quant., 8 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020471 doi: 10.1615/Int.J.UncertaintyQuantification.2018020471
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1057) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog