In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.
Citation: Ehtesham Akhter, Musavvir Ali, Mohd Bilal. Special type convex functions on Riemannian manifolds with application[J]. AIMS Mathematics, 2023, 8(7): 15081-15091. doi: 10.3934/math.2023770
In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.
[1] | T. Rapcsák, Smooth nonlinear optimization in $R^n$, Dordrecht: Springer Science & Business Media, 2013. |
[2] | C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Dordrecht: Springer Science & Business Media, 2013. |
[3] | R. Pini, Convexity along curves and invexity, Optimization, 29 (1994), 301–309. https://doi.org/10.1080/02331939408843959 doi: 10.1080/02331939408843959 |
[4] | S. Mititelu, Generalized invexity and vector optimization on differential manifolds, Differ. Geom. Dyn. Syst., 3 (2001), 21–31. |
[5] | A. Barani, M. R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl., 328 (2007), 767–779. https://doi.org/10.1016/j.jmaa.2006.05.081 doi: 10.1016/j.jmaa.2006.05.081 |
[6] | I. Ahmad, A. Iqbal, S. Ali, On Properties of Geodesic $\eta$-Preinvex Functions, Adv. Oper. Res., 2009 (2009), 381831. https://doi.org/10.1155/2009/381831 doi: 10.1155/2009/381831 |
[7] | L. W. Zhou, N. J. Huang, Roughly geodesic $ B $-invex and optimization problem on Hadamard manifold, Taiwanese J. Math., 17 (2013), 833–855. https://doi.org/10.11650/tjm.17.2013.1937 doi: 10.11650/tjm.17.2013.1937 |
[8] | S. L. Chen, N. J. Huang, D. O'Regan, Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math., 17 (2014). https://doi.org/10.1155/2014/524698 doi: 10.1155/2014/524698 |
[9] | R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Geodesic G-invex sets and semistrictly geodesic $\eta$-preinvex functions, Optimization, 61 (2012), 1169–1174. https://doi.org/10.1080/02331934.2010.544314 doi: 10.1080/02331934.2010.544314 |
[10] | R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Generalized invex sets and preinvex functions on Riemannian manifolds, Taiwanese J. Math., 16 (2012), 1719–1732. https://doi.org/10.11650/twjm/1500406792 doi: 10.11650/twjm/1500406792 |
[11] | M. A. Khan, I. Ahmad, F. R. Al-Solamy, Geodesic r-preinvex functions on Riemannian manifolds, J. Inequal. Appl., 2014 (2014), 144. https://doi.org/10.1186/1029-242X-2014-144 doi: 10.1186/1029-242X-2014-144 |
[12] | A. Kılıçman, W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl., 2015 (2015), 297. https://doi.org/10.1186/s13660-015-0824-z doi: 10.1186/s13660-015-0824-z |
[13] | I. Ahmad, M. A. Khan, A. A. Ishan, Generalized geodesic convexity on Riemannian manifolds, Mathematics, 7 (2019), 547. https://doi.org/10.3390/math7060547 doi: 10.3390/math7060547 |
[14] | M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1 |