Research article Special Issues

Special type convex functions on Riemannian manifolds with application

  • Received: 28 January 2023 Revised: 24 March 2023 Accepted: 06 April 2023 Published: 23 April 2023
  • MSC : 52A20, 52A41, 53C20, 53C22

  • In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.

    Citation: Ehtesham Akhter, Musavvir Ali, Mohd Bilal. Special type convex functions on Riemannian manifolds with application[J]. AIMS Mathematics, 2023, 8(7): 15081-15091. doi: 10.3934/math.2023770

    Related Papers:

  • In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.



    加载中


    [1] T. Rapcsák, Smooth nonlinear optimization in $R^n$, Dordrecht: Springer Science & Business Media, 2013.
    [2] C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Dordrecht: Springer Science & Business Media, 2013.
    [3] R. Pini, Convexity along curves and invexity, Optimization, 29 (1994), 301–309. https://doi.org/10.1080/02331939408843959 doi: 10.1080/02331939408843959
    [4] S. Mititelu, Generalized invexity and vector optimization on differential manifolds, Differ. Geom. Dyn. Syst., 3 (2001), 21–31.
    [5] A. Barani, M. R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl., 328 (2007), 767–779. https://doi.org/10.1016/j.jmaa.2006.05.081 doi: 10.1016/j.jmaa.2006.05.081
    [6] I. Ahmad, A. Iqbal, S. Ali, On Properties of Geodesic $\eta$-Preinvex Functions, Adv. Oper. Res., 2009 (2009), 381831. https://doi.org/10.1155/2009/381831 doi: 10.1155/2009/381831
    [7] L. W. Zhou, N. J. Huang, Roughly geodesic $ B $-invex and optimization problem on Hadamard manifold, Taiwanese J. Math., 17 (2013), 833–855. https://doi.org/10.11650/tjm.17.2013.1937 doi: 10.11650/tjm.17.2013.1937
    [8] S. L. Chen, N. J. Huang, D. O'Regan, Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math., 17 (2014). https://doi.org/10.1155/2014/524698 doi: 10.1155/2014/524698
    [9] R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Geodesic G-invex sets and semistrictly geodesic $\eta$-preinvex functions, Optimization, 61 (2012), 1169–1174. https://doi.org/10.1080/02331934.2010.544314 doi: 10.1080/02331934.2010.544314
    [10] R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Generalized invex sets and preinvex functions on Riemannian manifolds, Taiwanese J. Math., 16 (2012), 1719–1732. https://doi.org/10.11650/twjm/1500406792 doi: 10.11650/twjm/1500406792
    [11] M. A. Khan, I. Ahmad, F. R. Al-Solamy, Geodesic r-preinvex functions on Riemannian manifolds, J. Inequal. Appl., 2014 (2014), 144. https://doi.org/10.1186/1029-242X-2014-144 doi: 10.1186/1029-242X-2014-144
    [12] A. Kılıçman, W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl., 2015 (2015), 297. https://doi.org/10.1186/s13660-015-0824-z doi: 10.1186/s13660-015-0824-z
    [13] I. Ahmad, M. A. Khan, A. A. Ishan, Generalized geodesic convexity on Riemannian manifolds, Mathematics, 7 (2019), 547. https://doi.org/10.3390/math7060547 doi: 10.3390/math7060547
    [14] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1291) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog