In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.
Citation: Ehtesham Akhter, Musavvir Ali, Mohd Bilal. Special type convex functions on Riemannian manifolds with application[J]. AIMS Mathematics, 2023, 8(7): 15081-15091. doi: 10.3934/math.2023770
[1] | Wenke Zhou, Guo Chen, Hongzhi Deng, Jianhua Tu . Enumeration of dissociation sets in grid graphs. AIMS Mathematics, 2024, 9(6): 14899-14912. doi: 10.3934/math.2024721 |
[2] | Jianhua Tu, Junyi Xiao, Rongling Lang . Counting the number of dissociation sets in cubic graphs. AIMS Mathematics, 2023, 8(5): 10021-10032. doi: 10.3934/math.2023507 |
[3] | Vu Dinh, Lam Si Tung Ho . Convergence of maximum likelihood supertree reconstruction. AIMS Mathematics, 2021, 6(8): 8854-8867. doi: 10.3934/math.2021513 |
[4] | Christophe Ndjatchi, Joel Alejandro Escareño Fernández, L. M. Ríos-Castro, Teodoro Ibarra-Pérez, Hans Christian Correa-Aguado, Hugo Pineda Martínez . On the packing number of 3-token graph of the path graph Pn. AIMS Mathematics, 2024, 9(5): 11644-11659. doi: 10.3934/math.2024571 |
[5] | Javad Tayyebi, Adrian Deaconu . Expanding maximum capacity path under weighted sum-type distances. AIMS Mathematics, 2021, 6(4): 3996-4010. doi: 10.3934/math.2021237 |
[6] | Yuni Listiana, Liliek Susilowati, Slamin Slamin, Fadekemi Janet Osaye . A central local metric dimension on acyclic and grid graph. AIMS Mathematics, 2023, 8(9): 21298-21311. doi: 10.3934/math.20231085 |
[7] | Jianwei Du, Xiaoling Sun . On symmetric division deg index of trees with given parameters. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384 |
[8] | Ying Wang, Fan Wang, Weisheng Zhao . Construction for trees without domination critical vertices. AIMS Mathematics, 2021, 6(10): 10696-10706. doi: 10.3934/math.2021621 |
[9] | Chao Yang, Bing Yao, Zhi-xiang Yin . A new vertex distinguishing total coloring of trees. AIMS Mathematics, 2021, 6(9): 9468-9475. doi: 10.3934/math.2021550 |
[10] | Akbar Ali, Sneha Sekar, Selvaraj Balachandran, Suresh Elumalai, Abdulaziz M. Alanazi, Taher S. Hassan, Yilun Shang . Graphical edge-weight-function indices of trees. AIMS Mathematics, 2024, 9(11): 32552-32570. doi: 10.3934/math.20241559 |
In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.
Non-Newtonian fluids are defined as fluids with an extra-tension tensor that cannot be expressed as a linear, isotropic function of the components of the strain rate tensor.One of the goals of asymptotic analysis is to obtain and describe a two-dimensional problem from a three-dimensional problem, passing to the limit on the thickness of the domain assumed to be already thin. In this context, several previous studies have been conducted to deal with this problem.
The first study we mention is what the authors have done in [4], where they mainly examine the existence and behavior of weak solutions for a lubrication problem with Tresca law. In another study, the authors in [1] gave the nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary. Suárez-Grau in [25] studied the asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. The convergence stability of the solutions for the non-Newtonian fluid motion with large perturbation in R2 has been given in [9]. In [20], the authors presented an extension of the results related to the solutions of weakly compressible fluids with pressure-dependent viscosity. In contrast, the existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids were obtained in [11]. Other contexts and problems be found in the monographs such as in [21,27], and in the literature quoted within.
The Herschel-Bulkley fluid is a generalized model of a non-Newtonian fluid. The name is related to Winslow Herschel and Ronald Bulkley [15], and it was first mentioned, in 1926, where the relationship between the stress tensor σε and the symmetric deformation velocity d(uε) is given by:
σεij=−πεδij+μ|d(uε)|r−2d(uε)+δεd(uε)|d(uε)|, |
where, d(uε)=12(∇uε+(∇uε)T), uε is the velocity field, μ>0 is the viscosity constant, πε is the pressure, δε≥0 is the yield stress, 1<r≤2 is the power law exponent of the material and δij is the Kronecker symbol.
In this paper, we will adopt the constitutive law by considering that a Herschel-Bulkley incompressible fluid whose viscosity will follow the power law with a liquid-solid friction condition of Coulomb in three-dimensional domain Qε⊂ R3.
The Herschel-Bulkley fluid has been studied intensively by mathematicians, physicists, and engineers as intensively as the Navier-Stokes. For example, we mention the studies carried out in the fields of metal fluxes, plastic solids and some polymers. The literature concerning this topic is extensive; see e.g. [24,26] and many others references. More recently, the authors in [17], have studied the two-dimensional slow flow of non-Newtonian fluids of the Herschel-Bulkley type an inclined plane. In the context of the Bingham fluid, r=2, the authors in [8,22] proved the asymptotic convergence of this fluid in the isothermal and non-isothermal case with non linear friction law. In the case δε=0, with the particular conditions of Tresca, this problem has been studied by [5,6] respectively in both non-isothermal and isothermal study cases. Benseridi et al. in [3] studied theasymptotic analysis of a contact between two general Bingham fluids, however Saadallah et al. in [23] studied the analog of the problem presented in this work but in thevery particular case where the velocity on the surface Γb is null with the friction of the Tresca type. We can also mention others studies where authors gave the numerical solutions of the Herschel-Bulkley fluid but in other particular cases (see [14,16,18,19]).
In this study, the objective is to make an extension of our previous works [8,22,23] and to improve the result obtained in [5,6].
The novelty of our study can be summarized in following two major points. First, we take into account a generalized model of a non-Newtonian fluid (1<r≤2 and δε≠0). Second, we choose the Coulomb friction with the velocity of the lower surface Γb different to zero, since all previously mentioned works were restricted only to the particular friction of Tresca.
From our side, this choice will cause different difficulties in other parts of the study, especially with regard to Lemma 5.1, Theorems 4.2–4.4 and the uniqueness theorem.
Accordingly, this work makes the following new contributions by finding solutions to these problems:
The first contribution consists of finding the solution for the first difficulty coming from the fact that the integral on Γb has no clear meaning. In our study, we will replace the normal stress by some regularization as in [10]. The second contribution consists of dealing with the problem of choosing the test functions. In fact, we cannot choose the test functions as it was done in [5,6], their work does not contain the yield stress δε.
This remaining of our paper is organized as follows: Section 2 will summarize the description of the problem and the basic equations. Moreover, we introduce some notations and preliminaries that will be used in other sections. Section 3 will be reserved to the proof of the related weak formulation. We will also discussing the problem in transpose form. The corresponding main convergence results will be stated in Theorems (4.j), j=1 to 5 of Section 4. The mathematical proofs will be presented in Section 5.
We start by introducing some notations used in the paper. Motivated by lubrication problems, we consider:
Qε={y=(y′,y3)∈R3:y′=(y1,y2)∈Γb and 0<y3/ε<h(y′)}, |
the domain of the flow, where Γb is a non-empty bounded domain of R2 with a Lipschitz continuous boundary, h(.) is a Lipschitz continuous function defined on Γb such that 0<h⋆≤h(y′)≤h⋆, for all (y′,0) in Γb and ε is a small parameter that will tend to zero.
We decompose the boundary of Qε as Γε=¯Γεu∪¯Γεl∪¯Γb with
¯Γb={(y′,y3)∈ˉQε:y3=0},¯Γεu={(y′,y3)∈ˉQε:(y′,0)∈Γb, y3/ε=h(y′)},¯Γεl={(y′,y3)∈ˉQε:y′∈∂Γb, 0<y3<εh(y′)}, |
where Γb is the bottom of the domain, Γεu is the upper surface and Γεl the lateral part of Γε. Let uε(y):Qε→R3 be the velocity and πε(y):Qε→R the pressure of the fluid. We denote by η=(η1,η2,η3) the unit outward normal to the boundary Γε, and we define the normal and tangential velocities of uε on Γε as:
uεη=uε.η, uετ=uε−uε.η. |
Similarly, for a regular tensor field σε, we denote by σεη and σετ the normal and tangential components of σε given by
σεη=3∑i=1(σεij.ηj).ηi, σετ=(3∑i=1σεij.ηj−(σεη).ηi)1≤i≤3. |
Let S be denotes the set of all symmetric 3×3 matrices and for η,ζ∈S, we define the scalar product and the corresponding norm by
(η:ζ)=3∑i,j=1ηijζij and |η|=(η:η)12. |
The boundary-value problem describing the stationary flow for generalized non-Newtonian and incompressible fluid is described by:
ProblemPε. Find the pressure πε:Qε→R and a velocity field uε:Qε→R3 such that
−div(σε)=fεin Qε, | (2.1) |
σεij=˜σεij−πεδij,˜σε=δεd(uε)|d(uε)|+μ|d(uε)|r−2d(uε) if d(uε)≠0,|˜σε|≤δε if d(uε)=0,}in Qε, | (2.2) |
div(uε)=0in Qε, | (2.3) |
uε=0on Γεu, | (2.4) |
uε=g with g3=0on Γεl | (2.5) |
uε.η=0on Γb, | (2.6) |
|σετ|<kε|σεη|⇒uετ=s |σετ|=kε|σεη|⇒∃β≥0:uετ=s−βσετ}on Γb, | (2.7) |
where, fε=(fεi)1≤i≤3 is the body forces, s is the velocity of the bottom boundary Γb. Furthermore, the Eq (2.1) represents the law of conservation of momentum. Relation (2.2) gives the law of behavior of the Herschel-Bulkley fluid. The formula (2.3) represents the incompressibility equation. Equations (2.4) and (2.5) represent the velocity on Γεu and Γεl respectively. On the other hand, Eq (2.6) justified the no-flux through on Γb. However, assuming that the friction is sufficiently large, the tangential velocity is unknown and satisfies the Coulomb boundary condition (2.7) on the part Γb, with kε is the friction coefficient. This law introduced by [2] is one of the most spread laws in mathematics and it is more realistic than the law of Tresca.
Suppose that the function g=(gi)1≤i≤3 is in (W1−1/r,r(Γε))3, the space of traces of functions from (W1,r(Qε))3 on Γε which will define in the next section. Due to ∫Γεg.ndσ=0 that there exists a function Gε ([10]):
Gε∈(W1,r(Qε))3 with div(Gε)=0 in Qε, Gε=g on Γε. |
Also, we suppose that g3=0 on Γε and g=s on Γb.
Before starting this study, we need to introduce the functional framework and the functional spaces that we use in the rest of this work: Let Lr(Qε) represents the Lebesgue space for the norm ‖.‖Lr(Qε) and W1,r(Qε) are the standard Sobolev spaces given by
(W1,r(Qε))3={v∈(Lr(Qε))3:∂vi∂yj∈Lr(Qε) for i,j=1,2,3}, |
for 1<r<∞, and W1,r0(Qε) is the closure of D(Qε) in W1,r(Qε). We denoted by W−1,q(Qε) the dual space of W1,r0(Qε), where r−1+q−1=1.
Moreover, we need the following functional spaces
Eε={v∈(W1,r(Qε))3:v=Gε on Γεl, v=0 on Γεu, v.η=0 on Γb}, Eεdiv={v∈Eε:div(v)=0}, Eq0(Qε)={v∈Lq(Qε):∫Qεv dy′dy3=0}. |
Assume that the problem (Pε) admits a solution denoted by (uε,πε), with sufficient regularity. Multiplying (2.1) by (v−uε)∈Eε and then using Green's formula, along with the boundary conditions (2.4)–(2.7), we obtain:
ProblemPεK. We are looking for the velocity uε∈Eεdiv and πε∈Eq0(Qε), which verify:
F(uε,v−uε)−(πε,divv)+˜j(uε,v)−˜j(uε,uε)≥(fε,v−uε), ∀v∈Eε | (3.1) |
where
F(uε,v)=μ∫Qε|d(uε)|r−2d(uε)d(v)dy′dy3, | (3.2) |
(πε,divv)=∫Qεπεdivvdy′dy3, | (3.3) |
˜j(uε,v)=∫Γbkε|σεη||v−s| dy′+√2δε∫Qε|d(v)|dy′dy3, | (3.4) |
(fε,v)=3∑i=1∫Qεfεivi dy′dy3. | (3.5) |
The integral ˜j(uε,v) has no meaning for uε∈Eε. Indeed, σεη is defined by duality as an element of W−12,r(Γb) and |σεη| is not well defined on Γb. So following [10], we replace σεη by some regularization R(σεη), where R is a regularization operator from W−12,r(Γb) into Lr(Γb) can be obtained by convolution with a positive regular function and defined by
∀τ∈W−12,r(Γb), R(τ)∈L2(Γb), R(τ)(x)=⟨τ,ϕ(x−t)⟩W−12,r(Γb),W12,r00(Γb) ∀x∈Γb, | (3.6) |
ϕ is a given positive function of class C∞ with compact support in Γb and W−12,r(Γb) is the dual space to W12,r00(Γb)={v|Γb:v∈W1,r(Qε),v=0 on Γεu∪Γεl}.
After the regularization, we get the new problem:
ProblemPε,rK. Find (uε,πε)∈Eεdiv ×Eq0(Qε), provided it verifies the problem:
F(uε,v−uε)−(πε,divv)+j(uε,v)−j(uε,uε)≥(fε,v−uε), ∀v∈Eε | (3.7) |
where
j(uε,v)=∫Γbkε|R(σεη)||v−s| dy′+√2δε∫Qε|d(v)|dy′dy3. |
Remark 3.1. If v∈Eεdiv the inequality (3.7) becomes
F(uε,v−uε)+j(uε,v)−j(uε,uε)≥(fε,v−uε), ∀v∈Eε. | (3.8) |
Theorem 3.1. For fε∈Lq(Qε)3 and kε>0 in L∞(Γb); then the problem Pε,rK admits a unique pair (uε,πε)∈Eεdiv×Eq0(Qε) verifying (3.7). Moreover, for a small value of the friction threshold kε, this solution becomes unique.
Proof. To show the existence and uniqueness result of (3.7), we define the following intermediate problem:
F(uε,v−uε)+∫ΓbY(|v−s|−|uε−s|) dy′+δEεdiv(v)−δEεdiv(uε)≥(fε,v−uε), ∀v∈W1,rdiv(Qε)3 | (3.9) |
where, Y defined from Lr(Γb) into Lr(Γb) as: Y→−kεR(σεη) and
W1,rdiv(Qε)3={v∈W1,r(Qε)3:div(v)=0},δEεdiv={0 for v∈Eεdiv, +∞ otherwise . |
By the analog of the techniques used in [16], it is easy to see that F(uε,v−uε) is bounded coercive hemicontinuous and strictly monotone.
Y+δEεdiv is a proper, convex and continuous function on Lr(Γb), then by Tichovo's fixed point theorem (as in [7]), we ensure the existence of a unique uε ∈Eεdiv verifying the variational inequality (3.9). The existence of the pressure πε∈Eq0(Qε) such that (uε,πε) satisfy (3.7) is found in [12].
In this subsection, we use the dilatation in the variable y3 given by y3=zε, then our problem will be defined on a domain Q does not depend on ε given by:
Q={(y′,z)∈R3:(y′,0)∈Γb,0<z<h(y′)}, |
and its boundary Γ=¯Γu∪¯Γl∪¯Γb.
After this change of scale following the third component, it is normal to give the new functions and the new data defined on the new fixed domain Q:
ˆuεi(y′,z)=uεi(y′,y3),i=1,2, ˆuε3(y′,z)=ε−1uε3(y′,y3) and ˆπε(y′,z)=εrπε(y′,y3). | (3.10) |
ˆf(y′,z)=εrfε(y′,y3), ˆδ=εr−1δε, ˆk=εr−1kε, | (3.11) |
ˆg(y′,z)=g(y′,y3),^Gi(y′,z)=Gεi(y′,y3), i=1,2, ^G3(y′,y3)=ε−1Gε3(y′,y3) also div(ˆG)=0 and ˆG=ˆg on Γ | (3.12) |
with all the new notations given in (3.11) and (3.12) do not depend on ε.
Also, we denote by:
E={ˆv∈(W1,r(Q))3:ˆv=ˆGon Γl,ˆv=0onΓu;ˆv.n=0 on Γb}, Ediv={ˆv∈E(Q):divˆv=0}, Ξ(E)={ˆv∈(W1,r(Q))2:ˆvi=ˆGi on Γl,ˆvi=0onΓu, i=1,2}, ˜Ξ(E)={ˆv∈Ξ(E):ˆvsatisfy (3.13)}, |
where the condition (3.13) is given by
∫Q(ˆv1∂ω∂y1+ˆv2∂ω∂y2)dy′dz=0, for all ˆv∈(Lr(Q))2 and ω∈C∞0(Q). | (3.13) |
Finally, the Banach space Θz and its linear subspace ˜Θz are denoted by:
Θz={ˆv∈(Lr(Q))2;∂ˆvi∂z∈Lr(Q), i=1,2:ˆv=0 on Γu}, |
˜Θz={ˆv∈Θz:ˆvsatisfy the condition (3.13)}, |
with the norm of Θz is given as follows:
‖ˆv‖rΘz=2∑i=1(‖ˆvi‖rLr(Q)+‖∂ˆvi∂z‖rLr(Q)). |
By introducing all these new notations into the variational inequality (3.7), and then multiplying all the terms deduced by εr−1 after this scaling, then the problem Pε,rK takes the following form:
Problem PK. Find (ˆuε,ˆπε)∈Ediv ×Eq0(Q), such that
ˆF(ˆuε,ˆv−ˆuε)−(ˆπε,div(ˆv−ˆuε))+ˆj(ˆuε,ˆv)−ˆj(ˆuε,ˆuε)≥(ˆf,ˆv−ˆuε), ∀ˆv∈E | (3.14) |
where
ˆF(ˆuε,ˆv−ˆuε)=2∑i,j=1∫Q[ε2μ|˜d(ˆuε)|r−2(12(∂ˆuεi∂yj+∂ˆuεj∂yi))]∂(ˆvi−ˆuεi)∂yjdy′dz+2∑i=1∫Qμ|˜d(ˆuε)|r−2(12(∂ˆuεi∂z+ε2∂ˆuε3∂yi))∂(ˆvi−ˆuεi)∂zdy′dz+∫Q(μ|˜d(ˆuε)|r−2ε2∂ˆuε3∂z)∂(ˆv3−ˆuε3)∂zdy′dz+2∑j=1∫Qε2μ|˜d(ˆuε)|r−2(12(ε2∂ˆuε3∂yj+∂ˆuεj∂z))∂(ˆv3−ˆuε3)∂yjdy′dz, |
(ˆπε,div(ˆv−ˆuε))=∫Qˆπεdiv(ˆv−ˆuε)dy′dz,ˆj(ˆuε,ˆv)=∫Γbˆk|R(ˆσεη)||ˆv−s|dy′+√2ˆδ∫Q|˜d(ˆv)|dy′dz,(ˆf,ˆv−ˆuε)=2∑i=1∫Qˆfi(ˆvi−ˆuεi)dy′dz+∫Qεˆf3(ˆv3−ˆuε3)dy′dz, |
|˜d(ˆuε)|=(142∑i,j=1ε2(∂ˆuεi∂yj+∂ˆuεj∂yi)2+122∑i=1(∂ˆuεi∂z+ε2∂ˆuε3∂yi)2+ε2(∂ˆuε3∂z)2)1/2. |
We introduce some results found in [4] which we will need to use in the rest of this work.
‖∇vε‖Lr(Qε)≤C‖d(vε)‖Lr(Qε), | (3.15) |
‖vε‖Lr(Qε)≤εh⋆‖∂vε∂z‖Lr(Qε), | (3.16) |
αβ≤αrr+βqq, ∀(α,β)∈R2. | (3.17) |
The convergence results of (ˆuε,ˆπε) towards (u⋆,π⋆) as well as the limit problem independently of the parameter ε will be given in the next of this subsection.
Theorem 4.1. Assume that the assumptions of Theorem 3.1 hold, there exist π⋆∈Eq0(Q) and u⋆=(u⋆1,u⋆2)∈˜Θz satisfy the following convergences:
ˆuεi⇀u∗i in ˜Θz, 1≤i≤2, | (4.1) |
ε∂ˆuεi∂yj⇀0, in Lr(Q), 1≤i,j≤2, | (4.2) |
ε∂ˆuε3∂z⇀0, in Lr(Q), | (4.3) |
ε2∂ˆuε3∂yi⇀0, in Lr(Q), 1≤i≤2, | (4.4) |
εˆuε3⇀0, in Lr(Q), | (4.5) |
ˆπε⇀π⋆,in Eq0(Q), with π⋆ depend only of y′. | (4.6) |
Theorem 4.2. With the same assumptions as Theorem 4.1, the pair (u⋆,π⋆) satisfies:
ˆuεi→u⋆i, strongly in ˜Θz , i=1,2,∀ 1<r≤2, | (4.7) |
μ2∑i=1∫Q12(122∑i=1(∂u⋆i∂z)2)r−22∂(u⋆i)∂z∂(ˆvi−u⋆i)∂zdy′dz−∫Qπ⋆(y′) (∂ˆv1∂y1+∂ˆv2∂y2)dy′dz+ˆδ√22∫Q(|∂ˆv∂z|−|∂u⋆∂z|)dy′dz+∫Γbˆk|R(−π⋆)|(|ˆv−s|−|u⋆−s|)dy′≥ 2∑i=1∫Qˆfi(ˆvi−u⋆i)dy′dz,∀ˆv∈Ξ(E). | (4.8) |
Theorem 4.3. Suppose that the assumptions of the previous theorem hold, and if |∂u⋆∂z|≠0, the solution (u⋆,π⋆) satisfies
π⋆∈W1,q(Γb) | (4.9) |
−∂∂z[12μ(122∑i=1(∂u⋆i∂z)2)r−22∂u⋆∂z+ˆδ√22∂u⋆/∂z|∂u⋆/∂z|]=ˆf−∇π⋆, in Lq(Q)2. | (4.10) |
Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold, then τ⋆, s⋆ satisfy the inequality:
2∑i=1∫Γbˆk|R(ˆση(−π⋆))|ϕi(s⋆i−si)dy′−∫Γbˆμτ⋆ϕ|s⋆−s|dy′≥0, ∀ϕ∈Lr(Γb)2, | (4.11) |
and the limit form of Coulomb law:
μ|τ⋆|<ˆk|R(ˆση(−π⋆))|⟹s⋆=sμ|τ⋆|=ˆk|R(ˆση(−π⋆))|⟹∃β≥0:s⋆=s+βτ⋆} a.e. in Γb. | (4.12) |
Also, the solution (u⋆,π⋆) satisfies the weak generalized form:
∫Γb[h312∇π⋆+˜H+μh∫0y∫0B⋆(y′,ξξ)∂u⋆(y′,ξ)∂ξdξdy+ˆδh∫0y∫0∂u⋆/∂z|∂u⋆/∂z|(y′,ξ)dξdy].∇v(y′)dy′+∫Γb[−hμ2h∫0B⋆(y′,ξξ)∂u⋆(y′,ξ)∂ξdξ−ˆδh2h∫0∂u⋆/∂z|∂u⋆/∂z|(y′,ξ)dξ]∇v(y′)dy′,∀v∈W1,r(Γb), | (4.13) |
where
τ⋆=B⋆(y′,0)∂u⋆∂z(y′,0), s⋆=∂u⋆∂z(y′,0), B⋆(y′,ξ)=12(122∑i=1(∂u⋆∂z(y′,ξ))2)r−22˜H(y′,h)=∫h0H(y′,y)dy−h2H(y′,h), H(y′,y)=∫y0∫ξ0ˆf(y′,t)dtdξ. |
Theorem 4.5. For ˆf∈Lq(Q)3 and ˆk>0 in L∞(Γb); there exists ¯k>0 sufficiently small such that for ‖ˆk‖L∞(Γb)≤¯k, the solution (u⋆,π⋆) of the limiting problem (4.8) is unique in ˜Θz×(Eq0(Γb)∩W1,q(Γb))2.
Proof of Theorem 4.1. Before starting the proof of this theorem, we need the following estimates which can be considered as the key that allows us to make a passage to the limit when ε tends to zero.
Lemma 5.1. Assume that fε∈Lq(Qε)3 and let (uε,πε)∈Eεdiv×Eq0(Qε) be a solution of Pε,rK, where the friction coefficient kε>0 in L∞(Γb). Then there exists a constant C independent of ε such that
2∑i,j=1‖ε∂ˆuεi∂yj‖rLr(Q)+‖ε∂ˆuε3∂z‖rLr(Q)+2∑i=1(‖∂ˆuεi∂z‖rLr(Q)+‖ε2∂ˆuε3∂yi‖rLr(Q))≤C, | (5.1) |
‖∂ˆπε∂yi‖W−1,q(Q)≤C, for i=1,2, | (5.2) |
‖∂ˆπε∂z‖W−1,q (Q)≤εC. | (5.3) |
Proof of Lemma 5.1. Choosing v= Gε in (3.8) and using the fact that Gε=s on Γb, we find
F(uε,uε)≤F(uε,Gε)+(fε,uε)−(fε,Gε). | (5.4) |
By applying Korn's inequality, we ensure the existence of a constant CK>0 that does not depend on ε with:
F(uε,uε)≥2μCK‖∇uε‖rLr(Q). | (5.5) |
Now we apply Hölder's inequality and then Young's, the increase of the first term of (5.4) is given by
F(uε,Gε)≤μCK2∫Qεμ|d(uε)|q(r−1)dy′dy3+2(r−1) μr(qCK)r/q∫Qε|d(Gε)|rdy′dy3. | (5.6) |
By (3.15), the inequality (5.6) becomes
F(uε,v)≤‖∇uε‖rLr(Qε)+2(r−1) μr(qCK)r/q‖∇Gε‖rLr(Qε). | (5.7) |
We apply (3.16) and (3.17), we obtain the analogue of (5.7)
|(fε,uε)|≤μCK2‖∇uε‖rLr(Qε)+(εh⋆)qq(12μrCK)q/r‖fε‖qLq(Qε), | (5.8) |
|(fε,Gε)|≤μCK2‖∇Gε‖rLr(Qε)+(εh⋆)qq(μ2rCK)q/r‖fε‖qLq(Qε). | (5.9) |
Now, from (5.4)–(5.9), we obtain
μCK‖∇uε‖rLr(Q)≤(2(r−1)μr(qCK)r/q+μCK2)‖∇Gε‖rLr(Qε)+2(εh⋆)qq(μ2rCK)q/r‖fε‖qLq(Qε). | (5.10) |
We multiply (5.10) by εr−1 then using the fact that
εq‖fε‖qLq(Qε)=ε1−r‖ˆf‖qLq(Q) |
and
‖∂uεi∂x3‖rLr(Qε)=ε1−r‖∂ˆuεi∂z‖rLr(Q), |
for i=1,2, we deduce (5.1) with
C=1μCK[(2(r−1)μr(qCK)r/q+μCK2)‖∇ˆG‖rLr(Q)+2(εh⋆)qq(μ2rCK)q/r‖ˆf‖qLq(Q)]. |
For get the estimate (5.2), we choose in (3.14), ˆv=ˆuε+ϕ, with ϕ∈W1,r0(Q)3, we find
F(ˆuε,ϕ)−(ˆπε,divϕ)+ˆδ∫Q|˜d(ˆuε+ϕ)|dy′dz−ˆδ∫Q|˜d(ˆuε)|dy′dz≥(ˆfε,ϕ), |
then
(ˆπε,divϕ)≤a(ˆuε,ϕ)+√2ˆδ∫Q|˜d(ˆuε+ϕ)|dy′dz−√2ˆδ∫Q|˜d(ˆuε)|dy′dz−(ˆfε,ϕ), |
as
|˜d(ˆuε+ϕ)|≤√2|˜d(ˆuε)|+√2|˜d(ϕ)|, |
we obtain
(ˆπε,divϕ)≤a(ˆuε,ϕ)+2ˆδ∫Q|˜d(ϕ)|dy′dz+(2−√2)ˆδ∫Q|˜d(ˆuε)|dy′dz−∫Qˆfϕdy′dz. |
As
‖˜d(ϕ)‖Lr(Q)≤‖ϕ‖W1,r(Q)3 ,∀ε∈]0,1[. |
By Hölder's inequality, we get
(ˆπε,divϕ)≤μ‖d(ˆuε)‖rqLr(Q)‖ϕ‖W1,r(Q)3+2ˆδ|Q|1q‖ϕ‖W1,r(Q)3+(2−√2)ˆδ|Q|1q‖ˆuε‖W1,r(Q)3+‖ˆf‖Lq(Q)3‖ϕ‖W1,r(Q)3. | (5.11) |
We apply the results of (5.1), we have:
∫Q∂ˆπε∂yiϕdy′dz≤μC‖ϕ‖W1,r(Q) 3+2ˆδ|Q|1q‖ϕ‖W1,r(Q) 3+(2−√2)ˆδ|Q|1qC+‖ˆf‖Lq(Q) 3‖ϕ‖W1,r(Q) 3. | (5.12) |
The same, we choose in (3.14): ˆv=ˆuε−ϕ,ϕ∈W1,r0(Q)3, we obtain
−∫Q∂ˆπε∂yiϕdy′dz≤μ‖d(ˆuε)‖rqLr(Q) ‖ϕ‖W1,r(Q) 3+2ˆδ|Q|1q‖ϕ‖W1,r(Q) 3+(2−√2)ˆδ|Q|1qC+‖ˆf‖Lq(Q) 3‖ϕ‖W1,r(Q) 3. | (5.13) |
From (5.12) and (5.13), we deduce
|∫Q∂ˆπε∂xiϕdy′dz|≤μ‖d(ˆuε)‖rqLr(Q) ‖ϕ‖W1,r(Q) 3+2ˆδ|Q|1q‖ϕ‖W1,r(Q) 3+(2−√2)ˆδ|Q|1qC+‖ˆf‖Lq(Q) 3‖ϕ‖W1,r(Q) 3. | (5.14) |
Choosing ϕ=(ϕ1,0,0) then ϕ=(0,ϕ2,0), in (5.14), we find
|∫Q∂ˆπε∂xiϕdy′dz|≤(μC+2ˆδ|Q|1q+‖ˆfi‖Lq(Q))‖ϕ‖W1,r(Q) 3+(2−√2)ˆδ|Q|1qC. |
Then (5.2) follows for i=1,2.
For get (5.3), we take in the inequality (5.14), ϕ=(0,0,ϕ3), we find
1ε|∫Q∂ˆpε∂zϕdy′dz|≤(C+2ˆδ|Q|1q+‖ˆf3‖Lq(Q))‖ϕ‖W1,r(Q) 3+(√2−1)ˆδ|Q|1qC. |
Which completes the proof of Lemma 5.1.
Now, the convergence (4.1)–(4.6) of Theorem 4.1 are a direct result of inequalities (5.1)–(5.3). Indeed, by (5.1), ∃C>0 not related to ε, and verifying
‖∂ˆuεi∂z‖Lr(Q)≤C, for i=1,2. | (5.15) |
It is clear that (4.1) deduces directly from (5.15) and the using of the Poincaré's inequality in the fixed domain Q. Also (4.2)–(4.4) follows from (5.1). The obtaining of (4.5) is done as in [6]. Finally, it is easy (4.6) follows from (5.2) and (5.3).
In order to proceed to the proof of strong convergence (4.7) of Theorem 4.2, it suffices to demonstrate the strong convergence of the integral term defined on Γb.
Lemma 5.2. Let R is a regularization operator from W−12,r(Γb) into Lr(Γb), then the choice of R ensures the existence of a subsequence of R(ˆσεη(ˆuε,ˆπε)) strongly converges to R(−π⋆) in Lr(Γb).
Proof of Lemma 5.2. From the equilibrium Eq (2.1), we have
−div(σε)=fεin Qε, |
with fε∈(Lq(Q))3. By the results of Theorem 4.1, we deduce that (ˆuε,ˆπε) are bounded in ˜Θz ×Eq0(Q), then ˆσε is bounded in
Hdiv={v∈(Lr(Q))3:div(v)∈Lq(Q)}, |
which shows that there exists a subsequence converging weakly towards σ⋆. Now, we show that ˆση(ˆuε,ˆπε) converges weakly to (−π⋆) in W−12,r(Γb).
Indeed, as σεη=σεijηiηj, 1≤i,j≤3, we have
ˆση(ˆuε,ˆπε)=2∑i=1(ε2μ|˜d(ˆuε)|r−2∂ˆuεi∂yi+εˆδ(|˜d(ˆuε)|)−1∂ˆuεi∂xi−πε)+(ε2μ|˜d(ˆuε)|r−2∂ˆuε3∂z+εˆδ(|˜d(ˆuε)|)−1∂ˆuε3∂z−πε). |
Since ˆσε is bounded in Hdiv(Q), then there exists a subsequence converging weakly towards σ⋆ in Hdiv(Q). Using the fact that the trace operator is continuous from Hdiv(Q) into W−12,r(Γb), we therefore obtain the weakly convergence of ˆση(ˆuε,ˆπε) to ˆση(u⋆,π⋆) in W−12,r(Γb). We apply now the results of Theorem 4.1 in the formula of ˆση(ˆuε,ˆπε), we obtain the desired result.
For the rest of proof, using the same techniques as in [2,13], we get the result.
Proof of Theorem 4.2. For uε the solution on (3.8), we obtain for v∈Eεdiv
F(uε,uε−v)−F(v,uε−v)−j(uε,v)+j(uε,uε)≤(fε,v−uε)+F(v,uε−v). |
Using the inequality as ([24])
(|a|r−2a−|b|r−2b,a−b)≥(r−1)(|a|+|b|)r−2|a−b|2, for a,b∈Rn and r∈]1,2[ | (5.16) |
and by using the Korn's inequality, we find
(r−1)μCK3∑i,j=1∫Qε(|∂uεi∂yj|r−2+|∂vi∂yj|r−2)(|∂∂yj(uεi−vi)|2)dy′dy3−j(uε,v)+j(uε,uε)≤(fε,uε−v)+F(v,uε−v). |
We multiply the last formula by εr−1, as well as the convergence of Theorem 4.1, we get in the fixed domain Q
(r−1)μCK2∑i=1‖∂∂z(ˆuεi−ˆvi)‖rLr(Q)dy′dz−ˆj(ˆuε,ˆv)+ˆj(ˆuε,ˆuε)≤2∑i=1∫Qˆfi(ˆuεi−ˆvi)dy′dz+a(ˆv,ˆuε−ˆv). |
We pose, ¯uε=(ˆuε1,ˆuε2), u⋆=(u⋆1,u⋆2), ¯v=(ˆv1,ˆv2), so ¯v∈˜Ξ(E) and
limε→0sup[(r−1)μCK‖∂∂z(¯uε−ˆvi)‖rLr(Q)dy′dz−ˆj(¯uε,¯v)+ˆj(¯uε,¯uε)]≤μ∫Q(122∑i=1(∂ˆvi∂z)2)r−22∂¯v∂z∂∂z(¯v−u⋆)dy′dz+2∑i=1∫Qˆfi(u⋆i−ˆvi)dy′dz. |
Consequently,
(r−1)μCK‖∂∂z(¯uε−¯v)‖rLr(Q)dy′dz−ˆj(¯uε,¯v)+ˆj(¯uε,¯uε)≤μ∫Q(122∑i=1(∂ˆvi∂z)2)r−22∂¯v∂z∂∂z(¯v−u⋆)dy′dz+2∑i=1∫Qˆfi(u⋆i−ˆvi)dy′dz+ð, |
for ε<ε(ð), where ð>0 is arbitrary.
Therefore, ∃¯v∈˜Ξ(E):¯v→u⋆ in ˜Θz, which gives
(r−1)μCK‖∂∂z(¯uε−u⋆)‖rLr(Q)dy′dz+ˆj(¯uε,¯uε)−ˆj(¯uε,u⋆)≤ð, ∀ε<ε(ð). |
Now, since liminfˆj(¯uε)≥ˆj(u⋆), we deduce: ¯uε⇀u⋆ in ˜Θz. Furthermore, ˆj(¯uε,¯uε)→ˆj(¯uε,u⋆) for ε→0, which gives the convergence (4.7).
If r=2, we follow the same techniques but (5.16) we will be replaced by
(|a|r−2a−|b|r−2b,a−b)≥(1/2)r−1|a−b|r, for a,b∈Rn. | (5.17) |
For the proof of the inequality (4.8), we introduce in (3.14) the condition of incompressibility of the fluid (div(ˆuε) =0 in Q), then by the application of Minty's Lemma, we deduce:
F(ˆv,ˆv−ˆuε)−2∑i=1(ˆπε,∂ˆvi∂yi)−(ˆπε,∂ˆv3∂z)+ˆj(ˆuε,ˆv)−ˆj(ˆuε,ˆuε)≥2∑i=1∫Qˆfi(ˆvi−ˆuεi)dy′dz+∫Qεˆf3(ˆv3−ˆuε3)dy′dz, ∀ˆv∈E. |
We apply the convergence of Theorem 4.1, Lemma 5.2 and the fact ˆj is convex and lower semi-continuous, we obtain
μ2∑i=1∫Q12(122∑i=1(∂ˆvi∂z)2)r−22∂ˆvi∂z∂(ˆvi−u⋆i)∂zdy′dz−∫Qπ⋆(∂ˆv1∂y1+∂ˆv2∂y2)dy′dz+ˆδ√22∫Q(|∂ˆv∂z|−|∂u⋆∂z|)dy′dz+∫Γbˆk|R(−π⋆)|(|ˆv−s|−|u⋆−s|)dy′≥ 2∑i=1∫Qˆfi(ˆvi−u⋆i)dy′dz. |
From [5,Lemma 5.1], π⋆ independent of z, then applying Minty's lemma for the second time, we deduce (4.8).
Proof of Theorem 4.3. Choosing ˆv in (4.8) (as in [3]) by: ˆvi=u⋆i+ϕi, i=1,2, with ϕi∈W1,r0(Q), we find
μ2∑i=1∫Q12(12(∂u⋆1∂z+∂u⋆2∂z)2)r−22∂u⋆i∂z∂ϕi∂zdy′dz−∫Qπ⋆(∂ϕ1∂y1+∂ϕ2∂y2)dy′dz= 2∑i=1∫Qˆfiϕidy′dz. |
By using Green's formula, and choosing in the first step ϕ1 = 0 and \phi_{2} \in W_{0}^{1, r}(\mathbb{Q}) then reversing this choice in the second step, we find (4.9) .
Now, for the prove of (4.10) , we cannot choose the test function as in [5,6], since their works do not contain the term \hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\partial \hat{v}/\partial z dy'dz . For this, we use the following techniques. Firstly, we choose \hat{v} in (4.8) by v = u^{\star}+\lambda \phi then v = u^{\star}-\lambda \phi , \phi \in W_{0}^{1, r}\left(\mathbb{Q} \right) ^{2} , we obtain
\begin{align} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\left( \dfrac{\partial u_{1}^{\star} }{\partial z}+\dfrac{\partial u_{2}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial(\lambda \phi_{i})}{\partial z} }dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial(\lambda \phi_{i})}{\partial y_{i}}dy'dz \end{align} | (5.18) |
\begin{align} & +\hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial \left( u^{\star}+\lambda \phi \right) }{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) dy'dz\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}(\lambda \phi_{i})dy'dz, \; \ \ \ \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}.\ \\ & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial(\lambda \phi_{i})}{\partial y_{i}}dy'dz \end{align} | (5.19) |
\begin{align} & -\hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial (u^{\star}-\lambda \phi)}{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) dy'dz\leq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(\lambda \phi _{i})dy'dz, \ \ \ \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.}\nonumber \end{align} |
Secondly, dividing \left(5.18\right) \; and \left(5.19\right) by \lambda and the passage to the limit when \lambda tends to zero, we find
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}\phi_{i}dy'dz, \; \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{, } \end{array} \end{equation} | (5.20) |
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\leq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}\phi_{i}dy'dz, \; \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.} \end{array} \end{equation} | (5.21) |
So the last two formulas, we give:
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz = \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i} \phi_{i}dy'dz, \; \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.} \end{array} \end{equation} | (5.22) |
By the Green's formula, we get (4.10) .
Proof of Theorem 4.4. We take in (4.8) , \hat{v} _{i} = u_{i}^{\star}+\lambda \phi_{i} for i = 1, 2 , where \phi_{i}\in W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left(\mathbb{Q} \right) and
W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left( \mathbb{Q} \right) = \{ \phi \in W^{1, r}\left( \mathbb{Q} \right) :\phi_{i} = 0\text{ on }\Gamma_{u}\cup \Gamma _{l}\}, |
then
\begin{align*} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}\dfrac{\partial(\lambda \phi_{i})}{\partial z} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \frac{\partial(\lambda \phi_{i})}{\partial y_i}dy'dz\\ & +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}} \int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial \left( \lambda \phi+u^{\star }\right) }{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star} }{\partial z}\right \vert \right) dy'dz+\int_{\Gamma_b}\hat{k}\left \vert R(-\pi^{\star})\right \vert \left( |\lambda \phi+s^{\star}-s|-|s^{\star }-s|\right) dy'\\ & \geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i} (\hat{v}_{i}-u_{i}^{\star})dy'dz\text{.} \end{align*} |
Dividing the last inequality by \lambda and the passage to the limit when \lambda tends to zero, we find
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\\ -\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_i}dy'dz+\hat{\delta}\frac{\sqrt{2}} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1} \dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\\ +\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\Gamma_b}\hat{k}\left \vert R(-p^{\star })\right \vert \dfrac{\phi_{i}\left( s_{i}^{\star}-s_{i}\right) }{|s^{\star }-s|}dy'\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}(\hat{v}_{i}-u_{i}^{\star})dy'dz\text{.} \end{array} \end{equation} | (5.23) |
Finally, using the Green formula in (5.23) and from (4.10) , we find
\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\Gamma_b}\widehat{k}\left \vert R(\widehat{\sigma}_{\eta}({-}\pi^{\star}))\right \vert \phi_{i}(s_{i}^{\star }-s_{i})dy'-\int_{\Gamma_b}\widehat{\mu}\tau^{\star}\phi \left \vert s^{\star }-s\right \vert dy'\geq0, \ \forall \phi \in \left( W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left( \mathbb{Q} \right) \right) ^{2}\text{.} |
This last formula holds for any \phi \in D(\Gamma_b)^{2} , but given the density of D(\Gamma_b) in L^{r}(\Gamma_b) , we find the desired result (4.11) . For the proof of (4.12) , we follow the same techniques as in [4].
To establish \left(4.13\right) , we integrate twice (4.10) from 0 to z , we get
\begin{equation} \begin{array} [c]{c} -\int_{0}^{z} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial \xi}\left( y';\xi \right) d\xi-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{z}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+ \mu \tau^{\star}\left( y'\right) z\\ +\hat{\delta}\frac{\sqrt{2}}{2}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert } \ z = \int_{0}^{z}\int_{0}^{\xi }\hat{f}\left( y', t\right) dtd\xi-\dfrac{z^{2}}{2}\nabla \pi^{\star}(y'). \end{array} \end{equation} | (5.24) |
Substituting z by h in (4.24) , we get
\begin{equation} \begin{array} [c]{c} -\int_{0}^{h} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial \xi}\left( y';\xi \right) d\xi-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{h}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+ \mu \tau^{\star}\left( y'\right) h\\ +\hat{\delta}\frac{\sqrt{2}}{2}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert } \ h = \int_{0}^{h}\int_{0}^{\xi }\hat{f}\left( y', t\right) dtd\xi-\dfrac{h^{2}}{2}\nabla \pi^{\star}(y'). \end{array} \end{equation} | (5.25) |
We integrate (5.24) from 0 to z , it comes:
\begin{equation} \begin{array} [c]{c} -\int_{0}^{h}\int_{0}^{y} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial z}\left( y';\xi \right) d\xi dy-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{h}\int_{0} ^{y}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star }/\partial z\right \vert }d\xi dy+ \mu \tau^{\star}\left( y'\right) \dfrac{h^{2}}{2}\\ +\hat{\delta}\frac{\sqrt{2}}{4}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert }h^{2} = \int_{0}^{h}\int_{0}^{y}\int _{0}^{\xi}\hat{f}\left( y', t\right) dtd\xi dy-\dfrac{h^{3}}{6}\nabla \pi^{\star}(y')\text{.} \end{array} \end{equation} | (5.26) |
From (5.25), we deduce
\begin{equation} \begin{array} [c]{c} \left[ \mu \tau^{\star}\left( y'\right) +\hat{\delta}\frac{\sqrt{2}}{4}\dfrac{s^{\star }\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert }\right] \dfrac{h^{2}}{2} = \dfrac{ \mu h}{2}\int_{0}^{h}B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star} }{\partial \xi}\left( y';\xi \right) d\xi\\ +\hat{\delta}h\dfrac{\sqrt{2}}{4}\int_{0}^{h}\frac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+\dfrac{h}{2} \int_{0}^{h}\int_{0}^{y}\hat{f}\left( y', \xi \right) d\xi dy-\dfrac{h^{3}} {4}\nabla \pi^{\star}(y')\text{.} \end{array} \end{equation} | (5.27) |
By (5.26) and (5.27) , we deduce \left(4.13\right) .
Proof of Theorem 4.5. Suppose that the boundary value problem (4.8) admits two solutions which we denote by \left(u^{\star, 1}, \pi^{\star, 1}\right) and \left(u^{\star, 2}, \pi^{\star, 2}\right) . Taking \hat{v} = u^{\star, 2} and \hat{v} = u^{\star, 1} respectively, as test function in \left(4.8\right) then by summing two inequalities, we get
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \dfrac{1}{2}\right) ^{\frac{r}{2}}\left( \underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star, 1}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}} \dfrac{\partial u_{i}^{\star, 1}}{\partial z}{\dfrac{\partial}{\partial z} }(u_{i}^{\star, 1}-u_{i}^{\star, 2})dy'dz\\ \; \; \; \; \; \; \; \; \; \; \; \; \; - \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \dfrac{1}{2}\right) ^{\frac{r}{2}}\left( \underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star, 2}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}} \dfrac{\partial u_{i}^{\star, 2}}{\partial z}{\dfrac{\partial}{\partial z} }(u_{i}^{\star, 1}-u_{i}^{\star, 2})dy'dz\\ -\int_{\Gamma_b}\hat{k}\left \vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \vert |u_{i}^{\star, 1}-u_{i}^{\star, 2}|dy'\leq0. \end{array} \end{equation} | (5.28) |
We apply (5.16) and (5.17) , we obtain
\begin{equation} {\mu} \left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2}^{r} \leq \Vert \widehat{k}\Vert _{L^{\infty }(\Gamma _{b})}\int_{\Gamma _{b}}\left \vert R(-\pi ^{\star , 1})-R(-\pi ^{\star , 2})\right \vert |u^{\star , 1}-u^{\star , 2}|dy^{\prime }. \end{equation} | (5.29) |
By the inequality (3.16) , then we apply the Hölder inequality on the second term of (5.29) , we have
\begin{align*} &\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 }^{r} \\ \leq& h^{\star}\Vert \widehat{k}\Vert_{L^{\infty}(\Gamma_b)}C_{0}\left( \int_{\Gamma_b}\left \vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \vert ^{q}dy'\right) ^{1/q}\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 } \end{align*} |
whence
\begin{equation} \left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 }^{r-1}\leq \frac{h^{\star}\Vert \widehat{k} \Vert_{L^{\infty}(\Gamma_b)}C_{0}}{ \mu }\left \Vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \Vert _{L^{q}\left( \Gamma_b \right) }. \end{equation} | (5.30) |
Using the fact that R is a linear continuous operator W^{-\frac{1}{2}, r}(\Gamma_b) into L^{r}(\Gamma_b) , there exists a constant C_{1} depending on R , such that
\begin{equation} \left \Vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \Vert _{L^{q}\left( \Gamma_b \right) }\leq C_{1}\left \Vert \pi^{\star, 1}-\pi^{\star, 2}\right \Vert _{L^{q}\left( \Gamma_b \right) }. \end{equation} | (5.31) |
Combining (5.30) and (5.31) we deduce that if \Vert \widehat{k} \Vert_{L^{\infty}(\Gamma_b)}\leq \overline{k} for sufficiently small \overline{k} , then we have
\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 } = 0. |
Using Poincaré's inequality, we get
\left \Vert u^{\star , 1}-u^{\star , 2} \right \Vert _{\widetilde\Theta _{z}} = 0. |
The uniqueness of the \pi ^{\ast } in the E_{0}^{q}\left(\Gamma_b \right) follows from (4.13) , in fact we take first in the Reynolds equation (4.13) the pressure value \pi ^{\ast } = \pi^{\star, 1} then \pi ^{\ast } = \pi^{\star, 2} respectively, at the end by subtracting the equations obtained, it becomes:
\begin{equation*} \int_{\Gamma_b }\frac{h^{3}}{12}\nabla \left( \pi^{\star, 1}-\pi^{\star, 2}\right) \nabla v dy' = 0\text{.} \end{equation*} |
Choosing v = \pi^{\star, 1}-\pi^{\star, 2} , and by Poincaré's inequality, we find
\begin{equation*} \pi^{\star, 1} = \pi^{\star, 2}\text{, almost everywhere in }\Gamma_b \text{.} \end{equation*} |
This ends the proof of the Theorem 4.5.
The aim of this study is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction, where we give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results. In the future work we will extend and develop our work to new space.
Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.
The authors declares that they have no conflicts of interest.
[1] | T. Rapcsák, Smooth nonlinear optimization in R^n, Dordrecht: Springer Science & Business Media, 2013. |
[2] | C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Dordrecht: Springer Science & Business Media, 2013. |
[3] |
R. Pini, Convexity along curves and invexity, Optimization, 29 (1994), 301–309. https://doi.org/10.1080/02331939408843959 doi: 10.1080/02331939408843959
![]() |
[4] | S. Mititelu, Generalized invexity and vector optimization on differential manifolds, Differ. Geom. Dyn. Syst., 3 (2001), 21–31. |
[5] |
A. Barani, M. R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl., 328 (2007), 767–779. https://doi.org/10.1016/j.jmaa.2006.05.081 doi: 10.1016/j.jmaa.2006.05.081
![]() |
[6] |
I. Ahmad, A. Iqbal, S. Ali, On Properties of Geodesic \eta-Preinvex Functions, Adv. Oper. Res., 2009 (2009), 381831. https://doi.org/10.1155/2009/381831 doi: 10.1155/2009/381831
![]() |
[7] |
L. W. Zhou, N. J. Huang, Roughly geodesic B -invex and optimization problem on Hadamard manifold, Taiwanese J. Math., 17 (2013), 833–855. https://doi.org/10.11650/tjm.17.2013.1937 doi: 10.11650/tjm.17.2013.1937
![]() |
[8] |
S. L. Chen, N. J. Huang, D. O'Regan, Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math., 17 (2014). https://doi.org/10.1155/2014/524698 doi: 10.1155/2014/524698
![]() |
[9] |
R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Geodesic G-invex sets and semistrictly geodesic \eta-preinvex functions, Optimization, 61 (2012), 1169–1174. https://doi.org/10.1080/02331934.2010.544314 doi: 10.1080/02331934.2010.544314
![]() |
[10] |
R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Generalized invex sets and preinvex functions on Riemannian manifolds, Taiwanese J. Math., 16 (2012), 1719–1732. https://doi.org/10.11650/twjm/1500406792 doi: 10.11650/twjm/1500406792
![]() |
[11] |
M. A. Khan, I. Ahmad, F. R. Al-Solamy, Geodesic r-preinvex functions on Riemannian manifolds, J. Inequal. Appl., 2014 (2014), 144. https://doi.org/10.1186/1029-242X-2014-144 doi: 10.1186/1029-242X-2014-144
![]() |
[12] |
A. Kılıçman, W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl., 2015 (2015), 297. https://doi.org/10.1186/s13660-015-0824-z doi: 10.1186/s13660-015-0824-z
![]() |
[13] |
I. Ahmad, M. A. Khan, A. A. Ishan, Generalized geodesic convexity on Riemannian manifolds, Mathematics, 7 (2019), 547. https://doi.org/10.3390/math7060547 doi: 10.3390/math7060547
![]() |
[14] |
M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
![]() |
1. | Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi, Study of a boundary value problem governed by the general elasticity system with a new boundary conditions in a thin domain, 2024, 1072-947X, 10.1515/gmj-2024-2044 |