In 2018, J. M. Gómez et al. showed that the problem of finding the packing number $ \rho(F_2(P_n)) $ of the 2-token graph $ F_2(P_n) $ of the path $ P_n $ of length $ n\ge 2 $ is equivalent to determining the maximum size of a binary code $ S' $ of constant weight $ w = 2 $ that can correct a single adjacent transposition. By determining the exact value of $ \rho(F_2(P_n)) $, they proved a conjecture of Rob Pratt. In this paper, we study a related problem, which consists of determining the packing number $ \rho(F_3(P_n)) $ of the graph $ F_3(P_n) $. This problem corresponds to the Sloane's problem of finding the maximum size of $ S' $ of constant weight $ w = 3 $ that can correct a single adjacent transposition. Since the maximum packing set problem is computationally equivalent to the maximum independent set problem, which is an NP-hard problem, then no polynomial time algorithms are expected to be found. Nevertheless, we compute the exact value of $ \rho(F_3(P_n)) $ for $ n\leq 12 $, and we also present some algorithms that produce a lower bound for $ \rho(F_3(P_n)) $ with $ 13\leq n\leq 44 $. Finally, we establish an upper bound for $ \rho(F_3(P_n)) $ with $ n\geq 13 $.
Citation: Christophe Ndjatchi, Joel Alejandro Escareño Fernández, L. M. Ríos-Castro, Teodoro Ibarra-Pérez, Hans Christian Correa-Aguado, Hugo Pineda Martínez. On the packing number of $ 3 $-token graph of the path graph $ P_n $[J]. AIMS Mathematics, 2024, 9(5): 11644-11659. doi: 10.3934/math.2024571
In 2018, J. M. Gómez et al. showed that the problem of finding the packing number $ \rho(F_2(P_n)) $ of the 2-token graph $ F_2(P_n) $ of the path $ P_n $ of length $ n\ge 2 $ is equivalent to determining the maximum size of a binary code $ S' $ of constant weight $ w = 2 $ that can correct a single adjacent transposition. By determining the exact value of $ \rho(F_2(P_n)) $, they proved a conjecture of Rob Pratt. In this paper, we study a related problem, which consists of determining the packing number $ \rho(F_3(P_n)) $ of the graph $ F_3(P_n) $. This problem corresponds to the Sloane's problem of finding the maximum size of $ S' $ of constant weight $ w = 3 $ that can correct a single adjacent transposition. Since the maximum packing set problem is computationally equivalent to the maximum independent set problem, which is an NP-hard problem, then no polynomial time algorithms are expected to be found. Nevertheless, we compute the exact value of $ \rho(F_3(P_n)) $ for $ n\leq 12 $, and we also present some algorithms that produce a lower bound for $ \rho(F_3(P_n)) $ with $ 13\leq n\leq 44 $. Finally, we establish an upper bound for $ \rho(F_3(P_n)) $ with $ n\geq 13 $.
[1] | A. Alzaga, I. Rodrigo, R. Pignol, Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements, J. Comb. Theory B, 100 (2010), 671–682. https://doi.org/10.1016/j.jctb.2010.07.001 doi: 10.1016/j.jctb.2010.07.001 |
[2] | S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, In: Optimization, New York: Springer, 2009,227–243. https://doi.org/10.1007/978-0-387-98096-6_12 |
[3] | W. Carballosa, R. Fabila-Monroy, J. Leaños, L. M. Rivera, Regularity and planarity of token graphs, Discuss. Math. Graph T., 37 (2017), 573–586. https://doi.org/10.7151/dmgt.1959 doi: 10.7151/dmgt.1959 |
[4] | H. de Alba, W. Carballosa, J. Leaños, L. M. Rivera, Independence and matching numbers of some token graphs, Australas. J. Comb., 76 (2016), 387–403. |
[5] | J. A. Escareño Fernández, C. Ndjatchi, L. M. Ríos-Castro, Algorithms-for-packing-number-of-3-token, 2024. Available from: https://github.com/TheAlexz/Algorithms-for-packing-number-of-3-token. |
[6] | R. Fabila-Monroy, D. Flores Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, D. R. Wood, Token graphs, Graphs and Combinatorics, 28 (2012), 365–380. https://doi.org/10.1007/s00373-011-1055-9 doi: 10.1007/s00373-011-1055-9 |
[7] | R. Fabila-Monroy, J. Leaños, A. L. Trujillo-Negrete, On the connectivity of token graphs of trees, Discrete Math. Theor., 24 (2022), 1–23. https://doi.org/10.46298/dmtcs.7538 doi: 10.46298/dmtcs.7538 |
[8] | M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, New York: W. H. Freeman, 1979. |
[9] | Google Docs, Algorithms for computing the lower and upper bounds for the packing number of $3$-token graph of path graph. Available from: http://tinyurl.com/25bx8dpe. |
[10] | A. S. Hassan, A generalisation of Johnson graphs with an application to triple factorisations, Discrete Math., 338 (2015), 2026–2036. https://doi.org/10.1016/j.disc.2015.05.001 doi: 10.1016/j.disc.2015.05.001 |
[11] | D. S. Hochbaum, D. B. Shmoys, A best possible heuristic for the $k$-center problem, Math. Oper. Res., 10 (1985), 175–366. https://doi.org/10.1287/moor.10.2.180 doi: 10.1287/moor.10.2.180 |
[12] | J. Leaños, C. Ndjatchi, The edge-cdonnectivity of Token Graphs, Graph. Combinator., 37 (2021), 1013–1023. https://doi.org/10.1007/s00373-021-02301-0 doi: 10.1007/s00373-021-02301-0 |
[13] | J. Leaños, A. L. Trujillo-Negrete, The connectivity of token graphs, Graph. Combinator., 34 (2018), 777–790. https://doi.org/10.1007/s00373-018-1913-9 doi: 10.1007/s00373-018-1913-9 |
[14] | K. G. Mirajkar, Y. B. Priyanka, Traversability and covering invariants of token graphs, International J. Math. Combin., 2 (2016), 132–138. |
[15] | L. M. Riós-Castro, Números de dominación y empaquetamiento de ciertas gráficas de fichas, PhD Thesis, Universidad Autónoma de Zacatecas, 2018. |
[16] | G. Rossum, Python tutorial, Netherlands: CWI (Centre for Mathematics and Computer Science), 1995. Available from: https://dl.acm.org/doi/10.5555/869378 |
[17] | N. J. A. Sloane, On single-deletion-correcting codes, 2002, arXiv: math/0207197. https://doi.org/10.48550/arXiv.math/0207197 |
[18] | N. J. A. Sloane, A085680-OEIS. Available from: https://oeis.org/A085680. |
[19] | J. M. G. Soto, J. Leaños, L. M. Ríos-Castro, L. M. Rivera, The packing number of the double vertex graph of the path graph, Discrete Appl. Math., 247 (2018), 327–340. https://doi.org/10.1016/j.dam.2018.03.085 doi: 10.1016/j.dam.2018.03.085 |
[20] | Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL, 2019. Available from: https://www.wolfram.com/mathematica/ |