
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(5): 11644–11659.
DOI:10.3934/math.2024571
Received: 31 January 2024
Revised: 08 March 2024
Accepted: 12 March 2024
Published: 26 March 2024

Research article

On the packing number of 3-token graph of the path graph Pn

Christophe Ndjatchi1,*, Joel Alejandro Escareño Fernández2, L. M. Rı́os-Castro3, Teodoro
Ibarra-Pérez4, Hans Christian Correa-Aguado4 and Hugo Pineda Martı́nez5

1 Academia de Fı́sico-Matemáticas, Instituto Politécnico Nacional, UPIIZ, P. C. 098160, Zacatecas,
México

2 Ingenierı́a Mecatrónica, Becario BEIFI-IPN, Instituto Politécnico Nacional, UPIIZ, P. C. 098160,
Zacatecas, México

3 Academia de Fı́sico-Matemáticas, Instituto Politécnico Nacional, CECYT18, Zacatecas, P. C.
098160, Zacatecas, México

4 Academia de Ingenierı́a, Instituto Politécnico Nacional, UPIIZ, P. C. 098160, Zacatecas, México
5 Unidad Académica de Ingenieria Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas,

México

* Correspondence: Email: mndjatchi@ipn.mx.

Abstract: In 2018, J. M. Gómez et al. showed that the problem of finding the packing number
ρ(F2(Pn)) of the 2-token graph F2(Pn) of the path Pn of length n ≥ 2 is equivalent to determining
the maximum size of a binary code S ′ of constant weight w = 2 that can correct a single adjacent
transposition. By determining the exact value of ρ(F2(Pn)), they proved a conjecture of Rob Pratt. In
this paper, we study a related problem, which consists of determining the packing number ρ(F3(Pn))
of the graph F3(Pn). This problem corresponds to the Sloane’s problem of finding the maximum size
of S ′ of constant weight w = 3 that can correct a single adjacent transposition. Since the maximum
packing set problem is computationally equivalent to the maximum independent set problem, which is
an NP-hard problem, then no polynomial time algorithms are expected to be found. Nevertheless, we
compute the exact value of ρ(F3(Pn)) for n ≤ 12, and we also present some algorithms that produce a
lower bound for ρ(F3(Pn)) with 13 ≤ n ≤ 44. Finally, we establish an upper bound for ρ(F3(Pn)) with
n ≥ 13.

Keywords: packing number; 3-token graphs; error correcting codes; binary codes; algorithms
Mathematics Subject Classification: 05C10, 05C45

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024571

11645

1. Introduction

Throughout this paper, G = (V(G), E(G)) denotes a finite connected, undirected, and simple
(without loops or parallel edges) graph of order n ≥ 3, where V(G) and E(G) are, respectively, the
vertex set and edges set of G. If x, y ∈ V(G) and x and y are adjacent, then {x, y} ∈ E(G) and we often
write xy instead of {x, y}. If k ≤ n − 1 is a positive integer, then the k-token graph Fk(G) of G is the
graph whose vertices are all the k-subsets of V(G), and two k-subsets A, B are adjacent whenever their
symmetric difference A△B defined as (A∪B)\(A∩B) is a 2-set {a, b} such that ab ∈ E(G) with a ∈ A and
b ∈ B. As an example of token graphs, see Figure 1 a). The token graphs have been extensively studied,
see for instance [3, 4, 6, 7, 12–14]. In those works, problems related to connectivity, diameter, clique
number, chromatic number, independence number, Hamiltonian paths, matching number, planarity,
regularity, etc. of token graphs have been studied. As the reader can check in [1, 3, 4, 7, 10] and the
references therein, the research on token graphs is still of interest.

{1110000}

{1101000}

{1100100}

{1100010}

{1100001}

{1011000}

{1010100}

{1010010}

{1010001}

{1001100}

{1001010}

{1001001}

{1000110}

{1000101}
{1000011}

{0111000}

{0110010}

{0110100}

{0110001}

{0101100}

{0101010}

{0101001}

{0100110}

{0100101}

{0100011}

{0011100}

{0011010}

{0011001}

{0010110}

{0010101}

{0010011}

{0001011}

{0000111}

a)

b)

{1,2,3}

{1, 2, 4}

{1, 2, 5}

{1, 2, 6}

{1, 2, 7}

{1, 3, 4}

{1, 3, 5}

{1, 3, 6}

{1, 3, 7}

{1, 4, 5}

{1, 4, 6}

{1, 4, 7}

{1, 5, 6}

{1, 5, 7}
{1, 6, 7}

{2, 3, 4}

{2, 3, 6}
{2, 3, 5}

{2, 3, 7}

{2, 4, 5}

{2, 4, 6}

{2, 4, 7}

{2, 5, 6}

{2, 5, 7}
{2, 6, 7}

{3, 4, 5}

{3, 4, 6}
{3, 4, 7}

{3, 5, 6}

{3, 5, 7}
{3, 6, 7}

{4, 6, 7}

{5, 6, 7}

{4, 5, 7}

{4, 5, 6}

{0001101}

{0001110}

Figure 1. The graph in a) is F3(P7), and the graph in b) is the binary code graph Γ3
7. Clearly,

F3(P7) and Γ3
7 are isomorphic. Note that F3(P7) and Γ3

7 can be drawn as a pyramid with 5
floors. The black vertices in F3(P7) and Γ3

7 form a packing set of order 9.

Packing number: The packing number of a graph is a graph invariant which is defined as follows:
given a graph G, the packing number of G denoted by ρ(G) is the cardinality of a maximum subset S
of V(G) such that for each pair of distinct vertices u and v of S , the distance between them is greater
than 2. As far as we know, the exact value of the packing number of the k-token graph is known only

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11646

for F2(Pn) [19]. In [15], Rı́os gave the following lower bound for ρ(F3(Pn))

c(n) =

1

54 (n3 + 3n2) if n ≡ 0 (mod 3),
1

54 (n3 + 3n2 − 4) if n ≡ 1 (mod 3),
1

54 (n3 + 3n2 − 6n − 8) if n ≡ 2 (mod 3).
(1.1)

In particular, the determination of the exact value of ρ(Fk(G)) remains open for G = Pn and k ≥ 3,
and also for k = 2 and G , Pn.
The Neil Sloane’s problem [17, 19]. Let n and w be two positive integers such that 0 ≤ w ≤ n. We
will use Fn

2 to denote the set of all vectors of length n, with entries in {0, 1}. A binary code of length
n and constant weight w is a subset S of Fn

2 such that every u ∈ S has exactly w 1′s and n − w 0′s.
Let u ∈ Fn

2 and let N(u) be the set of all vectors in Fn
2 which can be obtained from u by transposing

a pair of bits [2, 17]. Following the notations in [17, 19], let us define Γw
n as the graph whose vertex

set is V(Γw
n) = S , so |V(Γw

n)| =
(

n
w

)
, and two vertices u, v ∈ V(Γw

n) are adjacent if and only if v can be
obtained from u by transposing a pair of adjacent bits, for instance see Figure 1 b). Any binary code
S ′ ⊆ S is called a correcting code if N(u) ∩ N(v) = ∅ for all u, v ∈ S ′ with u , v. Then S ′ can correct
a single adjacent transposition if and only if S ′ is a packing set of Γw

n . The graph Γw
n will be called a

binary code graph of length n and constant weight w. Neil Sloane’s problem consists of determining
the maximum cardinality of such a code S ′, which is equal to ρ(Γw

n) .
In [19], it was shown that the problem of determining ρ(F2(Pn)) is equivalent to finding the

maximum code S ′ of constant weight w = 2 which can correct a single adjacent transposition. They
computed the exact value of ρ(F2(Pn)) and proved that the sequence produced by ρ(F2(Pn)) coincides
with the sequence A085680 in OEIS [18], i.e., they proved Pratt’s conjecture. So, the problem of
determining ρ(F3(Pn)) arises naturally. As in [19], it would be interesting to relate the problem of
determining ρ(F3(Pn)) to finding the largest S ′ of length n and constant weight w = 3.

In this paper, we deal with the problem of determining ρ(F3(Pn)). The rest of the paper is organized
as follows: In Section 2, we give the definition of some concepts and prove some propositions which
will be useful throughout the rest of the paper. In Section 3, we prove that Γk

n and Fk(Pn) are isomorphic
when w = k. It is easy to see that, if Γk

n ≃ Fk(Pn), then ρ(Γk
n) = ρ(Fk(Pn)) is the maximum

cardinality of a binary code with constant weight k that can correct a single adjacent transposition.
Since the maximum packing set problem is computationally equivalent to the maximum independent
set problem, which is an NP-hard problem [8,11], then no polynomial time algorithms are expected to
be found. Nevertheless, we have developed an exact algorithm for some instances in Section 4. That
is, we compute the exact value of ρ(F3(Pn)) for n ≤ 12. In Section 5, using the distance matrix (DM)
of a graph and improving the constructions proposed in [15], we present some algorithms that give a
lower bound for ρ(F3(Pn)) with 13 ≤ n ≤ 44. We remark that our lower bound for ρ(F3(Pn)) is better
than those in [15]. Finally, in Section 6 we give an upper bound for ρ(F3(Pn)) with n ≥ 13.

2. Definitions and preliminaries

Let G be a graph with vertex and edge sets V(G) = {v1, v2, . . . , vn} and E(G), respectively.

1) Let G′ be a graph, with vertex and edge sets V(G′) and E(G′), respectively, such that V(G′) ⊆
V(G) and E(G′) ⊆ E(G). Then, G′ is a subgraph of G (and G is a supergraph of G′) and we write

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11647

G′ ⊆ G. Now, if G′ ⊆ G and G′ contains all the edges xy ∈ E(G) such that x, y ∈ V(G′), then G′

is an induced subgraph of G. If S ⊆ V(G), then G[S] is a subgraph of G induced by S .
2) The complement Gc of a graph G is the graph with vertex set V(G) such that two distinct vertices

of Gc are adjacent if and only if they are not adjacent in G.
3) The neighborhood of a vertex v ∈ V(G) is NG(v) := {u ∈ V : uv ∈ E(G)}, and given a set S ⊂ V(G)

we define NG(S) :=
⋃
v∈S

NG(v).

4) Let S be a subset of V(G). Then, S is called an independent set of G if no two vertices of S
are adjacent in G, and the independence number α(G) of G is the maximum cardinality of an
independent set of G, that is α(G) := max

S⊆V(G)
{|S | : S is an independent set}

5) Let u, v ∈ V(G). The distance between u and v in G, denoted by dG(u, v), is the length of the
shortest path between u and v. Let k be a positive integer. A set T ⊆ V(G) is a k-packing set of G
if every pair of distinct vertices u, v ∈ T satisfy dG(u, v) ≥ k + 1. The packing number ρ(G) of G
is the maximum cardinality of a packing set of G, that is, ρ(G) := max

T⊆V(G)
{|T | : T is a packing set}.

If k = 2, then T will be a 2-packing set (or simply, a packing set) of G. Moreover, it is easy to
see that an independent set of G is also a 1-packing set of G.

6) Let G be a graph and F ⊆ E(Gc). We define G + F as the graph whose vertex and edge sets are
as follows: V(G + F) = V(G) and E(G + F) = E(G) ∪ F. If F = {a, b}, then we will only write
G + ab instead of G + F.

7) Let G1 and G2 be two graphs. We will say that G1 and G2 are isomorphic if there is a bijection
f : V(G1) → V(G2) such that uv ∈ E(G1) if and only if f (u) f (v) ∈ E(G2) for all u, v ∈ V(G1). If
G1 and G2 are isomorphic, then we write G1 ≃ G2 and the map f is an isomorphism.

8) Let ai j be the shortest path length between vi and v j in G. The distance matrix of G, denoted by
DM(G), is an n × n matrix whose (i, j)th entry is ai j. Clearly, DM(G) is a symmetric matrix with
trace equal to zero.

{1,2,3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}

{2, 3, 4}

{2, 3, 5}

{1, 4, 5}

{2, 4, 5}

{3, 4, 5}

Figure 2. The 3-Token graph F3(P5) of P5. We remark that F3(P5) can be drawn as a pyramid
with 3 floors.

For instance, the distance matrix DM(F3(P5)) of F3(P5) (see Figure 2), is the square matrix of size(
5
2

)
×

(
5
2

)
as depicted in Figure 3, where v0 = {1, 2, 3}, v1 = {1, 2, 4}, v2 = {1, 2, 5}, v3 = {1, 3, 4}, v4 =

{1, 3, 5}, v5 = {2, 3, 4}, v6 = {1, 4, 5}, v7 = {2, 3, 5}, v8 = {2, 4, 5}, v9 = {3, 4, 5}, according to Algorithm 1.

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11648

Algorithm 1: Algorithm to construct F3(Pn) and (F3(Pn))2 with n ≥ 3.
Input: Graph Pn, with n ≥ 3.
Output: F3(Pn), (F3(Pn))2 with n ≥ 3 and ID assignment to each vertex of F3(Pn).

1 Compute the
(

n
3

)
3-subsets of V(Pn) and store them in lexicographical order in a vector (namely, vector);

2 F3S et ← {};
3 sim di f ← {};
4 for i← 0 to vector.size() − 1 do
5 for j← i + 1 to vector.size() − 1 do
6 sim di f ← vector[i]△vector[j] ;
7 cardinality← sim di f .size() ;
8 if cardinality == 2 then
9 if sim di f ∈ E(Pn) then

10 if vector[i] and vector[j] do not have ID then
11 F3S et.push back(vector[i]);
12 vector[i].ID← F3S et.size() − 1;
13 F3S et.push back(vector[j]);
14 vector[j].ID← F3S et.size() − 1;
15 Add an edge between vector[i] and vector[j] in F3(Pn);

16 end
17 else if vector[i] has an ID and vector[j] has no ID then
18 vector[i] keeps its ID;
19 F3S et.push back(vector[j]);
20 vector[j].ID← F3S et.size() − 1;
21 Add an edge between vector[i] and vector[j] in F3(Pn);

22 end
23 else if vector[i] and vector[j] have ID then
24 vector[i] keeps its ID;
25 vector[j] keeps its ID;
26 Add an edge between vector[i] and vector[j] in F3(Pn);

27 end
28 end
29 else if sim di f < E(Pn) then
30 vector[i] keeps its ID;
31 Do not add edge between vector[i] and vector[j] in F3(Pn);

32 end
33 end
34 else if cardinality , 2 then
35 vector[i] keeps its ID;
36 Do not add edge between vector[i] and vector[j] in F3(Pn);

37 end
38 end
39 end
40 (F3(Pn))2 ← power(F3(Pn), 2)

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11649

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 0 1 2 2 3 3 4 4 5 6
v1 1 0 1 1 2 2 3 3 4 5
v2 2 1 0 2 1 3 2 2 3 4
v3 2 1 2 0 1 1 2 2 3 4
v4 3 2 1 1 0 2 1 1 2 3
v5 3 2 3 1 2 0 3 1 2 3
v6 4 3 2 2 1 3 0 2 1 2
v7 4 3 2 2 1 1 2 0 1 2
v8 5 4 3 3 2 2 1 1 0 1
v9 6 5 4 4 3 3 2 2 1 0

Figure 3. The distance matrix DM(F3(P5)) of F3(P5).

The k-th power of G, denoted by Gk, is the graph with vertex set V(Gk) = V(G) such that two
vertices u, v are adjacent in Gk if and only if dG(u, v) ≤ k. Then, G2 has vertex set V(G) and its edges
are given by the following:{

ab ∈ E(G)→ ab ∈ E(G2),
if ab < E(G) and dG(a, b) = 2, then ab ∈ E(G2), for a, b ∈ V(G).

From the involved definitions, we have the next results.

Proposition 1. S ⊆ V(G) is a packing set of G if and only if S is an independent set of G2.

Proof. Let S be a packing set of G. Then, for every pair of distinct vertices u, v ∈ S , it follows that
dG(u, v) ≥ 3, in particular u < NG2(v) and v < NG2(u). Hence, S is an independent set of G2. On the
other hand, suppose that S is an independent set of G2. Seeking a contradiction, suppose that S is not a
packing set of G. Then, there are at least two vertices u, v ∈ S such that dG(u, v) ≤ 2. Hence, v ∈ NG2(u)
and u ∈ NG2(v), which contradicts that S is an independent set of G2.

The next corollary is a consequence of Proposition 1.

Corollary 1. ρ(G) = α(G2).

The next proposition will be useful.

Proposition 2. Let G be a graph and let u, v be two vertices of V(G) such that uv < E(G). Then,
α(G + uv) ≤ α(G).

Proof. Let S be an independent set of G with maximum cardinality, i.e., α(G) = |S |. Let u, v ∈ V(G)
such that uv < E(G). Let S ′ be an independent set with maximum cardinality of G + uv. First, suppose
that u < S or v < S . We deal with the case when u < S . Note that the case v < S can be handled in a
similar way. Adding the edge uv to G, we have S ′ = S and so α(G+uv) = α(G). Now, we may assume
that u, v ∈ S . If we add the edge uv to G, then u ∈ NG+uv(v) and v ∈ NG+uv(u). So, S ′ = S \ {w} with
w ∈ {u, v}. Hence, α(G′) = |S ′| ≤ α(G) = |S |, as desired.

Corollary 2. Let G be a graph and let A ⊆ V(G). Let E∗(Gc) be the subset of E(Gc) such that
E∗(Gc) := {uv ∈ E(Gc) | u, v ∈ A}. Then, α(G + E∗(Gc)) ≤ α(G).

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11650

3. Γk
n and Fk(Pn) are isomorphic

In the next proposition, we prove that Γk
n and Fk(Pn) are isomorphic. Hence, ρ(Γk

n) = ρ(Fk(Pn)) is
the maximum cardinality of a binary code of length n with constant weight k that can correct a single
adjacent transposition.

Proposition 3. Let n ≥ 3 and k ≤ n− 1 be two positive integers. Let Pn be a path graph with n vertices
and let Fk(Pn) be its k-token graph. Let Γk

n be a binary code graph of length n ≥ 3 and constant weight
w = k. Then, Γk

n ≃ Fk(Pn).

Proof. Let V(Pn) = {1, . . . , n} and E(Pn) = {{i, i + 1} : 1 ≤ i ≤ n − 1} be, respectively, the vertex and
edge sets of Pn. Let ψ be a map defined as follows:

ψ : V(Fk(Pn)) −→ V(Γk
n)

B 7−→ (b1, b2, . . . , bn), with bi =

{
1, if i ∈ B;
0, otherwise.

We prove that ψ is bijective. Since Pn is a finite graph of order n, then |V(Fk(Pn))| =
(

n
k

)
[6]. On

the other hand, from the definition of Γk
n, it follows that |V(Fk(Pn))| = |V(Γk

n)|. Then, it is enough to
show that ψ is injective. Let A and B be two k−subsets of V(Fk(Pn)) such that ψ(A) = (a1, a2, . . . , an)
and ψ(B) = (b1, b2, . . . , bn). Assume that ψ(A) = ψ(B), then ai = bi for all i ∈ {1, 2, . . . , n}. Since

ai = bi =

{
1, if i ∈ A;
0, otherwise. Then, A = B. Hence, ψ is injective.

On the other hand, let A and B be two adjacent vertices of Fk(Pn). Since A and B are two k-subsets
of {1, . . . , n}, then there is j ∈ {1, . . . , n − 1} such that A△B = { j, j + 1} ∈ E(Pn). Without loss of
generality, we assume that j ∈ A, and then (j + 1) ∈ B. Clearly, (j + 1) < A and j < B. Then,

ψ(A) = (a1, a2, . . . , a j−1,

j−th bit,︷︸︸︷
1 ,

(j+1)−th bit︷︸︸︷
0 , a j+2, . . . , an),

and

ψ(B) = (a1, a2, . . . , a j−1,

j−th bit,︷︸︸︷
0 ,

(j+1)−th bit︷︸︸︷
1 , a j+2, . . . , an).

Since ψ(B) is obtained from ψ(A) by transposing contiguous bits, then ψ(A) and ψ(B) are adjacent
in Γk

n. Conversely, it is easy to check that if ψ(A) and ψ(B) are adjacent in Γk
n, then A and B are adjacent

in Fk(Pn), as desired.

Corollary 3. Let Pn be a path graph with n ≥ 3 vertices and let F3(Pn) be its 3−token graph. Let Γ3
n

be a binary code graph of length n ≥ 3 and constant weight 3. Then, Γ3
n ≃ F3(Pn).

From Corollary 3, it follows that ρ(Γ3
n) = ρ(F3(Pn)).

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11651

4. Exact value of ρ(F3(Pn)) for n ≤ 12

In this section, we give an algorithm that computes the exact value of ρ(F3(Pn)) for n ≤ 12. We
have used Corollary 1 and the fact that there is a function that Mathematica (Wolfram Language) has
available to determine the independence number of graphs [20].

Algorithm 1 is used to construct F3(Pn) , (F3(Pn))2 and assigns an identification (ID) to each vertex
of F3(Pn). Furthermore, the same algorithm sorts the vertices of F3(Pn) according to their respective ID
and stores them in the set F3S et. This order is based on the lexicographic order and the adjacency of the
vertices in F3(Pn). See Comments on Algorithm 1 for additional details. On the other hand, using the
set F3S et, we construct the distance matrix of F3(Pn), which is important in Algorithm 2. Since F3S et
is unique for a given F3(Pn), then the distance matrix of F3(Pn) is also unique. See DM(F3(P5)) in
Figure 3. We sometimes use the index of an element in F3S et to refer to it. For example, in Algorithm 2
we use i to refer to vi.

Algorithm 2: Algorithm to determine a lower bound for ρ(F3(Pn)) with n ≥ 13.
Input: Graph Pn, with n ≥ 13.
Output: Compute a lower bound for ρ(F3(Pn)) with n ≥ 13.

1 while n ≥ 13 do
2 Construct F3(Pn) and the vertex set F3S et by using Algorithm 1;
3 DM(F3(Pn))← (ai j)i j ;
4 packing max← 0;
5 for i← 0 to F3S et.size() − 1 do
6 probable packing← {} ;
7 for j← 0 to F3S et.size() − 1 do
8 if ai j == 0 then
9 probable packing.insert(j) ;

10 end
11 else if ai j ≥ 3 then
12 probable packing.push back(j)
13 end
14 end
15 for i← 1 to probable packing.size() − 2 do
16 for j← i + 1 to probable packing.size() − 1 do
17 if ai j < 3 then
18 probable packing.erase(j);
19 j← j − 1;
20 end
21 end
22 end
23 packing max← max(packing max, probable packing.size());
24 end
25 end

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11652

4.1. Comments on Algorithm 1

Algorithm 1 has been developed in Python [16], and involves the following questions: (i) how is
the ID assigned to each vertex of V(F3(Pn)), that is, how are the nodes of V(F3(Pn)) ordered in the set
F3S et? and (ii) how is the graph F3(Pn) constructed? Let us explain how Algorithm 1 works using
an example. Consider the path P5 as input, then the expected output is F3(P5), (F3(P5))2, and ID
assignment to each vertex of F3(P5) as in Figure 2. First, the

(
5
3

)
3-subsets of V(P5) are computed and

stored in lexicographical order in a vector as:

vector := {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}

Next, we assign the ID to each vertex of V(F3(P5)) and we construct F3S et and F3(P5) as follows:

A1) If i = 0 and j = 1, then {1, 2, 3}△{1, 2, 4} = {3, 4} ∈ E(P5). Clearly, {1, 2, 3} and {1, 2, 4} do
not have ID, then F3S et = {{1, 2, 3}} and {1, 2, 3} becomes the node with ID 0, next, F3S et =
{{1, 2, 3}, {1, 2, 4}} and {1, 2, 4} with ID 1. Moreover, {1, 2, 3} and {1, 2, 4} are adjacent in F3(P5).
Hence, F3S et = {{1, 2, 3}, {1, 2, 4}}.

A2) If i = 0 and j = 2, then {1, 2, 3}△{1, 2, 5} = {3, 5} < P5. Then, {1, 2, 3} stays as the node with ID
0 and {1, 2, 5} is not added as a vertex of F3S et. {1, 2, 3} and {1, 2, 5} are not adjacent in F3(P5).
So, F3S et = {{1, 2, 3}, {1, 2, 4}}.

A3) If i = 0 and j = 3, then {1, 2, 3}△{1, 3, 4} = {2, 4} < P5. Then, {1, 2, 3} remains as the node with
ID 0 and {1, 3, 4} does not belong to F3S et. {1, 2, 3} and {1, 3, 4} are not adjacent in F3(P5). So,
F3S et = {{1, 2, 3}, {1, 2, 4}}.

A4) If i = 0 and j = 4, then {1, 2, 3}△{1, 3, 5} = {2, 5} < P5. Then, {1, 2, 3} remains as the node with ID
0 and {1, 3, 5} is not added as a vertex of F3S et. {1, 2, 3} and {1, 3, 5} are not adjacent in F3(P5).
So, F3S et = {{1, 2, 3}, {1, 2, 4}}.

A5) If i = 0 and j = 5, then {1, 2, 3}△{1, 4, 5} = {2, 3, 4, 5}, so |{1, 2, 3}△{1, 4, 5}| , 2. Then {1, 2, 3}
remains as the node with ID 0 and {1, 3, 4} is not added as a vertex of F3S et. {1, 2, 3} and {1, 4, 5}
are not adjacent in F3(P5). So, F3S et = {{1, 2, 3}, {1, 2, 4}}.

Continuing with this procedure until j reaches the upper limit of the loop, it is easy to see that
F3S et = {{1, 2, 3}, {1, 2, 4}}.

B1) If i = 1 and j = 2, then {1, 2, 4}△{1, 2, 5} = {4, 5} ∈ E(P5). Clearly, {1, 2, 4} has an ID, but {1, 2, 5}
has no ID. Then, {1, 2, 4} stays with ID 1, also F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} and {1, 2, 5}
has ID 2. {1, 2, 4} and {1, 2, 5} are adjacent in F3(P5). So, F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}.

B2) If i = 1 and j = 3, then {1, 2, 4}△{1, 3, 4} = {2, 3} ∈ E(P5). Clearly, {1, 2, 4} has an ID, but
{1, 3, 4} has no ID. Then , {1, 2, 4} keeps its ID 1, also F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}}
and {1, 3, 4} becomes the node with ID 3. {1, 2, 4} and {1, 3, 4} are adjacent in F3(P5). Hence,
F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}}.

Again, continuing with this procedure until j reaches the upper limit of the loop, it follows that
F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}}.

The algorithm continues until all the 3-subsets of V(P5) are pairwise compared, obtaining

F3S et = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}. (4.1)

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11653

Finally, F3(Pn) and also (F3(P5))2 are constructed.
It follows that F3S et = {v0, v1, . . . , v9} with

v0 = {1, 2, 3}, v1 = {1, 2, 4}, v2 = {1, 2, 5}, v3 = {1, 3, 4}, v4 = {1, 3, 5},
v5 = {2, 3, 4}, v6 = {1, 4, 5}, v7 = {2, 3, 5}, v8 = {2, 4, 5}, v9 = {3, 4, 5} (4.2)

The graphs F3(P5) and (F3(P5))2 are depicted in Figure 4.

Figure 4. The graph in a) is (F3(P5))2. It is obtained by adding all the edges uv such that
d(u, v) = 2 to F3(P5). The red vertices in (F3(P5))2 form a maximum independent set and so
then α((F3(P5))2) = 3. In b) it is shown the corresponding packing set of F3(P5).

With Algorithm 3 implemented in Mathematica (Wolfram Language), we have computed the exact
value of the packing number of F3(Pn) for n ≤ 12.

Algorithm 3: Algorithm to determine the exact value of the packing number of F3(Pn), for
n ≤ 12.

Input: Graph Pn, with n ≥ 3.
Output: Compute ρ(F3(Pn)) for n ≥ 3.

1 while n ≥ 3 do
2 Construct (F3(Pn))2 by using Algorithm 1;
3 G ← (F3(Pn))2;
4 ρ(F3(Pn))← α(G)
5 end

With Algorithm 3 we find a maximum independent set of (F3(Pn))2. Then, we find ρ(F3(Pn)) by
using Corollary 1 in Figure 4 is depicted ρ(F3(P5)).

From Corollary 3 and Algorithm 3, the size of the largest binary code S ′ of length n ≤ 12 and
constant weight 3 is given in Table 1.

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11654

Table 1. The exact value of ρ(F3(Pn)) for n ∈ {3, . . . , 12}.

n 3 4 5 6 7 8 9 10 11 12
ρ(F3(Pn)) = ρ(Γ3

n) 1 2 3 6 9 13 18 24 32 41

For n = 12, we have |V(F3(Pn))| = |V((F3(Pn))2)| = 220. Although we obtained ρ(F3(Pn)) = 41, it
is important to note that the CPU time required was a bit long. On the other hand, when n ≥ 13, we
have |V(F3(Pn))| = |V((F3(Pn))2)| ≥ 286, and the graph (F3(Pn))2 starts to be dense. Unfortunately, the
processing time required is too long when we use Algorithm 3.

5. A lower bound for ρ(F3(Pn))

In this section we deal with another algorithm (namely, Algorithm 2) for computing a lower bound
for ρ(F3(Pn)). In Table 3 [9], we summarize the improved lower bounds for ρ(F3(Pn)) with 13 ≤ n ≤
44.

5.1. Comments on Algorithm 2

We construct F3(Pn) and the vertex set F3S et by using Algorithm 1. Then we use a function that
Mathematica (Wolfram Language) has available to obtain the distance matrix DM(F3(Pn)) of size
F3S et.size() × F3S et().size(). And, to find the ρ(F3(Pn)), we have developed software in C++.

The variable packing max is used to store the packing number found. Additionally, the set
probable packing stores the possible packing nodes. For each node vi ∈ F3S et, we check in the
DM(F3(Pn)) the distance between vi and any other node v j ∈ F3S et.

If ai j is zero, i.e., i = j, then we store the current node v j in the first position of probable packing
using probable packing.insert(j).

Furthermore, the rest of the nodes v j with j , i, which are at a distance 3 from vi, are stored after
the node v j with j = i in probable packing using probable packing.push back(j).

Once we have the probable packing set, with the next For loops, we ensure that all nodes in the
probable packing set are kept at a distance of at least 3 from each other.

By taking each vertex v j ∈ F3S et such that j = i as the first element of probable packing, we have
obtained some good results when one of the nodes v0, v1, and v2 in F3S et is the second element of
probable packing. In Table 2, we present some results for 13 ≤ n ≤ 32.

Table 2. Some lower bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 32.

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Our results with v0 as second node 50 61 75 90 106 127 146 170 198 226 255 291 327 366 413 454 500 563 612 667
Our results with v1 as second node 49 61 73 90 108 125 149 170 196 226 257 290 326 367 408 455 504 558 612 679
Our results with v2 as second node 49 61 75 91 109 126 146 171 197 223 257 291 324 366 410 451 502 559 607 672
Maximum value 50 61 75 91 109 127 149 171 198 226 257 291 327 367 413 455 504 563 612 679

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11655

5.2. Improving the lower bounds of ρ(F3(Pn)) for n ∈ {14, 17, 20, 23, 26}

For 13 ≤ n ≤ 26, we observe that the constructions proposed in [15] of finding ρ(F3(Pn)) when
n ≡ 2 (mod 3) can be improved.

We will now explain how we get such results. As in [15], we consider the path Pn with { j, j +
1} ∈ E(Pn) for 1 ≤ j < n. Without loss of generality, we will write the elements of each vertex
{i1, i2, i3} ∈ V(F3(Pn)) in ascending order, i.e., we will assume that i1 < i2 < i3.

Let n ≥ 3 be an integer and let t ∈ {0, 2}. We define the sets of vertices B(n, t) and P(n) as follows:

B(n, t) :=

⋃(n−3)/3

j=0 (
⋃n/3

k= j+1{{1, 3 j + 2, 3k}}) if n ≡ 0 (mod 3),⋃(n−4)/3
j=0 (

⋃(n−1)/3
k= j+1 {{1, 3 j + 2, 3k}}) if n ≡ 1 (mod 3),⋃(n−5)/3

j=0 (
⋃(n−2)/3

k= j+1 {{1, 3 j + 2, 3k + t}}) if n ≡ 2 (mod 3).
(5.1)

Clearly, if t = 0, we have the lower bounds given in [15]. Now, suppose that t = 2. Then,
P(n) := (B(n, 2)

⋃(n−8)/3
k=0 {{1, 4 + 3k, 6 + 3k}})

⋃n−2
k=1 B(n − k, 0) is a packing set of F3(Pn). Indeed, the set⋃n−2

k=0 B(n − k, 0) is a packing set of F3(Pn), see [15], and B(n, 2) is a slight refinement to the packing
proposed in [15]. Note that, if n ≥ 8 and n ≡ 2 (mod 3), then B(n, 2) and the set

⋃n−2
k=0 B(n − k, 0)

allows us to add the vertices
⋃(n−8)/3

k=0 {{1, 4 + 3k, 6 + 3k}} to the packing set. It is easy to see that,

i) for each pair of vertices x, y in B(n, 2)
⋃(n−8)/3

k=0 {{1, 4 + 3k, 6 + 3k}} we have dF3(Pn)(x, y) ≥ 3 and,
ii) if n ≥ 8 and n ≡ 2 (mod 3), then for each pair of vertices x, y in P(n) we have dF3(Pn)(x, y) ≥ 3.

Therefore, P(n) is a packing set of F3(Pn) whenever n ≥ 14 and n ≡ 2 (mod 3).
As an example, let us take n = 14. Then,

B(14, 2) =
3⋃

j=0

(
4⋃

k= j+1

{{1, 3 j + 2, 3k + 2}}) =

= {{1, 2, 5}, {1, 2, 8}, {1, 2, 11}, {1, 2, 14},
{1, 5, 8}, {1, 5, 11}, {1, 5, 14}, {1, 8, 11}, {1, 8, 14}, {1, 11, 14}},⋃(14−8)/3

k=0 {{1, 4 + 3k, 6 + 3k}} = {{1, 4, 6}, {1, 7, 9}, {1, 10, 12}},
and

12⋃
k=1

B(14 − k, 0) = {{2, 3, 4}, {2, 3, 7}, {2, 3, 10},

{2, 3, 13}, {2, 6, 7}, {2, 6, 10}, {2, 6, 13}, {2, 9, 10}, {2, 9, 13},
{2, 12, 13}, {3, 4, 5}, {3, 4, 8}, {3, 4, 11}, {3, 4, 14}, {3, 7, 8},
{3, 7, 11}, {3, 7, 14}, {3, 10, 11}, {3, 10, 14}, {3, 13, 14}

, {4, 5, 6}, {4, 5, 9}, {4, 5, 12}, {4, 8, 9}, {4, 8, 12}, {4, 11, 12},
{5, 6, 7}, {5, 6, 10}, {5, 6, 13}, {5, 9, 10}, {5, 9, 13},

{5, 12, 13}, {6, 7, 8}, {6, 7, 11}, {6, 7, 14}, {6, 10, 11}, {6, 10, 14},
{6, 13, 14}, {9, 10, 14}, {9, 13, 14}, {10, 11, 12},

{7, 8, 9}, {7, 8, 12}, {7, 11, 12}, {8, 9, 10}, {8, 9, 13}, {8, 12, 13},

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11656

{9, 10, 11}, {11, 12, 13}, {12, 13, 14}}.

The set P(14) is a packing set of F3(P14) with |P(14)| = |B(14, 2)| + |
⋃(14−8)/3

k=0 {{1, 4 + 3k, 6 + 3k}}| +
|
⋃12

k=1 B(14 − k, 0)| = 10 + 3 + 50 = 63. By using this procedure, we obtained |P(17)| = 109, |P(20)| =
173, |P(23)| = 258 and |P(26)| = 367.

Table 3 contains some lower bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 32. The interested reader can find
in Table 3 [9] the lower bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 44. We remark that our results are better
than those presented in [15].

Table 3. Our lower bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 32.

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Results in [15] 50 60 75 90 105 126 147 168 196 224 252 288 324 360 405 450 495 550 605 660
Our results 50 63 75 91 109 127 149 173 198 226 258 291 327 367 413 455 504 563 612 679

6. An upper bound for ρ(F3(Pn)) with n ≥ 13

Recently, Alba et al. [4] established the following statements for the independence number of
ρ(F3(Pn)).

Definition 1. (Definition 3.1 [4]) Let G be a bipartite graph with bipartition {A, B}. Let m := |A| ≥
1, n := |B| ≥ 1, and let k ∈ {1, . . . ,m + n − 1}. Let A := {K ⊂ V(G) : |K| = k, |A ∩ K| is odd}, and let
B := {K ⊂ V(G) : |K| = k, |A ∩ K| is even}.

From Definition 1 and Proposition 12 in [6] we know that F3(Pn) is a bipartite graph with bipartition
{A,B}, whereA := {K ⊂ V(G) : |K| = 3, |A∩K| is odd} andB := {K ⊂ V(G) : |K| = 3, |A∩K| is even}.

Theorem 1. (Theorem 3.9 [4]) If G′ is a bipartite supergraph of G with bipartition {A, B}, and G has
either a perfect matching or an almost perfect matching, then α(Fk(G′)) = max{|A|, |B|}.

Since G = Pn satisfies the hypotheses of Theorem 1, we can conclude that α(F3(Pn)) =
max{|A|, |B|}.

Corollary 4. (Corollary 3.10 [4]) Let t ∈ Z+. If G ∈ {Pt,C2t,Kt,t+1} and k is an integer such that

1 ≤ k ≤ |G| − 1, then α(Fk(G)) = max{r,
(

p
k

)
− r}, where p := |G| = t and r :=

⌈k/2⌉∑
i=1

(
⌈p/2⌉
2i − 1

)(
⌊p/2⌋

k − 2i + 1

)
.

The following proposition is an easy consequence of Corollary 4.

Proposition 4. Let n and m be two positive integers. Then,

α(F3(Pn)) =

(

2m
3

)
/2, if n = 2m,

m
3 (2m2 + 1), if n = 2m + 1.

In view of Corollaries 1 and 2 and Proposition 4, we have the following Proposition 5.

Proposition 5. Let n and m be two positive integers such that m ≥ 8. Then,

ρ(F3(Pn)) ≤

⌈
(

2m
3

)
/6⌉, if n = 2m,

⌈m
9 (2m2 + 1)⌉, if n = 2m + 1.

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11657

Proof. Let n and m be as in the statement. By Corollary 1, it follows that ρ(F3(Pn)) = α((F3(Pn))2).
Now, let E∗((F3(Pn))c) := {uv ∈ E((F3(Pn))c) | dF3(Pn)(u, v) = 2 with u, v ∈ V(F3(Pn))}. From the
definition of (F3(Pn))2 it is easy to see that (F3(Pn))2 = F3(Pn) + E∗((F3(Pn))c). On the other hand,
Corollary 2 and Proposition 4 imply that α((F3(Pn))2) = α(F3(Pn) + E∗((F3(Pn))c)) ≤ α(F3(Pn)) =(

n
3

)
/2. Now, since F3(Pn) is a bipartite graph, then we have a partition of V(F3(Pn)) = {A,B}. Note

that eitherA or B is an independent set of F3(Pn) of maximum cardinality. Without loss of generality,
we suppose that A is an independent set of F3(Pn) of maximum cardinality. From the definition of
F3(Pn) with n ≥ 16, it is easy to see that only the vertices v0 := {1, 2, 3} and v(n

3)−1 := {(n−2), (n−1), n}
have degree 1. Moreover, we note that v0 (respectively, v(n

3)−1) is at distance two from v2 := {1, 2, 5}
and v3 := {1, 3, 4} (respectively, v(n

3)−4 := {(n − 4), (n − 1), n} and v(n
3)−3 := {(n − 3), (n − 2), n}). Also, it

is easy to see that v2 is at distance two from v3, and v(n
3)−3 is at distance two from v(n

3)−4. Similarly, we
observe that each vertex in V(F3(Pn)) is at distance two from at least two vertices (namely, u and w)
of V(F3(Pn)) such that dF3(Pn)(u,w) = 2. Then, for each v ∈ A we have at least three edges e1, e2, e3 ∈

E((F3(Pn))2) such that e1 := vx, e2 := vy, e3 := xy ∈ E∗((F3(Pn))c) with x, y ∈ A. Then, for every 3
vertices inA only one can be in an independent set of (F3(Pn))2. Hence, α((F3(Pn))2) ≤ ⌈α(F3(Pn))/3⌉,
as desired.

Since Proposition 5 does not hold for n ∈ {13, 14, 15}, we devoted the last part of this section to
establishing upper bounds for these three instances.

The next observation will be helpful to find an upper bound of ρ(F3(Pn)) for n ∈ {13, 14, 15}.

Observation 2 (Observation 9 [19]). Let {V1,V2} be a partition of V(G). If G1 and G2 are the subgraphs
of G induced by V1 and V2, respectively, then ρ(G) ≤ ρ(G1) + ρ(G2).

Let us define the vertex set Gx := {{x, i1, i2} : 1 ≤ x ≤ n − 2, 2 ≤ i1 ≤ n − 1, 3 ≤ i2 ≤ n} ⊆
V(F3(Pn)). Now, we partition V(F3(Pn)) into two subsets V1 and V2 as follows. V1 =

⋃i
x=1 Gx and

V2 = V(F3(Pn)) \ (
⋃i

x=1 Gx), with 1 ≤ i ≤ n − 2. Let Gi,n and G∗i,n be two subgraphs of F3(Pn) induced
by V1 and V2, respectively.

It is easy to see that G∗i,n ≃ F3(Pn−i) and Gn−2,n = F3(Pn). And thus we have the next Proposition 6.

Proposition 6. ρ(F3(Pn)) ≤ min
1≤i≤n−2

{ρ(Gi,n) + ρ(G∗i,n)}.

Proof. This proposition is an immediate consequence of Observation 2.

We obtained ρ(G3,13) = 30, ρ(G3,14) = 35 and ρ(G3,15) = 41 by using Algorithm 3. From Table 1
and Proposition 6, it follows that ρ(F3(P13)) ≤ ρ(G3,13) + ρ(F3(P10)) = 30 + 24 = 54, ρ(F3(P14)) ≤
ρ(G3,14) + ρ(F3(P11)) = 35 + 32 = 67 and ρ(F3(P15)) ≤ ρ(G3,15) + ρ(F3(P12)) = 41 + 41 = 82.

In Table 4, we present our lower and upper bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 32. The interested
reader can find in Table 4 [9] the lower and upper bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 44.

Table 4. Our lower and upper bounds for ρ(F3(Pn)) with 13 ≤ n ≤ 32.

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Our results of lower bound 50 63 75 91 109 127 149 173 198 226 258 291 327 367 413 455 504 563 612 679
Our results of upper bound 54 67 82 136 163 190 224 257 297 338 386 434 490 546 612 677 752 827 912 998

The interested reader can download from [5] the programs in C++, Python, and Wolfram
Mathematica that we have used to obtain these results.

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

11658

7. Conclusions and future work

In this work, we showed that Γ3
n ≃ F3(Pn), and so determining ρ(F3(Pn)) is equivalent to

determining the maximum size of a binary code of constant weight 3 which can correct a single adjacent
transposition. We have specifically determined the exact value of ρ(F3(Pn)) for n ≤ 12. However, due
to the complexity of the involved calculation of ρ(F3(Pn)) for n > 12, we have obtained some lower
and upper bounds. On the other hand, since this paper is a first attempt to determine ρ(F3(Pn)) and the
difference between the lower and upper bounds of ρ(F3(Pn)) is too small for n ∈ {13, 14, 15}, we believe
that improving our technique in Section 6 could help to find a tight upper bound for ρ(F3(Pn)). Finally,
we also believe that it would be interesting to determine the exact value of ρ(F3(Pn)) for n > 12.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

We would like to thank the anonymous referees for careful reading and helpful suggestions.
This research was supported by the Instituto Politécnico Nacional (IPN) through grant

SIP/20231701.

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. A. Alzaga, I. Rodrigo, R. Pignol, Spectra of symmetric powers of graphs and
the Weisfeiler-Lehman refinements, J. Comb. Theory B, 100 (2010), 671–682.
https://doi.org/10.1016/j.jctb.2010.07.001

2. S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, P. Stetsyuk, Estimating the size of correcting
codes using extremal graph problems, In: Optimization, New York: Springer, 2009, 227–243.
https://doi.org/10.1007/978-0-387-98096-6 12

3. W. Carballosa, R. Fabila-Monroy, J. Leaños, L. M. Rivera, Regularity and planarity of token
graphs, Discuss. Math. Graph T., 37 (2017), 573–586. https://doi.org/10.7151/dmgt.1959

4. H. de Alba, W. Carballosa, J. Leaños, L. M. Rivera, Independence and matching numbers of some
token graphs, Australas. J. Comb., 76 (2016), 387–403.

5. J. A. Escareño Fernández, C. Ndjatchi, L. M. Rı́os-Castro, Algorithms-for-packing-
number-of-3-token, 2024. Available from: https://github.com/TheAlexz/

Algorithms-for-packing-number-of-3-token.

6. R. Fabila-Monroy, D. Flores Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, D. R. Wood, Token
graphs, Graphs and Combinatorics, 28 (2012), 365–380. https://doi.org/10.1007/s00373-011-
1055-9

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

http://dx.doi.org/https://doi.org/10.1016/j.jctb.2010.07.001
http://dx.doi.org/https://doi.org/10.1007/978-0-387-98096-6_12
http://dx.doi.org/https://doi.org/10.7151/dmgt.1959
https://github.com/TheAlexz/Algorithms-for-packing-number-of-3-token
https://github.com/TheAlexz/Algorithms-for-packing-number-of-3-token
http://dx.doi.org/https://doi.org/10.1007/s00373-011-1055-9
http://dx.doi.org/https://doi.org/10.1007/s00373-011-1055-9

11659

7. R. Fabila-Monroy, J. Leaños, A. L. Trujillo-Negrete, On the connectivity of token graphs of trees,
Discrete Math. Theor., 24 (2022), 1–23. https://doi.org/10.46298/dmtcs.7538

8. M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-
completeness, New York: W. H. Freeman, 1979.

9. Google Docs, Algorithms for computing the lower and upper bounds for the packing number of
3-token graph of path graph. Available from: http://tinyurl.com/25bx8dpe.

10. A. S. Hassan, A generalisation of Johnson graphs with an application to triple factorisations,
Discrete Math., 338 (2015), 2026–2036. https://doi.org/10.1016/j.disc.2015.05.001

11. D. S. Hochbaum, D. B. Shmoys, A best possible heuristic for the k-center problem, Math. Oper.
Res., 10 (1985), 175–366. https://doi.org/10.1287/moor.10.2.180

12. J. Leaños, C. Ndjatchi, The edge-cdonnectivity of Token Graphs, Graph. Combinator., 37 (2021),
1013–1023. https://doi.org/10.1007/s00373-021-02301-0

13. J. Leaños, A. L. Trujillo-Negrete, The connectivity of token graphs, Graph. Combinator., 34
(2018), 777–790. https://doi.org/10.1007/s00373-018-1913-9

14. K. G. Mirajkar, Y. B. Priyanka, Traversability and covering invariants of token graphs,
International J. Math. Combin., 2 (2016), 132–138.

15. L. M. Riós-Castro, Números de dominación y empaquetamiento de ciertas gráficas de fichas, PhD
Thesis, Universidad Autónoma de Zacatecas, 2018.

16. G. Rossum, Python tutorial, Netherlands: CWI (Centre for Mathematics and Computer Science),
1995. Available from: https://dl.acm.org/doi/10.5555/869378

17. N. J. A. Sloane, On single-deletion-correcting codes, 2002, arXiv: math/0207197.
https://doi.org/10.48550/arXiv.math/0207197

18. N. J. A. Sloane, A085680-OEIS. Available from: https://oeis.org/A085680.

19. J. M. G. Soto, J. Leaños, L. M. Rı́os-Castro, L. M. Rivera, The packing number of
the double vertex graph of the path graph, Discrete Appl. Math., 247 (2018), 327–340.
https://doi.org/10.1016/j.dam.2018.03.085

20. Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL, 2019. Available from:
https://www.wolfram.com/mathematica/

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 5, 11644–11659.

http://dx.doi.org/https://doi.org/10.46298/dmtcs.7538
http://tinyurl.com/25bx8dpe
http://dx.doi.org/https://doi.org/10.1016/j.disc.2015.05.001
http://dx.doi.org/https://doi.org/10.1287/moor.10.2.180
http://dx.doi.org/https://doi.org/10.1007/s00373-021-02301-0
http://dx.doi.org/https://doi.org/10.1007/s00373-018-1913-9
http://dx.doi.org/
https://dl.acm.org/doi/10.5555/869378
http://dx.doi.org/https://doi.org/10.48550/arXiv.math/0207197
https://oeis.org/A085680
http://dx.doi.org/https://doi.org/10.1016/j.dam.2018.03.085
https://www.wolfram.com/mathematica/
http://creativecommons.org/licenses/by/4.0

	Introduction
	Definitions and preliminaries
	
	
	Comments on Algorithm 1

	
	Comments on Algorithm 2
	

	
	Conclusions and future work

