This contribution proposes a numerical scheme for solving fractional parabolic partial differential equations (PDEs). One of the advantages of using the proposed scheme is its applicability for fractional and integer order derivatives. The scheme can be useful to get conditions for obtaining a positive solution to epidemic disease models. A COVID-19 mathematical model is constructed, and linear local stability conditions for the model are obtained; afterward, a fractional diffusive epidemic model is constructed. The numerical scheme is constructed by employing the fractional Taylor series approach. The proposed fractional scheme is second-order accurate in space and time and unconditionally stable for parabolic PDEs. In addition to this, convergence conditions are obtained by employing a proposed numerical scheme for the fractional differential equation of susceptible individuals. The scheme is also compared with existing numerical schemes, including the non-standard finite difference method. From theoretical analysis and graphical illustration, it is found that the proposed scheme is more accurate than the so-called existing non-standard finite difference method, which is a method with notably good boundedness and positivity properties.
Citation: Yasir Nawaz, Muhammad Shoaib Arif, Wasfi Shatanawi, Muhammad Usman Ashraf. A new unconditionally stable implicit numerical scheme for fractional diffusive epidemic model[J]. AIMS Mathematics, 2022, 7(8): 14299-14322. doi: 10.3934/math.2022788
This contribution proposes a numerical scheme for solving fractional parabolic partial differential equations (PDEs). One of the advantages of using the proposed scheme is its applicability for fractional and integer order derivatives. The scheme can be useful to get conditions for obtaining a positive solution to epidemic disease models. A COVID-19 mathematical model is constructed, and linear local stability conditions for the model are obtained; afterward, a fractional diffusive epidemic model is constructed. The numerical scheme is constructed by employing the fractional Taylor series approach. The proposed fractional scheme is second-order accurate in space and time and unconditionally stable for parabolic PDEs. In addition to this, convergence conditions are obtained by employing a proposed numerical scheme for the fractional differential equation of susceptible individuals. The scheme is also compared with existing numerical schemes, including the non-standard finite difference method. From theoretical analysis and graphical illustration, it is found that the proposed scheme is more accurate than the so-called existing non-standard finite difference method, which is a method with notably good boundedness and positivity properties.
[1] | S. Abubakar, N. I. Akinwande, S. Abdulrahman, A mathematical model of yellow fever epidemics, Afr. Math., 6 (2012), 56-58. |
[2] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907 |
[3] | R. S. Baric, K. Fu, W. Chen, B. Yount, High recombination and mutation rates in mouse hepatitis virus suggest that coronaviruses may be potentially important emerging viruses, In Corona-and Related Viruses, Springer, Boston, MA, 1995,571-576. https://doi.org/10.1007/978-1-4615-1899-0_91 |
[4] | S. R. Weiss, J. L. Leibowitz, Coronavirus pathogenesis, Adv. Virus Res., 81 (2011), 85-164. https://doi.org/10.1016/B978-0-12-385885-6.00009-2 doi: 10.1016/B978-0-12-385885-6.00009-2 |
[5] | S. Su, G. Wong, W. Shi, J. Liu, A. C. K. Lai, J. Zhou, et al., Epidemiology, genetic recombination, and pathogenesis of coronaviruses, Trends Microbiol., 24 (2016), 490-502. https://doi.org/10.1016/j.tim.2016.03.003 doi: 10.1016/j.tim.2016.03.003 |
[6] | N. S. Zhong, B. J. Zheng, Y. M. Li, L. L. M. Poon, Z. H. Xie, K. H. Chan, et al., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003, Lancet, 362 (2003), 1353-1358. https://doi.org/10.1016/S0140-6736(03)14630-2 doi: 10.1016/S0140-6736(03)14630-2 |
[7] | C. Rivers, J. P. Chretien, S. Riley, J. A. Pavlin, A. Woodward, D. Brett-Major, et al., Using "outbreak science" to strengthen the use of models during epidemics, Nat. Commun., 10 (2019), 1-3. https://doi.org/10.1038/s41467-019-11067-2 doi: 10.1038/s41467-019-11067-2 |
[8] | N. M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A. R. Akhmetzhanov, S. Jung, et al., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data, J. Clin. Med., 9 (2020), 538. https://doi.org/10.3390/jcm9020538 doi: 10.3390/jcm9020538 |
[9] | C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel corona virus in Wuhan, China, Lancet, 395 (2020), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5 |
[10] | S. Bushnaq, S. A. Khan, K. Shah, G. Zaman, Mathematical analysis of HIV/AIDS infection model with Caputo-Fabrizio fractional derivative, Cogent Math. Stat., 5 (2018), 1432521. https://doi.org/10.1080/23311835.2018.1432521 doi: 10.1080/23311835.2018.1432521 |
[11] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 8792. |
[12] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[13] | A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 64. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064 |
[14] | S. Kumar, S. Ghosh, M. S. M. Lotayif, B. Samet, A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator, Alex. Eng. J., 59 (2020), 1435-1449. https://doi.org/10.1016/j.aej.2020.04.019 doi: 10.1016/j.aej.2020.04.019 |
[15] | P. Veeresha, D. G. Prakasha, S. Kumar, A fractional model for propagation of classical optical solitons by using non-singular derivative, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.6335 doi: 10.1002/mma.6335 |
[16] | S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang Abdel AtyCattani fractional operator, Math. Method. Appl. Sci., 43 (2020), 6062-6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347 |
[17] | M. U. Saleem, M. Farman, M. O. Ahmad, M. Rizwan, A control of artificial human pancreas, Chinese J. Phys., 55 (2017), 2273-2282. https://doi.org/10.1016/j.cjph.2017.08.030 doi: 10.1016/j.cjph.2017.08.030 |
[18] | M. Farman, M. U. Saleem, A. Ahmad, M. Ahmad, Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian decomposition method, Ain Shams Eng. J., 9 (2018), 3391-3397. https://doi.org/10.1016/j.asej.2017.11.010 doi: 10.1016/j.asej.2017.11.010 |
[19] | M. Farman, M. U. Saleem, M. Ahmad, A. Ahmad, Stability analysis and control of glucose insulin glucagon system in human, Chinese J. Phys., 56 (2018), 1362-1369. https://doi.org/10.1016/j.cjph.2018.03.037 doi: 10.1016/j.cjph.2018.03.037 |
[20] | M. U. Saleem, M. Farman, M. Rizwan, M. O. Ahmad, A. Ahmad, Controllability and observability of glucose insulin glucagon systems in human, Chinese J. Phys., 56 (2018), 1909-1916. https://doi.org/10.1016/j.cjph.2018.09.005 doi: 10.1016/j.cjph.2018.09.005 |
[21] | M. Farman, M. U. Saleem, M. Ahmad, A. Ahmad, M. O. Ahmad, A linear control of composite model for glucose insulin glucagon, Ain Shams Eng. J., 10 (2019), 867-872. https://doi.org/10.1016/j.asej.2019.04.001 doi: 10.1016/j.asej.2019.04.001 |
[22] | M. Farman, A. Ahmad, A. Akgül, S. Imtiaz, Analysis and dynamical behavior of fractional order cancer model with vaccine strategy, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.6240 doi: 10.1002/mma.6240 |
[23] | M. U. Saleem, M. Farman, A. Ahmad, E. Ul Haque, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulin therapies for diabetes, Ain Shams Eng. J., 2020. https://doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006 |
[24] | M. Farman, M. U. Saleem, A. Ahmad, A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu fractional derivative, Alex. Eng. J., 59 (2020), 2639-2648. https://doi.org/10.1016/j.aej.2020.04.027 doi: 10.1016/j.aej.2020.04.027 |
[25] | M. Farman, A. Akgül, D. Baleanu, S. Imtiaz, A. Ahmad, Analysis of fractional order chaotic financial model with minimum interest rate impact, Fractal Fract., 4 (2020), 43. https://doi.org/10.3390/fractalfract4030043 doi: 10.3390/fractalfract4030043 |
[26] | D. Baleanu, M. Jleli, S. Kumar, A fractional derivative with two singular kernels and application to a heat conduction problem, Adv. Differ. Equ., 1 (2020), 252. https://doi.org/10.1186/s13662-020-02684-z doi: 10.1186/s13662-020-02684-z |
[27] | S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507 |
[28] | A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Soliton. Fract., 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860 |
[29] | A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods and applications, Adv. Differ. Equ., 2020 (2020), 1-89. https://doi.org/10.1101/2020.05.08.20095588 doi: 10.1101/2020.05.08.20095588 |
[30] | N. Bildik, S. Deniz, A new fractional analysis on the polluted lakes system, Chaos Soliton. Fract., 122 (2019), 17-24. https://doi.org/10.1016/j.chaos.2019.02.001 doi: 10.1016/j.chaos.2019.02.001 |
[31] | S. Uçar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Contin. Dyn.-A, 14 (2018), 2571-2589. https://doi.org/10.3934/dcdss.2020178 doi: 10.3934/dcdss.2020178 |
[32] | A. Atangana, B. S. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. https://doi.org/10.3390/e17064439 doi: 10.3390/e17064439 |
[33] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[34] | A. Atangana, I. Koca, On the new fractional derivative and application to non-linear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480. https://doi.org/10.22436/jnsa.009.05.46 doi: 10.22436/jnsa.009.05.46 |
[35] | M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379-2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033 |
[36] | M. Z. Ullah, A. K. Alzahrani, D. Baleanu, An efficient numerical technique for a new fractional tuberculosis model with non-singular derivative operator, J. Taibah Univ. Sci., 13 (2019), 1147-1157. https://doi.org/10.1080/16583655.2019.1688543 doi: 10.1080/16583655.2019.1688543 |
[37] | M. Asif, Z. A. Khan, N. Haider, Q. Al-Mdallal, Numerical simulation for solution of SEIR models by meshless and finite difference methods, Chaos Soliton. Fract., 141 (2020), 110340. https://doi.org/10.1016/j.chaos.2020.110340 doi: 10.1016/j.chaos.2020.110340 |
[38] | M. Asif, S. U. Jan, N. Haider, Q. Al-Mdallal, T. Abdeljawad, Numerical modeling of NPZ and SIR models with and without diffusion, Results Phys., 19 (2020), 103512. https://doi.org/10.1016/j.rinp.2020.103512 doi: 10.1016/j.rinp.2020.103512 |
[39] | M. A. Hajji, Q. Al-Mdallal, Numerical simulations of a delay model for immune system-tumor interaction, Sultan Qaboos Univ. J. Sci., 23 (2018), 19-31. https://doi.org/10.24200/squjs.vol23iss1pp19-31 doi: 10.24200/squjs.vol23iss1pp19-31 |
[40] | H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907 |
[41] | F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model., 2 (2017), 113-127. https://doi.org/10.1016/j.idm.2017.02.001 doi: 10.1016/j.idm.2017.02.001 |
[42] | S. Ahmad, A. Ullah, Q. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256 |
[43] | D. Baleanu, M. H. Abadi, A. Jajarmi, K. Z. Vahid, J. J. Nieto, A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alex. Eng. J., 61 (2022), 4779-4791. https://doi.org/10.1016/j.aej.2021.10.030 doi: 10.1016/j.aej.2021.10.030 |
[44] | A. Jajarmi, D. Baleanu, K. Z. Vahid, S. Mobayen, A general fractional formulation and tracking control for immunogenic tumor dynamics, Math. Method. Appl. Sci., 45 (2022), 667-680. https://doi.org/10.1002/mma.7804 doi: 10.1002/mma.7804 |
[45] | V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel fractional-order Lagrangian to describe motion of beam on nanowire, Acta Phys. Pol. A, 140 (2021), 265-272. https://doi.org/10.12693/APhysPolA.140.265 doi: 10.12693/APhysPolA.140.265 |
[46] | P. Kumar, V. S. Erturk, The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative, Math. Method. Appl. Sci., 2020, 1-14. https://doi.org/10.1002/mma.6935 doi: 10.1002/mma.6935 |
[47] | A. Zen, P. Kumar, V. S. Erturk, T. Sitthiwiattam, A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms, J. King Saud Univ. Sci., 34 (2022), 101914. https://doi.org/10.1016/j.jksus.2022.101914 doi: 10.1016/j.jksus.2022.101914 |
[48] | P. Kumar, V. S. Erturk, A. Kumar, A new technique to solve generalised Caputo-type fractional differential equations with the example of computer virus model, J. Math. Ext., 15 (2021), 1-23. |
[49] | P. Kumar, V. S. Erturk, M. Murillo-Arcila, A new fractional mathematical modelling of COVID-19 with the availability of vaccine, Results Phys., 24 (2021), 104213. https://doi.org/10.1016/j.rinp.2021.104213 doi: 10.1016/j.rinp.2021.104213 |
[50] | L. Basnarkov, SEAIR Epidemic spreading model of COVID-19, Chaos Soliton. Fract., 142 (2021), 110394. https://doi.org/10.1016/j.chaos.2020.110394 doi: 10.1016/j.chaos.2020.110394 |
[51] | Y. Nawaz, M. S. Arif, W. Shatanawi, A new numerical scheme for time fractional diffusive SEAIR model with non-linear incidence rate: An application to computational biology, Fractal Fract., 6 (2022), 78. https://doi.org/10.3390/fractalfract6020078 doi: 10.3390/fractalfract6020078 |
[52] | S. A. Pasha, Y. Nawaz, M. S. Arif, The modified homotopy perturbation method with an auxiliary term for the nonlinear oscillator with discontinuity, J. Low Freq. Noise V. A., 38 (2019), 1363-1373. https://doi.org/10.1177/0962144X18820454 doi: 10.1177/0962144X18820454 |
[53] | Y. Nawaz, M. S. Arif, K. Abodayeh, An explicit-implicit numerical scheme for time fractional boundary layer flows, Int. J. Numer. Meth. Fl., 2022. https://doi.org/10.1002/fld.5078 doi: 10.1002/fld.5078 |