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Abstract: This contribution proposes a numerical scheme for solving fractional parabolic partial 
differential equations (PDEs). One of the advantages of using the proposed scheme is its 
applicability for fractional and integer order derivatives. The scheme can be useful to get conditions 
for obtaining a positive solution to epidemic disease models. A COVID-19 mathematical model is 
constructed, and linear local stability conditions for the model are obtained; afterward, a fractional 
diffusive epidemic model is constructed. The numerical scheme is constructed by employing the 
fractional Taylor series approach. The proposed fractional scheme is second-order accurate in space 
and time and unconditionally stable for parabolic PDEs. In addition to this, convergence conditions 
are obtained by employing a proposed numerical scheme for the fractional differential equation of 
susceptible individuals. The scheme is also compared with existing numerical schemes, including the 
non-standard finite difference method. From theoretical analysis and graphical illustration, it is found 
that the proposed scheme is more accurate than the so-called existing non-standard finite difference 
method, which is a method with notably good boundedness and positivity properties.  
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1. Introduction 

When it comes to understanding the impact of infectious disease in a community, 
epidemiological studies are critical. Mathematical modeling involves checking models, estimating 
parameters, measuring sensitivity by varying parameters, and computing numerical simulations using 
models that have been constructed. This type of research is utilized to manage disease parameters 
and the ratio of illness spread in a population [1]. Infectious diseases are used to describe diseased 
models (i.e., the disease transferred from one person to another person). Infectious diseases include 
measles, rubella, chickenpox, mumps, aids, and gonorrhea syphilis [2]. 

Coronaviruses are responsible for transmitting severe acute respiratory syndrome (SARS). 
SARS is a valuable tool in the analysis of coronaviruses [3]. Coronaviruses are a group of viruses 
that can infect both humans and animals. There are several different types of coronaviruses. 
Coronaviruses in humans are primarily responsible for respiratory infections, ranging from mild 
colds to serious lung illnesses. They can also be accompanied by digestive diseases such as 
gastroenteritis, a type of diarrhea. To limit this pandemic, which is most likely still in its early stages, 
and prevent the collapse of healthcare systems, governments must take immediate and effective 
actions in a time of great uncertainty. A group of researchers studying the coronavirus family for over 
30 years found that SARS and coronavirus have similar traits, such as biology and pathology [4]. 
Coronaviruses, RNA-enveloped viruses that infect people, mammals, and birds, spread worldwide. 
Coronaviruses are responsible for various respiratory, gastrointestinal, hepatic, and neurological 
disorders [5]. Coronaviruses are responsible for six different types of sickness in humans [6]. 
Chinese authorities declared a major outbreak of coronavirus disease 2019 (COVID-19) in the 
country in 2019, and this outbreak has the potential to spread around the world. Now underway, 
interventions and real-time data are required to control the coronavirus outbreak [7].  

The COVID-19 pandemic is bringing quantitative mathematical modeling to the forefront of 
public debate more than ever before. Policymakers and the general public are turning to science, and 
modeling, in particular, to gain insight into the complex dynamics of the epidemic from both a local 
and global perspective and predict the consequences of possible interventions on the number of cases, 
hospitalizations, and deaths. The number of cases, hospitalizations, and deaths has increased 
dramatically. Bernoulli's study to analyze the efficiency of immunization against smallpox was the 
beginning of mathematical modeling in epidemiology, which began in 1760. Epidemiologists are 
building, testing and fine-tuning models to simulate the development of the COVID-19 infectious 
disease to gain a better knowledge of the disease and optimize measures to manage it. 

Prior investigations have employed real-time data to explain the transmission of the virus from 
one person to another, the severity of the virus, and the pathogen's history during the first week of an 
outbreak. In December 2019, a group of Wuhan residents was taken to the hospital, where they were 
all diagnosed with idiopathic pneumonia. The majority of individuals believed that consuming wet 
market meat and shellfish was the root cause of pneumonia in children. With the assistance of the 
Wuhan local health authorities, the Chinese Center for Disease Control and Prevention (China CDC) 
launched an investigation into the etiology and epidemiology of the disease on December 31, 2019. 
Time-delay distributions, which included the admission date to the hospital and death, were used to 
assess whether the epidemiology was changing. According to the results of a clinical investigation 
conducted on the COVID-19 virus, signs of coronavirus infection develop seven days after the onset 
of illness [8]. The time interval between hospital admission and death is particularly crucial to 
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minimize underestimating case fatality risk when calculating case fatality risk [9]. The 
fractional-order, which comprises integration and transects differentiation, is utilized better to 
understand real-world problems than the standard integer order and simulate genuine phenomena 
related to memory characterization and hereditary features using a fractional calculus [10,11]. 
Riemann Liouville is credited for introducing the concept of fractional derivative, which is based on 
power law. Caputo and Fabrizio present a novel fractional derivative that uses the exponential kernel, 
which is based on the work of Caputo and Fabrizio [12]. Previous results have proposed a novel 
fractional derivative with a non-singular kernel incorporating exponential and trigonometric 
functions [13–16]. This paper illustrates several new ways for epidemic models connected to this 
new derivative [17–25]. In Baleanu et al., significant results relating to this novel operator are 
established, and several examples are offered to illustrate the point [26]. 

The standard integer-order models do not benefit from the subsequent memory effects observed 
in many biological simulations. Instead, the ABC operator is used to teach the concept of heredity, 
which is an important property of many biological processes. Thus, when it comes to simulating 
biological processes, fractional operators are gaining more and more attention from various viewpoints. 

For example, in [27], the authors proposed and studied the dynamics behavior of COVID-19, 
which was accomplished by analyzing a SEIHDR model based on the ABC operator. After analyzing 
the current results, they demonstrated the transmission dynamics of COVID-19. See [28–39] and the 
citations therein for further information on the current results. 

It would be appropriate to include a population of COVID-19 disease-exposed individuals (E) 
in the model for the disease. In addition, it is possible to refine the description of specific epidemics 
by including assumptions about transmission from one class to another by including more 
compartments; see, for example, [40–42]. 

By introducing a generalized version of fractional models, D. Baleanu et al. [43] studied the 
effects of isolation and quarantine in the COVID-19 pandemic. The study considered the real clinical 
observations from China, and this was used to compute the basic reproduction number and determine 
the parameters. Asymptotic behavior of immunogenic tumor dynamics by using a new fractional 
model was studied in [44]. The equilibrium points and stability of the new model were discussed, the 
predictor-corrector numerical scheme was modified, and the results were compared with some real 
experimental data. Moreover, a tracking control method was employed to decrease the development 
of the tumor cell population. The fractional calculus theory was adopted in [45] to study the motion 
of a beam on an internally bent nanowire. The generalized fractional Lagrangian was introduced, and 
the fractional Euler-Lagrange equation was provided for the motion of the beam on the nanowire. 

Solving the model with a numerical scheme pointed out that the fractional Euler-Lagrange 
equation provided a model that possessed more information than the classical description. A 
fractional COVID-19, SEIR epidemic model was solved in [46] using a predictor-corrector method. 
For the given time delay fractional differential equations, unique global solutions were derived under 
a mild Lipschitz condition using Mittag-Leffler functions, properties of a weighted norm, and 
Banach fixed point theorem. Real numerical data based on a case study of Wuhan, China, was used 
for graphical simulations. A new vaccinated model of COVID-19 ware provided [47] in the sense of 
new generalized Caputo-type and Caputo-Fabrizio fractional derivatives. The study of model 
dynamics such as boundedness, positivity, and local stability analysis were presented. Using fixed 
point theory, the existence of a unique solution to the fractional model was discussed. The numerical 
schemes for solving fractional differential equations have an advantage over exact analytical 
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methods. Since the exact solution of all models in fractional calculus cannot be found analytically, 
some numerical approaches can be considered for solving those models. A fractional numerical 
algorithm has been proposed in [48] to get the exact solutions of generalized fractional-order 
differential equations based on the Caputo fractional derivative. Some simulations were also 
provided, including the solution of a co9mputer virus model to illustrate the applications of results. 
The existing treatments for the dangerous disease of COVID-19 are the use of the vaccine. From a 
mathematics aspect, an SEIRS dynamical model was proposed in [49] that comprised vaccine rate. A 
fractional model based on the Atangana-Baleanu derivative was formulated. For solving the model, a 
predictor-corrector scheme has been employed to solve the model. Stability analysis of the applied 
numerical method was also provided. 

Since the non-standard finite difference method (NSFD) is one of the numerical methods used 
to find a positive solution, the method is unconditionally stable. But, its main drawback is its 
accuracy, which can be proved by applying Taylor series expansions. So, the solutions obtained by 
NSFD are not accurate when these are computed on a smaller number of grid points. NSFD is not 
first-order accurate in time for diffusive epidemic models but second-order accurate in space. 
Similarly, its fractional version can be constructed by considering the fractional Taylor series. But 
again, it will have an accuracy problem in time. It can be verified that the NSFD is also not suitable 
for finding the solution to the space variable. This contribution proposes a conditionally positivity 
preserving, unconditionally stable fractional numerical scheme, second-order in space and time. The 
scheme can be used to obtain conditions for getting a positive solution. These conditions depend on 
the considered mathematical model and the number of grid points and time levels. The stability of 
the numerical scheme can be checked by applying Fourier series analysis of Von Neumann stability 
criteria. This criterion is used for linear differential equations. Even though the equation is non-linear, 
its linearised form can be evaluated to estimate the stability criteria. So, this stability criterion is 
considered to check the stability of the proposed scheme. Due to the non-linear nature of the 
investigated diffusive epidemic model, the proposed fractional numerical approach is stable for the 
generalized kind of linear diffusive epidemic model. 

The paper is organised in the following manner. A model of ordinary differential equations is 
established, and its local stability is given. After this, a numerical scheme is constructed for the 
general type fractional differential equation. Later on, the scheme is constructed for the fractional 
diffusive partial differential equation of susceptible individuals. Then the stability and convergence 
of the scheme are provided, and a comparison of the existing scheme for the classical parabolic 
equation is also provided. After this, the application of the scheme is given with simulations.  

The SEAIR epidemic spreading model has been proposed in [50], but modification in that 
model is given here. Let 𝑆𝑆 be susceptible individuals, 𝐸𝐸 be the exposed individuals, 𝐼𝐼 be infected 
individuals, 𝑄𝑄 be quarantined individuals, and 𝑅𝑅 be recovery people. Let 𝛼𝛼� be the rate at which 
susceptible become exposed, 𝛽𝛽 be the rate at which susceptible become infected, 𝛾𝛾 be the rate at 
which exposed become infected, 𝜎𝜎 be the rate at which infected become quarantined, 𝜎𝜎� be the rate 
at which infected individuals become healed or recovered, and 𝜇𝜇 be the rate at which quarantined 
become recovered. The mathematical model is given as:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼�𝑆𝑆𝑆𝑆,          (1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼�𝑆𝑆𝑆𝑆 + 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾,         (2) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾 − 𝜎𝜎𝜎𝜎 − 𝜎𝜎�𝐼𝐼,          (3) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝜎𝜎 − 𝜇𝜇𝜇𝜇,           (4) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 + 𝜎𝜎�𝐼𝐼,           (5) 

Subject to the initial conditions  

𝑆𝑆(0) = 𝑆𝑆0,𝐸𝐸(0) = 𝐸𝐸0, 𝐼𝐼(0) = 𝐼𝐼0,𝑄𝑄(0) = 𝑄𝑄0,𝑅𝑅(0) = 𝑅𝑅0,      (6) 

where 𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0 and 𝑅𝑅0 can be any non-negative constants. The transmission diagram of the 
model (1)–(5) is given in Figure 1. 

 

Figure 1. Transmission diagram of the model. 

2. Stability of the epidemic system 

One of the equilibrium points of the system (1)–(5) is (1,0,0,0,0). The next linear stability 
procedure is given about the mentioned equilibrium point. The linear stability procedure starts with 
the Jacobian matrix for the system of Eqs (1)–(5) in a form 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
−𝛼𝛼�𝐸𝐸 − 𝛽𝛽𝛽𝛽 −𝛼𝛼𝛼𝛼 −𝛽𝛽𝛽𝛽 0 0
𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 −𝛾𝛾 + 𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽 0 0

0 𝛾𝛾 −𝜎𝜎 − 𝜎𝜎� 0 0
0 0 𝜎𝜎 −𝜇𝜇 0
0 0 𝜎𝜎� 𝜇𝜇 0⎦

⎥
⎥
⎥
⎤

.     (7) 

Using the equilibrium point (1,0,0,0,0) Jacobian (7) is expressed as  

𝐴̅𝐴 =

⎣
⎢
⎢
⎢
⎡
0 −𝛼𝛼 −𝛽𝛽 0 0
0 −𝛾𝛾 + 𝛼𝛼 𝛽𝛽 0 0
0 𝛾𝛾 −𝜎𝜎 − 𝜎𝜎� 0 0
0 0 𝜎𝜎 −𝜇𝜇 0
0 0 𝜎𝜎� 𝜇𝜇 0⎦

⎥
⎥
⎥
⎤

.       (8) 
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To find the characteristic polynomial, consider the equation  

|𝐴̅𝐴 − 𝜆𝜆𝜆𝜆.𝐷𝐷| = 0,          (9) 

where 𝐼𝐼.𝐷𝐷 is an identity matrix of order 5 × 5. Equation (9) can be expressed as 

⎣
⎢
⎢
⎢
⎡
−𝜆𝜆 −𝛼𝛼 −𝛽𝛽 0 0
0 −𝛾𝛾 + 𝛼𝛼 − 𝜆𝜆 𝛽𝛽 0 0
0 𝛾𝛾 −𝜎𝜎 − 𝜎𝜎� − 𝜆𝜆 0 0
0 0 𝜎𝜎 −𝜇𝜇 − 𝜆𝜆 0
0 0 𝜎𝜎� 𝜇𝜇 −𝜆𝜆⎦

⎥
⎥
⎥
⎤

= 0. 

(−𝜆𝜆)(−𝜆𝜆) �
−𝛾𝛾 + 𝛼𝛼 − 𝜆𝜆 𝛽𝛽 0

𝛾𝛾 −𝜎𝜎 − 𝜎𝜎� − 𝜆𝜆 0
0 𝜎𝜎 −𝜇𝜇 − 𝜆𝜆

� = 0.      (10) 

𝜆𝜆2(−𝜇𝜇 − 𝜆𝜆) �−𝛾𝛾 + 𝛼𝛼 − 𝜆𝜆 𝛽𝛽
𝛾𝛾 −𝜎𝜎 − 𝜎𝜎� − 𝜆𝜆� = 0.      (11) 

𝜆𝜆2(−𝜇𝜇 − 𝜆𝜆)[𝜆𝜆2 + (𝛾𝛾 − 𝛼𝛼 + 𝜎𝜎 + 𝜎𝜎�)𝜆𝜆 + 𝛾𝛾(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼𝛼𝛼].   (12) 

This implies 𝜆𝜆 = 0,0,−𝜇𝜇 are three Eigenvalues, and the remaining two Eigenvalues can be found 
from the following characteristic polynomial  

𝜆𝜆2 + (𝛾𝛾 − 𝛼𝛼 + 𝜎𝜎 + 𝜎𝜎�)𝜆𝜆 + 𝛾𝛾(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼𝛼𝛼 = 0.    (13) 

Now according to Ruth Hurwitz's criteria, the second-degree polynomials have both roots in the open 
left half-plane if and only if 

𝛾𝛾 − 𝛼𝛼 + 𝜎𝜎 + 𝜎𝜎� > 0 and 𝛾𝛾(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼(𝜎𝜎 + 𝜎𝜎�) − 𝛼𝛼𝛼𝛼 > 0.    (14) 

So the system will be stable if conditions (14) are met. 
Since the ordinary differential equations model only describes the changes in individuals over 

time, which does not discuss the variations of susceptible, exposed, infected, quarantined and 
recovered individuals over space. For space variation, both convection and diffusion effects can be 
included. Still, only diffusive effects are considered with each category of individuals in this study so 
that the resulting differential equations become partial differential equations (PDEs) of parabolic 
type. These partial differential equations are more general than the corresponding model of ordinary 
differential equations (ODEs). If the coefficients of diffusions are chosen to be zero, the model of 
PDEs becomes the model of epidemic disease comprised of ODEs. Also, a time-fractional 
differential equations model is considered instead of the classical model of the differential equation. 

A numerical scheme has been proposed [51] for a fractional diffusive SEAIR model with a 
non-linear incidence rate. A numerical scheme will be proposed for the fraction diffusive SEIQR 
model. For constructing a fractional diffusive model, the following fractional partial differential 
equations model is presented by incorporating fractional Caputo time derivative and diffusion in the 
system of Eqs (1)–(5). 

The fractional diffusive epidemic model for COVID-19 is given as, 

𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆 = 𝑑𝑑1
𝜕𝜕2𝑆𝑆
𝜕𝜕𝜕𝜕2

− 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼�𝑆𝑆𝑆𝑆,         (15) 
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𝐷𝐷𝑡𝑡𝛼𝛼𝐸𝐸 = 𝑑𝑑2
𝜕𝜕2𝐸𝐸
𝜕𝜕𝜕𝜕2

+ 𝛼𝛼�𝑆𝑆𝑆𝑆 + 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾,       (16) 

𝐷𝐷𝑡𝑡𝛼𝛼𝐼𝐼 = 𝑑𝑑3
𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕2

+ 𝛾𝛾𝛾𝛾 − 𝜎𝜎𝜎𝜎 − 𝜎𝜎�𝐼𝐼,        (17) 

𝐷𝐷𝑡𝑡𝛼𝛼𝑄𝑄 = 𝑑𝑑4
𝜕𝜕2𝑄𝑄
𝜕𝜕𝜕𝜕2

+ 𝜎𝜎𝜎𝜎 − 𝜇𝜇𝜇𝜇,        (18) 

𝐷𝐷𝑡𝑡𝛼𝛼𝑅𝑅 = 𝑑𝑑5
𝜕𝜕2𝑅𝑅
𝜕𝜕𝜕𝜕2

+ 𝜇𝜇𝜇𝜇 + 𝜎𝜎�𝐼𝐼.        (19) 

In the first stage, a fractional numerical scheme will be constructed for the general type of parabolic 
equation and one of the equations in the model (15)–(19). Later on, stability and convergence will be 
provided. Further, it is assumed that the solution of model (15)–(19) exists and it is unique. 

3. Construction of a fractional numerical scheme 

Before constructing the proposed scheme for the considered model, it is constructed for the 
general form of the fractional time-dependent parabolic equation of the form, 

𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢 = 𝑑̌𝑑 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+ 𝑐̌𝑐𝑓𝑓(𝑢𝑢),        (20) 

where 𝑑̌𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐̌𝑐 are constants. 
Let 

𝑓𝑓(𝑢𝑢) = 𝑓𝑓1(𝑢𝑢) − 𝑢𝑢𝑢𝑢2(𝑢𝑢),        (21) 

where 𝑓𝑓1(𝑢𝑢) and 𝑓𝑓2(𝑢𝑢) are positive functions of 𝑢𝑢. In the application procedure of the proposed 
fractional scheme, a difference equation is constructed first in the form, 

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑎𝑎�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̌𝑑 �
𝑢𝑢𝑖𝑖+1
𝑛𝑛 −2𝑢𝑢𝑖𝑖

𝑛𝑛+1+𝑢𝑢𝑖𝑖−1
𝑛𝑛

(∆𝑥𝑥)2 � + 𝑐̌𝑐 �𝑓𝑓1(𝑢𝑢𝑖𝑖𝑛𝑛) − 𝑢𝑢𝑖𝑖𝑛𝑛+1𝑓𝑓2(𝑢𝑢𝑖𝑖𝑛𝑛)�� +

𝑏𝑏�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̌𝑑 �
𝑢𝑢𝑖𝑖+1
𝑛𝑛+1−2𝑢𝑢𝑖𝑖

𝑛𝑛+1+𝑢𝑢𝑖𝑖−1
𝑛𝑛+1

(∆𝑥𝑥)2 � + 𝑐̌𝑐𝑢𝑢𝑖𝑖𝑛𝑛+1 �𝑓𝑓1(𝑢𝑢𝑖𝑖𝑛𝑛+1) − 𝑢𝑢𝑖𝑖𝑛𝑛+1𝑓𝑓2(𝑢𝑢𝑖𝑖𝑛𝑛+1)��.  (22) 

The next step is to use the fractional Taylor series for the term 𝑢𝑢𝑖𝑖𝑛𝑛+1 in the form, 

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝑢𝑢𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝜕𝜕𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡𝛼𝛼

�
𝑖𝑖

𝑛𝑛
+ (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) �
𝜕𝜕2𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡2𝛼𝛼

�
𝑖𝑖

𝑛𝑛
+ 𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼).    (23) 

Substituting the fractional Taylor series (23) into Eq (22) and rewriting the resulting equation in the 
form, 

𝑢𝑢𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝜕𝜕𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡𝛼𝛼

�
𝑖𝑖

𝑛𝑛
+ (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) �
𝜕𝜕2𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡2𝛼𝛼

�
𝑖𝑖

𝑛𝑛
= 𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑎𝑎�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 −

2𝑑𝑑�(Δ𝑡𝑡)𝛼𝛼𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖

𝑛𝑛

Γ(𝛼𝛼+1)(∆𝑥𝑥)2 −
2𝑑𝑑�(Δ𝑡𝑡)2𝛼𝛼𝐷𝐷𝑡𝑡

2𝛼𝛼𝑢𝑢𝑖𝑖
𝑛𝑛

Γ(2𝛼𝛼+1)(∆𝑥𝑥)2 +

𝑐̌𝑐 �− (Δ𝑡𝑡)𝛼𝛼𝑓𝑓2�𝑢𝑢𝑖𝑖
𝑛𝑛�

Γ(𝛼𝛼+1) 𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 −
(Δ𝑡𝑡)2𝛼𝛼𝑓𝑓2�𝑢𝑢𝑖𝑖

𝑛𝑛�
Γ(2𝛼𝛼+1) 𝐷𝐷𝑡𝑡2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛�� + 𝑏𝑏�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛�.    (24) 

Comparing coefficients of 𝑢𝑢𝑖𝑖𝑛𝑛, �𝜕𝜕
𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡𝛼𝛼

�
𝑖𝑖

𝑛𝑛
 and �𝜕𝜕

2𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡2𝛼𝛼

�
𝑖𝑖

𝑛𝑛
 on both sides of Eq (24) yields, 
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1 = 𝑎𝑎� �1 − 2𝑑𝑑�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(∆𝑥𝑥)2 −
𝑐𝑐̌(Δ𝑡𝑡)𝛼𝛼𝑓𝑓2�𝑢𝑢𝑖𝑖

𝑛𝑛�
Γ(𝛼𝛼+1) �+ 𝑏𝑏�,      (25) 

1
Γ(2𝛼𝛼+1) = 𝑎𝑎�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �−
2𝑑𝑑�

Γ(2𝛼𝛼+1)(∆𝑥𝑥)2 −
𝑐𝑐̌𝑓𝑓2�𝑢𝑢𝑖𝑖

𝑛𝑛�
Γ(2𝛼𝛼+1)� + 𝑏𝑏�

�Γ(𝛼𝛼+1)�2
.    (26) 

Solving Eqs (25) and (26) yields the values of 𝑎𝑎� and 𝑏𝑏� and the difference equation using the values 
of 𝑎𝑎� and 𝑏𝑏� will be the discretized equation for the second-order fractional implicit scheme for 
solving Eq (20). 

4. Construction of numerical scheme for epidemic disease model 

To construct the fractional numerical scheme for the model (15)–(19), one of the equations in 
the model will be chosen. For doing so, consider the Eq (15) with discretization is given as,  

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛+1−2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖𝑛𝑛+1𝐸𝐸𝑖𝑖𝑛𝑛+1 − 𝛽𝛽𝑆𝑆𝑖𝑖𝑛𝑛+1𝐼𝐼𝑖𝑖𝑛𝑛+1� +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛 −2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖𝑛𝑛+1𝐸𝐸𝑖𝑖𝑛𝑛 − 𝛽𝛽𝑆𝑆𝑖𝑖𝑛𝑛+1𝐼𝐼𝑖𝑖𝑛𝑛�.     (27) 

In Eq (27), "𝑎𝑎" and "𝑏𝑏" are unknown to be determined. Their values will be found by 
applying Taylor series expansion in the fractional derivative. So, for doing so, consider the following 
Taylor series in fractional derivatives, 

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝜕𝜕𝛼𝛼𝑆𝑆
𝜕𝜕𝑡𝑡𝛼𝛼

�
𝑖𝑖

𝑛𝑛
+ (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) �
𝜕𝜕2𝛼𝛼𝑆𝑆
𝜕𝜕𝑡𝑡2𝛼𝛼

�
𝑖𝑖

𝑛𝑛
+ 𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼).    (28) 

Substituting Taylor series expansion (28) into (27), it is obtained 

𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)𝐷𝐷𝑡𝑡
2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼) = 𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) (𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛+1) + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 −

2𝑑𝑑1(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(Δ𝑥𝑥)2 𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 −

2𝑑𝑑1(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)(Δ𝑥𝑥)2 𝐷𝐷𝑡𝑡
2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 − 𝛼𝛼� (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛 − 𝛼𝛼� (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)𝐷𝐷𝑡𝑡
2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛 −

𝛽𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 − 𝛽𝛽 (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛𝐷𝐷𝑡𝑡2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛�.      (29) 

Comparing coefficients of 𝑆𝑆𝑖𝑖𝑛𝑛,𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑡𝑡2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 on both sides of Eq (29) yields the following two 
equations in two unknowns,  

(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) = 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �1 − 2𝑑𝑑1(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(Δ𝑥𝑥)2 − 𝛼𝛼� (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐸𝐸𝑖𝑖
𝑛𝑛 − 𝛽𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛� ,  (30) 

(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) = 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)
(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �−
2𝑑𝑑1(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)(Δ𝑥𝑥)2 − 𝛼𝛼� (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)𝐸𝐸𝑖𝑖
𝑛𝑛 − 𝛽𝛽 (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛�. (31) 

Equation (30) can be simplified as  

1 = 𝑎𝑎 + 𝑏𝑏 �1 − 2𝑑𝑑1(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(Δ𝑥𝑥)2 − 𝛼𝛼� (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐸𝐸𝑖𝑖
𝑛𝑛 − 𝛽𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛�.   (32) 

Upon solving Eqs (31) and (32), values for "𝑎𝑎" and "𝑏𝑏" can be found. After finding "𝑎𝑎" and "𝑏𝑏", 
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the discretized Eq (27) can be used to find the unknown 𝑆𝑆𝑖𝑖𝑛𝑛+1 and this value is found by the use of 
an additional iterative method. 

The positivity of the numerical solution obtained by applying the proposed scheme for the first 
equation in a model (15)–(19) depends on two conditions. First, it depends on found values of 
parameters "𝑎𝑎" and "𝑏𝑏" by solving Eqs (31) and (32), and second, it depends on those values 
obtained by the remaining difference equations discretized by the proposed scheme to the rest of the 
equations in the model (15)–(19). If all the parameters in the difference equation are positive, the 
positivity would be guaranteed. Since there are conditions for a positive solution, the scheme is a 
conditionally positivity-preserving scheme. If the parameters 𝑎𝑎 and 𝑏𝑏 are positive, then by looking 
at the difference Eq (27) and collecting the terms of 𝑆𝑆𝑖𝑖𝑛𝑛+1 on the left-hand side of the equation, the 
resulting equation will produce a positive solution because each term in the resulting equation will be 
positive with the assumption of choosing positive initial conditions, i.e., 

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 1
𝜃𝜃
�𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑎𝑎(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛+1+𝑆𝑆𝑖𝑖−1

𝑛𝑛+1

(Δ𝑥𝑥)2 � + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛 +𝑆𝑆𝑖𝑖−1

𝑛𝑛

(Δ𝑥𝑥)2 �� > 0, 

where 𝜃𝜃 = 1 + 𝑎𝑎(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐸𝐸𝑖𝑖𝑛𝑛+1 + 𝛽𝛽𝐼𝐼𝑖𝑖𝑛𝑛+1� + 𝑏𝑏(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐸𝐸𝑖𝑖𝑛𝑛 + 𝛽𝛽𝐼𝐼𝑖𝑖𝑛𝑛�, 

provided that 𝑎𝑎 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 > 0, exposed, infected, quarantined, and recovered individuals at time 
level 𝑛𝑛 + 1 and grid point 𝑖𝑖 are non-negative. The positivity of other variables depends on the 
positivity of included parameters in their difference equations.  

5. Stability analysis of proposed numerical scheme  

To find the stability condition consider the first general type of linear fractional partial 
differential equation of the form,  

𝜕𝜕𝛼𝛼𝑢𝑢
𝜕𝜕𝑡𝑡𝛼𝛼

= 𝑑̅𝑑 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

− 𝛽̅𝛽𝑢𝑢,         (33) 

for 0 < 𝛼𝛼 ≤ 1. The stability analysis can be found only for parabolic equations without diffusion, 
and in that case, one may consider the case when, 

𝛽̅𝛽 = 0.          (34) 

To discretize parabolic fractional equation with souse term, Eq (33) using the proposed fractional 
scheme, the difference equation is expressed as:  

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑
𝑢𝑢𝑖𝑖+1
𝑛𝑛+1−2𝑢𝑢𝑖𝑖

𝑛𝑛+1+𝑢𝑢𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛽̅𝛽𝑢𝑢𝑖𝑖𝑛𝑛+1� + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑
𝑢𝑢𝑖𝑖+1
𝑛𝑛 −2𝑢𝑢𝑖𝑖

𝑛𝑛+1+𝑢𝑢𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛽̅𝛽𝑢𝑢𝑖𝑖𝑛𝑛+1�.  (35) 

Using fractional Taylor series expansion (23) for 𝑢𝑢𝑖𝑖𝑛𝑛+1 and substituting it into Eq (35) and rewriting 
the resulting in the following manner,  

𝑢𝑢𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)𝐷𝐷𝑡𝑡
2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼) = 𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)
{𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛+1} + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 −

2𝑑𝑑�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(Δ𝑥𝑥)2 𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 −

2𝑑𝑑�(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)(Δ𝑥𝑥)2 𝐷𝐷𝑡𝑡
2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 − 𝛽̅𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 − 𝛽̅𝛽 (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)𝐷𝐷𝑡𝑡
2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼)�.  (36) 

Comparing coefficients of 𝑢𝑢𝑖𝑖𝑛𝑛,𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑡𝑡2𝛼𝛼𝑢𝑢𝑖𝑖𝑛𝑛 on both sides of Eq (36), it is obtained  

AIMS Mathematics  Volume 7, Issue 8, 14299–14322. 



14308 

(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) = 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �1 − 2𝑑𝑑�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)(Δ𝑥𝑥)2 − 𝛽̅𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)�,     (37) 

(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1) = 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)
(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �−
2𝑑𝑑�(Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)(Δ𝑥𝑥)2 − 𝛽̅𝛽 (Δ𝑡𝑡)2𝛼𝛼

Γ(2𝛼𝛼+1)�.    (38) 

The expressions for "𝑎𝑎" and "𝑏𝑏" can be found by solving Eqs (37) and (38).  
Theorem. Proposed fractional numerical scheme is unconditionally stable.  
Proof. Consider Eq (33) and the following transformations  

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝐸𝐸�𝑛𝑛+1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, 𝑢𝑢𝑖𝑖±1𝑛𝑛 = 𝐸𝐸�𝑛𝑛𝑒𝑒(𝑖𝑖±1)𝐼𝐼𝐼𝐼.       (39) 

Substituting transformations (39) into Eq (35), it is obtained  

𝐸𝐸�𝑛𝑛+1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑
𝑒𝑒(𝑖𝑖+1)𝐼𝐼𝐼𝐼−2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝑒𝑒(𝑖𝑖−1)𝐼𝐼𝐼𝐼

(Δ𝑥𝑥)2 − 𝛽̅𝛽𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝐸𝐸�𝑛𝑛+1 +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑 �
𝑒𝑒(𝑖𝑖+1)𝐼𝐼𝐼𝐼+𝑒𝑒(𝑖𝑖−1)𝐼𝐼𝐼𝐼

(Δ𝑥𝑥)2 � 𝐸𝐸�𝑛𝑛 + �−2𝑑𝑑
�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(Δ𝑥𝑥)2 − 𝛽̅𝛽𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖�𝐸𝐸�𝑛𝑛+1�.   (40) 

Dividing both sides of Eq (40) by 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 gives,  

𝐸𝐸�𝑛𝑛+1 = 𝐸𝐸�𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑
𝑒𝑒𝐼𝐼𝐼𝐼−2+𝑒𝑒−𝐼𝐼𝐼𝐼

(Δ𝑥𝑥)2 − 𝛽̅𝛽� 𝐸𝐸�𝑛𝑛+1 + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝑑̅𝑑 �𝑒𝑒

𝐼𝐼𝐼𝐼+𝑒𝑒−𝐼𝐼𝐼𝐼

(Δ𝑥𝑥)2 � 𝐸𝐸�𝑛𝑛

+ � −2𝑑𝑑�
(Δ𝑥𝑥)2 − 𝛽̅𝛽� 𝐸𝐸�𝑛𝑛+1

�.  (41) 

Using trigonometric identities in Eq (41) and collecting the coefficients of 𝐸𝐸�𝑛𝑛+1 of the left side, it is 
obtained  

�1 − 𝑎𝑎
(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼 + 1) �𝑑̅𝑑
(2𝑐𝑐𝑐𝑐𝑐𝑐ψ − 2)

(Δ𝑥𝑥)2 − 𝛽̅𝛽� −
𝑏𝑏(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼 + 1)�
−2𝑑̅𝑑

(Δ𝑥𝑥)2 + 𝛽̅𝛽�� 𝐸𝐸�𝑛𝑛+1 

= 𝐸𝐸�𝑛𝑛 + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑̅𝑑
(2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

(Δ𝑥𝑥)2 � 𝐸𝐸�𝑛𝑛.            (42) 

Let 𝑑̃𝑑 = (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)
𝑑𝑑�

(Δ𝑥𝑥)2, then Eq (42) can be expressed as,  

�1 − 2𝑎𝑎𝑑̃𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝛽̅𝛽 + 2𝑏𝑏𝑑̃𝑑 − 𝑏𝑏𝛽̅𝛽 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)� 𝐸𝐸�
𝑛𝑛+1 = 𝐸𝐸�𝑛𝑛�1 + 2𝑏𝑏𝑑̃𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �. (43) 

The amplification factor can be expressed as,  

𝐸𝐸�𝑛𝑛+1

𝐸𝐸�𝑛𝑛
= 1+2𝑏𝑏𝑑𝑑�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1−2𝑎𝑎𝑑𝑑�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1)+𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)𝛽𝛽

�+2𝑏𝑏𝑑𝑑�−𝑏𝑏𝛽𝛽� (Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)

.     (44) 

The stability condition can be expressed as,  

� 1+2𝑏𝑏𝑑𝑑�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1−2𝑎𝑎𝑑𝑑�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1)+𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)𝛽𝛽

�+2𝑏𝑏𝑑𝑑�−𝑏𝑏𝛽𝛽� (Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)

� ≤ 1.     (45) 

Here special cases will be discussed with the specific value of 𝛼𝛼. 
Let 𝛼𝛼 = 0.9, then the stability condition (45) can be expressed as,  
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� 1+2𝑏𝑏𝑑𝑑�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1−2𝑎𝑎𝑑𝑑�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1)+𝑎𝑎(Δ𝑡𝑡)0.9
Γ(1.9) 𝛽𝛽

�+2𝑏𝑏𝑑𝑑�−𝑏𝑏𝛽𝛽�(Δ𝑡𝑡)0.9
Γ(1.9)

� ≤ 1,      (46) 

where 𝑎𝑎 ≈ 0.889627

1.61239−1.50299𝑑𝑑�(Δ𝑡𝑡)0.9

(Δ𝑥𝑥)2 −0.751497𝛽𝛽�(Δ𝑡𝑡)0.9
 and 𝑏𝑏 ≈ 0.722764

1.61239−1.50299𝑑𝑑�(Δ𝑡𝑡)0.9

(Δ𝑥𝑥)2 −0.751497𝛽𝛽�(Δ𝑡𝑡)0.9
. 

Condition (46) can be expressed as 

�1 + 2𝑏𝑏𝑑̃𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ≤ 1 + 2|𝑎𝑎|𝑑̃𝑑(2) + |𝑎𝑎|(Δ𝑡𝑡)0.9

Γ(1.9) + 2|𝑏𝑏|𝑑̃𝑑 + |𝑏𝑏|𝛽̅𝛽 (Δ𝑡𝑡)0.9

Γ(1.9) .  (47) 

Clearly, for any value of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 inequality (47) holds. Similarly, the stability can be checked for any 
fixed value of 𝛼𝛼, and it can be concluded that the proposed fractional scheme is unconditionally 
stable for any value of 𝛼𝛼 in the interval (0,1].  

4.1. Convergence of proposed numerical scheme 

Theorem. The proposed fractional numerical scheme converges for non-linear epidemic fractional 
diffusive equation (15) if the following condition holds,  

𝛿𝛿 − |𝑎𝑎|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
2

(Δ𝑥𝑥)2 + 𝛼𝛼�|𝐻𝐻21| + 𝛽𝛽|𝐻𝐻22|� > 0, 

where 𝛿𝛿 = 1 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻11 + 𝛽𝛽𝐻𝐻21� + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻31 + 𝛽𝛽𝐻𝐻41�, 

∇𝐹𝐹1 = [𝐻𝐻11,𝐻𝐻12],∇𝐺𝐺1 = [𝐻𝐻21,𝐻𝐻22],∇𝐹𝐹2 = [𝐻𝐻31,𝐻𝐻32],∇𝐺𝐺2 = [𝐻𝐻41,𝐻𝐻42] 

where 𝐹𝐹1 = 𝐹𝐹1(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛+1), 𝐺𝐺1 = 𝐺𝐺1(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛+1),𝐹𝐹2 = 𝐹𝐹2(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛) & 𝐺𝐺2 = 𝐺𝐺2(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛). 

Proof. The discretized form of Eq (15) can be expressed as,  

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛+1−2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝐹𝐹1(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛+1) − 𝛽𝛽𝐺𝐺1(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛+1)� +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛 −2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼�𝐹𝐹2(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛) − 𝛽𝛽𝐺𝐺2(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛)�.     (48) 

The expression for "𝑎𝑎" and "𝑏𝑏" can be found by comparing the coefficients of fractional Taylor 
series expansions, and their values can be found by solving Eqs (31) and (32).  
Let the exact difference equation for Eq (15) be expressed as,  

𝑆𝑆𝑖̅𝑖𝑛𝑛+1 = 𝑆𝑆𝑖̅𝑖𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆̅𝑆𝑖𝑖+1
𝑛𝑛+1−2𝑆̅𝑆𝑖𝑖

𝑛𝑛+1+𝑆̅𝑆𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝐹𝐹1(𝑆𝑆𝑖̅𝑖𝑛𝑛+1,𝐸𝐸�𝑖𝑖𝑛𝑛+1) − 𝛽𝛽𝐺𝐺1(𝑆𝑆𝑖̅𝑖𝑛𝑛+1, 𝐼𝐼𝑖̅𝑖𝑛𝑛+1)� +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆̅𝑆𝑖𝑖+1
𝑛𝑛 −2𝑆̅𝑆𝑖𝑖

𝑛𝑛+1+𝑆̅𝑆𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼�𝐹𝐹2(𝑆𝑆𝑖̅𝑖𝑛𝑛+1,𝐸𝐸�𝑖𝑖𝑛𝑛) − 𝛽𝛽𝐺𝐺2(𝑆𝑆𝑖̅𝑖𝑛𝑛+1, 𝐼𝐼𝑖̅𝑖𝑛𝑛)�.     (49) 

Consider,  

𝑆𝑆𝑖𝑖𝑛𝑛+1 − 𝑆𝑆𝑖̅𝑖𝑛𝑛+1 = 𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝐸𝐸𝑖𝑖𝑛𝑛+1 − 𝐸𝐸�𝑖𝑖𝑛𝑛+1 = 𝑒𝑒2,𝑖𝑖

𝑛𝑛+1 , 𝐼𝐼𝑖𝑖𝑛𝑛+1 − 𝐼𝐼𝑖̅𝑖𝑛𝑛+1 = 𝑒𝑒3,𝑖𝑖
𝑛𝑛+1. 

By using the Mean value Theorem, the following relationship can be established 
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𝐹𝐹1(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛+1) − 𝐹𝐹1(𝑆𝑆𝑖̅𝑖𝑛𝑛+1,𝐸𝐸�𝑖𝑖𝑛𝑛+1) = 𝒆𝒆1,𝑖𝑖
𝑛𝑛+1.∇𝐹𝐹1(𝐶𝐶1,𝐶𝐶2),    (50) 

𝐺𝐺1(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛+1) − 𝐹𝐹1(𝑆𝑆𝑖̅𝑖𝑛𝑛+1, 𝐼𝐼𝑖̅𝑖𝑛𝑛+1) = 𝒆𝒆2,𝑖𝑖
𝑛𝑛+1.∇𝐺𝐺1(𝐶𝐶3,𝐶𝐶4),     (51) 

𝐹𝐹2(𝑆𝑆𝑖𝑖𝑛𝑛+1,𝐸𝐸𝑖𝑖𝑛𝑛) − 𝐹𝐹2(𝑆𝑆𝑖̅𝑖𝑛𝑛+1,𝐸𝐸�𝑖𝑖𝑛𝑛) = 𝒆𝒆3,𝑖𝑖
𝑛𝑛+12.∇𝐹𝐹2(𝐶𝐶5,𝐶𝐶6),      (52) 

𝐺𝐺2(𝑆𝑆𝑖𝑖𝑛𝑛+1, 𝐼𝐼𝑖𝑖𝑛𝑛) − 𝐺𝐺2(𝑆𝑆𝑖̅𝑖𝑛𝑛+1, 𝐼𝐼𝑖̅𝑖𝑛𝑛) = 𝒆𝒆4,𝑖𝑖
𝑛𝑛+12.∇𝐺𝐺2(𝐶𝐶7,𝐶𝐶8),      (53) 

where 𝐶𝐶1 = 𝑆𝑆𝑖̅𝑖𝑛𝑛+1 + 𝜀𝜀1𝑒𝑒1,𝑖𝑖
𝑛𝑛+1 , 𝐶𝐶2 = 𝐸𝐸�𝑖𝑖𝑛𝑛+1 + 𝜀𝜀2𝑒𝑒2,𝑖𝑖

𝑛𝑛+1 , 𝐶𝐶3 = 𝑆𝑆𝑖̅𝑖𝑛𝑛+1 + 𝜀𝜀3𝑒𝑒1,𝑖𝑖
𝑛𝑛+1 , 𝐶𝐶4 = 𝐼𝐼𝑖̅𝑖𝑛𝑛+1 + 𝜀𝜀4𝑒𝑒3,𝑖𝑖

𝑛𝑛+1 , 

𝐶𝐶5 = 𝑆𝑆𝑖̅𝑖𝑛𝑛+1 + 𝜀𝜀5𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝐶𝐶6 = 𝐸𝐸�𝑖𝑖𝑛𝑛 + 𝜀𝜀6𝑒𝑒2,𝑖𝑖

𝑛𝑛 , 𝐶𝐶7 = 𝑆𝑆𝑖̅𝑖𝑛𝑛+1 + 𝜀𝜀7𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝐶𝐶8 = 𝐼𝐼𝑖̅𝑖𝑛𝑛 + 𝜀𝜀8𝑒𝑒3,𝑖𝑖

𝑛𝑛  

𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4, 𝜀𝜀5, 𝜀𝜀6, 𝜀𝜀7, 𝜀𝜀8𝜖𝜖[0,1]. 

Let 𝒆𝒆1,𝑖𝑖
𝑛𝑛+1 = �𝑒𝑒1,𝑖𝑖

𝑛𝑛+1, 𝑒𝑒2,𝑖𝑖
𝑛𝑛+1�

𝑡𝑡
, 𝒆𝒆2,𝑖𝑖

𝑛𝑛+1 = �𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝑒𝑒3,𝑖𝑖

𝑛𝑛+1�
𝑡𝑡
,𝒆𝒆3,𝑖𝑖

𝑛𝑛+12 = �𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝑒𝑒2,𝑖𝑖

𝑛𝑛 �
𝑡𝑡
,𝒆𝒆4,𝑖𝑖

𝑛𝑛+12 = �𝑒𝑒1,𝑖𝑖
𝑛𝑛+1, 𝑒𝑒3,𝑖𝑖

𝑛𝑛 �
𝑡𝑡
. 

Subtracting Eq (49) from Eq (48) yields an equation of the form 

𝑒𝑒1,𝑖𝑖
𝑛𝑛+1 = 𝑒𝑒1,𝑖𝑖

𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑒𝑒1,𝑖𝑖+1
𝑛𝑛+1 −2𝑒𝑒1,𝑖𝑖

𝑛𝑛+1+𝑒𝑒1,𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼��𝑒𝑒1,𝑖𝑖
𝑛𝑛+1𝐻𝐻11 + 𝑒𝑒2,𝑖𝑖

𝑛𝑛+1𝐻𝐻12� − 𝛽𝛽�𝑒𝑒1,𝑖𝑖
𝑛𝑛+1𝐻𝐻21 + 𝑒𝑒3,𝑖𝑖

𝑛𝑛+1𝐻𝐻22�� +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑒𝑒1,𝑖𝑖+1
𝑛𝑛 −2𝑒𝑒1,𝑖𝑖

𝑛𝑛+1+𝑒𝑒1,𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼��𝑒𝑒1,𝑖𝑖
𝑛𝑛+1𝐻𝐻31 + 𝑒𝑒2,𝑖𝑖

𝑛𝑛 𝐻𝐻32� − 𝛽𝛽�𝑒𝑒1,𝑖𝑖
𝑛𝑛+1𝐻𝐻41 + 𝑒𝑒3,𝑖𝑖

𝑛𝑛 𝐻𝐻42��,   (54) 

where ∇𝐹𝐹1 = [𝐻𝐻11,𝐻𝐻12]𝑡𝑡,∇𝐺𝐺1 = [𝐻𝐻21,𝐻𝐻22]𝑡𝑡,∇𝐹𝐹2 = [𝐻𝐻31,𝐻𝐻32]𝑡𝑡,∇𝐺𝐺2 = [𝐻𝐻41,𝐻𝐻42]𝑡𝑡. 

Collecting the coefficients of 𝑒𝑒1,𝑖𝑖
𝑛𝑛+1 on the left-hand side of Eq (54), it is obtained  

�1 + 𝑎𝑎
(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼 + 1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻11 + 𝛽𝛽𝐻𝐻21� + 𝑏𝑏
(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼 + 1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻31 + 𝛽𝛽𝐻𝐻41�� 𝑒𝑒1,𝑖𝑖
𝑛𝑛+1 

= 𝑒𝑒1,𝑖𝑖
𝑛𝑛 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)�
𝑑𝑑1

𝑒𝑒1,𝑖𝑖+1
𝑛𝑛+1 +𝑒𝑒1,𝑖𝑖−1

𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑒𝑒2,𝑖𝑖
𝑛𝑛+1𝐻𝐻12

−𝛽𝛽𝑒𝑒3,𝑖𝑖
𝑛𝑛+1𝐻𝐻22

� + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)�
𝑑𝑑1

𝑒𝑒1,𝑖𝑖+1
𝑛𝑛 +𝑒𝑒1,𝑖𝑖−1

𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑒𝑒2,𝑖𝑖
𝑛𝑛 𝐻𝐻32

−𝛽𝛽𝑒𝑒3,𝑖𝑖
𝑛𝑛 𝐻𝐻42

�.  (55) 

Let 𝑒𝑒𝑛𝑛+1 = max�max1≤𝑖𝑖≤𝑁𝑁�𝑒𝑒1,𝑖𝑖
𝑛𝑛+1� , max1≤𝑖𝑖≤𝑁𝑁�𝑒𝑒2,𝑖𝑖

𝑛𝑛+1� , max1≤𝑖𝑖≤𝑁𝑁�𝑒𝑒3,𝑖𝑖
𝑛𝑛+1��  and applying absolute on 

both sides of Eq (55), it is obtained  

𝑒𝑒𝑛𝑛+1 ≤ 𝑒𝑒𝑛𝑛 + |𝑎𝑎|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝑑𝑑1

2𝑒𝑒𝑛𝑛+1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝑒𝑒𝑛𝑛+1|𝐻𝐻12|

+𝛽𝛽𝑒𝑒𝑛𝑛+1|𝐻𝐻22|
� + |𝑏𝑏|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
𝑑𝑑1

2𝑒𝑒𝑛𝑛

(Δ𝑥𝑥)2 + 𝛼𝛼�𝑒𝑒𝑛𝑛|𝐻𝐻32|

+𝛽𝛽𝑒𝑒𝑛𝑛|𝐻𝐻42|
�,   (56) 

where 𝛿𝛿 = 1 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻11 + 𝛽𝛽𝐻𝐻21� + 𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�𝐻𝐻31 + 𝛽𝛽𝐻𝐻41�. 

Collecting coefficients of 𝑒𝑒𝑛𝑛+1, it is obtained  
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�𝛿𝛿 − |𝑎𝑎|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�|𝐻𝐻12| + 𝛽𝛽|𝐻𝐻22|�� 𝑒𝑒𝑛𝑛+1 ≤ 𝑒𝑒𝑛𝑛 + |𝑏𝑏|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�|𝐻𝐻32| + 𝛽𝛽|𝐻𝐻42|� 𝑒𝑒𝑛𝑛.  (57) 

Let, 

𝛿𝛿1 = 𝛿𝛿 − |𝑎𝑎|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�|𝐻𝐻12| + 𝛽𝛽|𝐻𝐻22|� > 0, 

𝛿𝛿2 = 1 + |𝑏𝑏|(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �
2𝑑𝑑1

(Δ𝑥𝑥)2 + 𝛼𝛼�|𝐻𝐻32| + 𝛽𝛽|𝐻𝐻42|�, 

𝛿𝛿3 = 𝛿𝛿2
𝛿𝛿1

. 

Then, inequality (57) can be expressed as,  

𝑒𝑒𝑛𝑛+1 ≤ 𝛿𝛿3𝑒𝑒𝑛𝑛 + 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�.      (58) 

Let 𝑛𝑛 = 0 in (58), it is obtained that  

𝑒𝑒1 ≤ 𝛿𝛿3𝑒𝑒0 + 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�.      (59) 

Since initial condition is exact, so 𝑒𝑒0 = 0, so Eq (59) can be expressed as,  

𝑒𝑒1 ≤ 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�. 

Let 𝑛𝑛 = 1 in (58), which yields 

𝑒𝑒2 ≤ 𝛿𝛿3𝑒𝑒1 + 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)� ≤ (1 + 𝛿𝛿3)𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�.   (60) 

If this continued, then  

𝑒𝑒𝑛𝑛+1 ≤ (1 + 𝛿𝛿3 + 𝛿𝛿32 + ⋯+ 𝛿𝛿3𝑛𝑛−1) + 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�, 

= �1−𝛿𝛿3
𝑛𝑛

1−𝛿𝛿3
� 𝐶𝐶�𝑂𝑂((Δ𝑡𝑡)3𝛼𝛼, (Δ𝑥𝑥)3)�.       (61) 

Since the series 1 + 𝛿𝛿3 + 𝛿𝛿32 + ⋯+ 𝛿𝛿3𝑛𝑛−1 + ⋯ is an infinite geometric series that will converge if 

|𝛿𝛿3| < 1. Therefore the convergence condition is �𝛿𝛿2
𝛿𝛿1
� < 1. Similarly, the convergence condition can 

be found for the remaining equations in the system (16)–(18).  

4.2. Comparison 

The proposed scheme results can be compared with results obtained by an existing scheme. One 
of the existing schemes considered for the epidemic model is the non-standard finite difference 
method. The fractional non-standard finite difference method is given for fractional diffusive 
epidemic Eq (15). 

The fractional non-standard finite difference method for Eq (15) is given as, 

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛 −2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖𝑛𝑛+1𝐸𝐸𝑖𝑖𝑛𝑛 − 𝛽𝛽𝑆𝑆𝑖𝑖𝑛𝑛+1𝐼𝐼𝑖𝑖𝑛𝑛�.   (62) 

The explicit form of the non-standard fractional scheme is expressed as,  
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𝑆𝑆𝑖𝑖𝑛𝑛+1 = � 1

1+2(Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)𝑑𝑑1+

(Δ𝑡𝑡)𝛼𝛼
Γ(𝛼𝛼+1)(𝛼𝛼�𝐸𝐸𝑖𝑖

𝑛𝑛+𝛽𝛽𝐼𝐼𝑖𝑖
𝑛𝑛)
� (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛 +𝑆𝑆𝑖𝑖−1

𝑛𝑛

(Δ𝑥𝑥)2 � .    (63) 

The main advantage of applying the fractional non-standard finite difference method (NSFD) is the 
stability and positivity of the solution. But the main drawback is its accuracy. It's not even first-order 
accurate in both cases when 𝛼𝛼 = 1 and 𝛼𝛼 ≠ 1, its lack of accuracy can be proved by applying 
standard and fractional Taylor series expansions. So, for the diffusive epidemic model, it can be 
proved that NSFD is neither first-order accurate nor consistent. So, due to these drawbacks, the 
obtained solution is also not accurate compared with the standard first-order method. This 
contribution also compared the proposed scheme with the fractional NSFD scheme and the 
first-order fractional Backward Euler method. The fractional Backward Euler method can be used for 
those cases when the solution is positive, and the method stays stable. The fractional Backward Euler 
method for Eq (15) is given as:  

𝑆𝑆𝑖𝑖𝑛𝑛+1 = 𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛+1−2𝑆𝑆𝑖𝑖

𝑛𝑛+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖𝑛𝑛+1𝐸𝐸𝑖𝑖𝑛𝑛+1 − 𝛽𝛽𝑆𝑆𝑖𝑖𝑛𝑛+1𝐼𝐼𝑖𝑖𝑛𝑛+1�.  (64) 

Now the drawback of using fractional NSFD is discussed. To become the method first-order accurate, 
it should satisfy first-order fractional Taylor series expansion. For this reason, expand 𝑆𝑆𝑖𝑖𝑛𝑛+1 in 
fractional Taylor series form for Eq (62) as, 

𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝑡𝑡)2𝛼𝛼) = 𝑆𝑆𝑖𝑖𝑛𝑛 + (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 −

2𝑑𝑑1(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐷𝐷𝑡𝑡
𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 −

𝛼𝛼�(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1)𝐸𝐸𝑖𝑖
𝑛𝑛𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 −

𝛽𝛽(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 + 𝑂𝑂((Δ𝑡𝑡)2𝛼𝛼)�.         (65) 

Comparing coefficients of 𝑆𝑆𝑖𝑖𝑛𝑛,𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑡𝑡2𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 on both sides of Eq. (65), it is obtained  

(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) = (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �1 − 2𝑑𝑑1(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) − 𝛼𝛼�𝐸𝐸𝑖𝑖
𝑛𝑛(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) − 𝛽𝛽(Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) 𝐼𝐼𝑖𝑖
𝑛𝑛�.    (66) 

From Eq (66), it is observed that the left-hand side is not equal to the right-hand side, so it means that 
coefficients of 𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 on both sides are not canceled with each other, or reminder term has a 
fractional derivative of the form 𝐷𝐷𝑡𝑡𝛼𝛼𝑆𝑆𝑖𝑖𝑛𝑛 which means that fractional NSFD is not first-order accurate.  

4.3. Order of convergence 

A parabolic equation with a classical derivative is tested to find the order of convergence of the 
proposed scheme. For doing so, consider the following parabolic equation 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

,          (67) 

subject to the boundary conditions, 

𝑢𝑢(𝑡𝑡, 𝑥𝑥) = 1 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 = 0
𝑢𝑢 → 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 → ∞

�,       (68) 

and using an initial condition, 
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𝑢𝑢(0, 𝑥𝑥) = 0.          (69) 

Equation (67) using boundary conditions (68) and initial condition (69) are solved with three 
different numerical schemes. The order of convergence of the three schemes is shown in Table 1. 
Theoretically, the employed schemes for Eqs (67)–(69) are second-order accurate as proved by 
applying the Taylor series, but according to Table 1, their convergence order is nearly one. 

Table 1. Comparison of the order of convergence of three numerical schemes. 

∆𝑡𝑡 
2nd order 
Crank-Nicolson 

2nd order Implicit-Explicit 2nd order Proposed 

𝐿𝐿2 Error 𝐶𝐶∆𝑡𝑡 𝐿𝐿2 Error 𝐶𝐶∆𝑡𝑡 𝐿𝐿2 Error 𝐶𝐶∆𝑡𝑡 

1
20�  0.0208 − 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 0.0208 − 

1
40�  0.0102 1.0280 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 0.0102 1.0280 

1
80�  0.0050 1.0286 0.0019 − 0.0050 1.0286 

1
160�  0.0024 1.0589 9.5766𝑒𝑒-04 0.9884 0.0024 1.0589 

1
320�  0.0013 0.8845 9.0566𝑒𝑒-04 1.0392 0.0013 0.8845 

One of the advantages of using the Non-standard finite difference method is its consumption of 
timeless than the proposed scheme. But it has the drawback of lacking accuracy. Since the 
considered NSFD is an explicit method, it takes less time than the proposed implicit scheme if the 
iterations are carried out by Gauss-Seidel iterative method for linear PDEs. So, the time consumption 
of any implicit scheme depends on the considered way of solving the difference equations obtained 
by applying the implicit scheme to some particular type of differential equation. The computation 
time of the implicit scheme can be reduced by using second-order Newton's method for non-linear 
problems. For linear problems, computation time can be reduced by directly solving the 
matrix-vector form equation instead of using another iterative solver. Matlab has the facility to solve 
the system of equations, so the difference equation in matrix-vector form can be solved directly by 
employing that Matlab facility. 

For the accuracy and computation time of the proposed and non-standard finite difference 
schemes, their comparison is made in solving Eqs (67)–(69). Figure 2 compares two schemes using 
50 grid points and 21-time levels. The time consumed by NSFD is 0.596988 seconds, and the 
proposed scheme consumed 1.9425 seconds to perfume the same task using the Gauss-Seidel 
iterative method. So due to the considered iterative method, the proposed scheme consumed the 
mentioned time, which may have been reduced by adopting a Matlab solver for solving 
matrix-vector equations for the linear PDE. 
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Figure 2. Comparison of proposed and NSFD schemes for the classical case. 

6. Results and discussions 

The fractional proposed scheme with an accuracy of two in both time and space has been 
implemented, and the results are compared with existing classical and fractional schemes. As 
mentioned in the previous section, NSFD is not even first-order accurate. Its comparison is made 
with the second-order proposed and first-order Euler methods. Figure 3 compares the proposed 
scheme with the Backward Euler method for faster convergence. The maximum norm considered for 
drawing Figure 3 is the difference of solutions computed over two consecutive iterations. The 
utilization of the proposed scheme and an iterative method on the difference equation (27) yields 

𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1 = 𝑆𝑆𝑖𝑖

𝑛𝑛,𝑘𝑘+1 + 𝑎𝑎 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛+1,𝑘𝑘−2𝑆𝑆𝑖𝑖

𝑛𝑛+1,𝑘𝑘+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛+1,𝑘𝑘+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1𝐸𝐸𝑖𝑖

𝑛𝑛+1,𝑘𝑘 − 𝛽𝛽𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1𝐼𝐼𝑖𝑖

𝑛𝑛+1,𝑘𝑘� +

𝑏𝑏 (Δ𝑡𝑡)𝛼𝛼

Γ(𝛼𝛼+1) �𝑑𝑑1
𝑆𝑆𝑖𝑖+1
𝑛𝑛,𝑘𝑘+1−2𝑆𝑆𝑖𝑖

𝑛𝑛+1,𝑘𝑘+1+𝑆𝑆𝑖𝑖−1
𝑛𝑛,𝑘𝑘+1

(Δ𝑥𝑥)2 − 𝛼𝛼�𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1𝐸𝐸𝑖𝑖

𝑛𝑛,𝑘𝑘+1 − 𝛽𝛽𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1𝐼𝐼𝑖𝑖

𝑛𝑛,𝑘𝑘+1�.  (70) 

So, the solution component 𝑆𝑆𝑖𝑖
𝑛𝑛+1,𝑘𝑘+1 on each grid point and at each time level is found iteratively. 

The iterative method will be stopped if the required criterion is met. The norm between consecutive 
two iterations is computed as 

‖𝑆𝑆(𝑡𝑡, 𝑥𝑥,𝑘𝑘 + 1) − 𝑆𝑆(𝑡𝑡, 𝑥𝑥,𝑘𝑘)‖2 < 𝑡𝑡𝑡𝑡𝑡𝑡,       (71) 

where 𝑡𝑡𝑡𝑡𝑡𝑡 is to a very small number nearly equal to zero. In inequality (71), the stopping criterion 
of susceptible individuals is given. Similarly, stopping criteria for each category of people can be 
expressed, and their maximum values are computed for each iteration. Figure 3 shows the maximum 
of all norms on each iteration for both the proposed and Backward Euler methods. Figure 3 shows 
that the proposed scheme converges faster than the Backward Euler method with the particular value 
of 𝛼𝛼. Figures 4 and 5 offer the comparison of three schemes over time for the classical case 𝛼𝛼 = 1. 
The difference between results obtained by three schemes can be seen in these Figures 4 and 5. Since it 
was mentioned that NSFD is not first-order accurate, its drawback in finding an accurate solution can 
be seen in these two figures. The results were computed for 50 grid points and 50-time levels. The 
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solution obtained by NSFD will be worse if results are computed using a smaller number of grid 
points and the smaller number of time levels. Figures 6 and 7 also compare three schemes, but this 
comparison is made over spatial variable 𝑥𝑥. The solution for both NSFD and the Backward Euler 
method is near because NSFD is second-order accurate in space. Still, the proposed scheme produced 
better results verified by applying another second-order scheme, the Crank-Nicolson method. But, 
the remaining categories of the individual solution obtained by the proposed scheme are near to the 
solution obtained by the Backward Euler method. Figures 8 and 9 show a comparison of three 
fractional schemes. Similar to the classical case, the fractional results are also not accurately obtained 
by fractional NSFD because, again, it is not first-order accurate using the fractional Taylor series 
approach.  

 

Figure 3. Comparison of fractional numerical schemes over iterations using 𝛼𝛼 = 0.5,𝛼𝛼1 =
0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 = 𝑑𝑑3 = 𝑑𝑑4 = 𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 =
50,𝑁𝑁𝑡𝑡 = 50. 

 

Figure 4. Comparison of three numerical schemes for susceptible and exposed individuals over 
time using 𝛼𝛼 = 1,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 = 𝑑𝑑3 = 𝑑𝑑4 =
𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 
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Figure 5. Comparison of three numerical schemes for infected and quarantined individuals over 
time using 𝛼𝛼 = 1,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 = 𝑑𝑑3 = 𝑑𝑑4 =
𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 

 

Figure 6. Comparison of three numerical schemes for susceptible and exposed individuals over 
space variable using 𝛼𝛼 = 1,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 =
𝑑𝑑3 = 𝑑𝑑4 = 𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 
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Figure 7. Comparison of three numerical schemes for infected and quarantined individuals over 
space variable using 𝛼𝛼 = 1,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 =
𝑑𝑑3 = 𝑑𝑑4 = 𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 

 

Figure 8. Comparison of three numerical schemes for susceptible and exposed individuals over 
space variable using 𝛼𝛼 = 0.5,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 =
𝑑𝑑3 = 𝑑𝑑4 = 𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 
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Figure 9. Comparison of three numerical schemes for infected and quarantined individuals over 
space variable using 𝛼𝛼 = 0.5,𝛼𝛼1 = 0.1,𝛽𝛽 = 0.2, 𝛾𝛾 = 0.4,𝜎𝜎 = 0.5,𝜎𝜎� = 0.5, 𝜇𝜇 = 0.7,𝑑𝑑1 = 𝑑𝑑2 =
𝑑𝑑3 = 𝑑𝑑4 = 𝑑𝑑5 = 0.1,𝑁𝑁𝑥𝑥 = 50,𝑁𝑁𝑡𝑡 = 50. 

7. Conclusions 

A mathematical model of the COVID-19 epidemic disease has been constructed in the form of a 
system of linear and non-linear differential equations. Its linear stability conditions are found by 
considering Ruth-Hurwitz criteria, and later on, a time-fractional diffusive epidemic model was 
constructed. The fractional numerical scheme has been developed by considering the fractional 
Taylor series. Its stability and convergence conditions have been established, and it has been 
compared to the present numerical scheme. It was proved that the existing non-standard scheme is 
not first-order accurate from Taylor series analysis and drawn obtained solution for both integer and 
fractional derivative cases. 

On the other hand, the numerical results give compelling evidence for the advantages of a 
proposed approach over non-standard approaches. The proposed numerical scheme can be applied to 
epidemic models to get a conditionally positivity solution with unconditional stability. The proposed 
numerical scheme had advantages over some existing fractional numerical schemes that provided the 
solution for the classical case. Also, the proposed numerical scheme can be further applied in 
epidemiological disease models and other problems [52,53] in fractional calculus.  
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