Research article Special Issues

Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis

  • Received: 05 March 2022 Revised: 27 April 2022 Accepted: 10 May 2022 Published: 01 June 2022
  • MSC : 11B39, 26A33, 35K57

  • In this article, we evaluated the approximate solutions of one-dimensional variable-order space-fractional diffusion equations (sFDEs) by using a collocation method. This method depends on operational matrices for fractional derivatives and the integration of generalized Fibonacci polynomials. In this method, a Caputo fractional derivative of variable order is applied. Some properties of these polynomials (using boundary conditions) are presented to simplify and transform sFDEs into a system of equations with the expansion coefficients of the solution. Also, we discuss the convergence and error analysis of the generalized Fibonacci expansion. Finally, we compare the obtained results with those obtained via the other methods.

    Citation: A. S. Mohamed. Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis[J]. AIMS Mathematics, 2022, 7(8): 14323-14337. doi: 10.3934/math.2022789

    Related Papers:

  • In this article, we evaluated the approximate solutions of one-dimensional variable-order space-fractional diffusion equations (sFDEs) by using a collocation method. This method depends on operational matrices for fractional derivatives and the integration of generalized Fibonacci polynomials. In this method, a Caputo fractional derivative of variable order is applied. Some properties of these polynomials (using boundary conditions) are presented to simplify and transform sFDEs into a system of equations with the expansion coefficients of the solution. Also, we discuss the convergence and error analysis of the generalized Fibonacci expansion. Finally, we compare the obtained results with those obtained via the other methods.



    加载中


    [1] V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using Adomain decomposition method, Appl. Math. Comput., 89 (2007), 541–548.
    [2] N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131 (2002), 517–529. https://doi.org/10.1016/S0096-3003(01)00167-9 doi: 10.1016/S0096-3003(01)00167-9
    [3] A. M. El-Sayed, S. H. Behiry, W. E. Raslan, Adomain decomposition method for solving an intermediate fracional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759–1765. https://doi.org/10.1016/j.camwa.2009.08.065 doi: 10.1016/j.camwa.2009.08.065
    [4] A. Yanga, A. Xiao, H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. Appl., 60 (2010), 2871–2879. https://doi.org/10.1016/j.camwa.2010.09.044 doi: 10.1016/j.camwa.2010.09.044
    [5] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl., 57 (2009), 483–487. https://doi.org/10.1016/j.camwa.2008.09.045 doi: 10.1016/j.camwa.2008.09.045
    [6] B. K. Singh, P. Kumar, Fractional variational iteration method for solving fractional partial differential equations with proportional delay, Int. J. Differ. Equ., 2017 (2017). https://doi.org/10.1155/2017/5206380 doi: 10.1155/2017/5206380
    [7] Y. L. Li, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276–2285. https://doi.org/10.1016/j.amc.2010.03.063 doi: 10.1016/j.amc.2010.03.063
    [8] Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by Haar wavelet method, J. Comput. Sci., 3 (2012), 376–373. https://doi.org/10.1016/j.jocs.2012.04.008 doi: 10.1016/j.jocs.2012.04.008
    [9] M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008
    [10] N. H. Sweilama, M. M. Khaderb, A. M. Nagyb, Numerical solution of two-sided space-fractional wave equation using finite difference method, J. Comput. Appl. Math., 235 (2011), 2832–2841. https://doi.org/10.1016/j.cam.2010.12.002 doi: 10.1016/j.cam.2010.12.002
    [11] Y. L. Jiang, J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011 doi: 10.1016/j.cam.2011.01.011
    [12] X. G. Zhu, J. G. Wang, Y. F. Nie, Z. Z. Yang, Finite element method for time-space-fractional Schrdinger equation, Electron. J. Differ. Equ., 2017 (2017), 1–18.
    [13] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [14] S. Das, P. C. Ray, R. K. Bera, P. Sarkar, Solution of non-linear fractional differential equation (NFDE) by homotopy analysis method, Int. J. Sci. Res. Edu., 3 (2015), 3084–3103.
    [15] O. Abdulaziz, I. Hashim, S. Momani, Application of homotopy-perturbation method to fractional IVPs, J. Comput. Appl. Math., 216 (2008), 574–584. https://doi.org/10.1016/j.cam.2007.06.010 doi: 10.1016/j.cam.2007.06.010
    [16] B. Ghazanfari, A. Sepahvandzadeh, Homotopy perturbation method for solving fractional Bratu-type equation, J. Math. Model, 2 (2015), 143–155.
    [17] E. H. Doha, W. M. Abd- Elhameed, Y. H. Youssri, Second kind Chebyshev operational matrix for solving fractional differential equations of Lane-Emden type, New Astron., 23 (2013), 113–117. https://doi.org/10.1016/j.newast.2013.03.002 doi: 10.1016/j.newast.2013.03.002
    [18] W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second-order differential equations involving singular ang Bratu type equations, Abstr. Appl. Anal., 2013 (2013), 1–9. https://doi.org/10.1155/2013/715756 doi: 10.1155/2013/715756
    [19] A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., 293 (2015), 142–156. https://doi.org/10.1016/j.jcp.2014.03.039 doi: 10.1016/j.jcp.2014.03.039
    [20] E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien, On shifted Jacobi spectral approximations for solving fractional differential equations, Appl. Math. Comput., 219 (2013), 8042–8056. https://doi.org/10.1016/j.amc.2013.01.051 doi: 10.1016/j.amc.2013.01.051
    [21] M. Cetin, M. Sezer, C. Guler, Lucas polynomial approach for system of high-order linear differential equations and residual error estimation, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/625984 doi: 10.1155/2015/625984
    [22] W. M. Abd-Elhameed, Y. H. Youssri, Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives, Rom. J. Phys., 61 (2016), 795–813.
    [23] W. M. Abd-Elhameed, Y. H. Youssri, Generalized Lucas polynomials sequence approach for fractional differential equations, Nonlinear Dyn., 89 (2017), 1341–1355. https://doi.org/10.1007/s11071-017-3519-9 doi: 10.1007/s11071-017-3519-9
    [24] Y. H. Youssri, W. M. Abd-Elhameed, Spectral solutions for multi-term fractional initial value problems using a new Fibonacci operational matrix of fractional integration, Progr. Fract. Differ. Appl., 2 (2016), 141–151. https://doi.org/10.18576/pfda/020207 doi: 10.18576/pfda/020207
    [25] A. G. Ataa, G. M. Moatimid, Y. H. Youssri, Generalized Fibonacci operational collocation approach for fractional initial value problems, Int. J. Appl. Comput. Math., 5 (2019), 1–9. https://doi.org/10.1007/s40819-018-0597-4 doi: 10.1007/s40819-018-0597-4
    [26] W. M. Abd-Elhameed, New Galerkin operational matrix of derivatives for solving Lane-Emden singular-type equations, Eur. Phys. J. Plus, 130 (2015), 1–12. https://doi.org/10.1140/epjp/i2015-15052-2 doi: 10.1140/epjp/i2015-15052-2
    [27] W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, Efficient spectral Petrov-Galerkin methods for third and fifth-order differential equations using general parameters generalized Jacobi polynomials, Quaest. Math., 36 (2013), 15–38. https://doi.org/10.2989/16073606.2013.779945 doi: 10.2989/16073606.2013.779945
    [28] F. Ghoreishi, S. Yazdani, An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. Math. Appl., 61 (2011), 30–43. https://doi.org/10.1016/j.camwa.2010.10.027 doi: 10.1016/j.camwa.2010.10.027
    [29] A. H. Bhrawy, A. S. Alofi, S. S. Ezz-Eldien, A quadrature tau method for variable coefficients fractional differential equations, Appl. Math. Lett., 24 (2011), 2146–2152. https://doi.org/10.1016/j.aml.2011.06.016 doi: 10.1016/j.aml.2011.06.016
    [30] S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials, Comput. Math. Appl., 62 (2011), 918–929. https://doi.org/10.1016/j.camwa.2011.04.023 doi: 10.1016/j.camwa.2011.04.023
    [31] R. M. Hafez, Y. H. Youssri, Legendre-collocation spectral solver for variable-order fractional differential equations, Comput. Meth. Differ. Equ., 8 (2020), 99–110. https://dx.doi.org/10.22034/cmde.2019.9465 doi: 10.22034/cmde.2019.9465
    [32] J. Jia, X. Zheng, H. Wang, A fast method for variable-order space-fractional diffusion equations, Numer. Algorithms, 2020. https://doi.org/10.1007/s11075-020-00875-z doi: 10.1007/s11075-020-00875-z
    [33] S. M. Kenneth, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Academic Press, 1993.
    [34] I. Podlubny, Fractional differential equations, San Diego.California: Academic Press, 1999.
    [35] E. D. Rainville, Special functions, Chelsea, New York, 1960.
    [36] R. M. Hafez, Y. H. Youssri, Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation, J. Comput. Appl. Math., 37 (2018), 5315–5333. https://doi.org/10.1007/s40314-018-0633-3 doi: 10.1007/s40314-018-0633-3
    [37] W. M. Abd-Elhameed, Y. H. Youssri, Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence, Iran. J. Sci. Technol. A, 43 (2019), 543–554. https://doi.org/10.1007/s40995-017-0420-9 doi: 10.1007/s40995-017-0420-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1313) PDF downloads(85) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog