The objective of the current examination is to present new sub-classes of $ q $-convex and $ q $-starlike functions inside $ \mathcal E = \left\{z\in\mathbb C: \left|z\right| < 1\right\} $, by $ q $-difference operator. We determined connections of these classes and acquired a few fundamental properties, for instance, inclusion relation, subordination properties and $ q $-limits on real part.
Citation: Aisha M. Alqahtani, Rashid Murtaza, Saba Akmal, Adnan, Ilyas Khan. Generalized $ q $-convex functions characterized by $ q $-calculus[J]. AIMS Mathematics, 2023, 8(4): 9385-9399. doi: 10.3934/math.2023472
The objective of the current examination is to present new sub-classes of $ q $-convex and $ q $-starlike functions inside $ \mathcal E = \left\{z\in\mathbb C: \left|z\right| < 1\right\} $, by $ q $-difference operator. We determined connections of these classes and acquired a few fundamental properties, for instance, inclusion relation, subordination properties and $ q $-limits on real part.
[1] | P. L. Duren, Univalent functions, New York: Springer-Verlag, 1983. |
[2] | A. W. Goodman, Univalent functions, Washington, New Jersey: Polygonal Publishing House, 1983. |
[3] | M. E. H. Ismail, E. Merks, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[4] | F. H. Jackson, On $q$-functions and certain difference operators, Trans. Roy. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[5] | F. H. Jackson, On $q$-definite integrals, Quar. J. Pure Appl. Math., 41 (1910), 193–203. |
[6] | K. Kuroki, S. Owa, Notes on new class of certain analytic functions, Adv. Math. Sci. J., 1 (2012), 127–131. |
[7] | S. S. Miller, P. T. Mocanu, Differential subordination: theory and applications, New York: Marcel Dekker, 2000. |
[8] | R. Nadeem, T. Usman, K. S. Nasir, T. Abdeljawad, A new generalization of Mittag-Leffler function via $q$-calculus, Adv. Differ. Equ., 2020 (2020), 695. https://doi.org/10.1186/s13662-020-03157-z doi: 10.1186/s13662-020-03157-z |
[9] | K. I. Noor, S. Riaz, M. A. Noor, On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[10] | K. I. Noor, Some classes of analytic functions associated with $q$-Ruscheweyh differential operator, Facta Univ. Ser. Math. Inform., 33 (2018), 531–538. |
[11] | A. M. Obad, A. Khan, K. S. Nisar, A. Morsy, $q$-binomial convolution and transformations of $q$-Appell polynomials, Axioms, 10 (2021), 1–13. https://doi.org/10.3390/axioms10020070 doi: 10.3390/axioms10020070 |
[12] | C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic function associated with $q$-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348–362. |
[13] | Y. J. Sim., O. S. Kwon, On certain classes of convex functions, Int. J. Math. Math. Sci., 2013 (2013), 1–6. https://doi.org/10.1155/2013/294378 doi: 10.1155/2013/294378 |
[14] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, B. Khan, Hankel andd Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15. https://doi.org/10.3390/math7020181 doi: 10.3390/math7020181 |