This article examines the space-time fractional phi-four (PF) model which is an improvement of the Klein-Fock-Gordon (KFG) model that is relevant in quantum mechanics, transmission of ultra-short pulses in optical fibers, de Broglie wave duality, and compound particles in spinless relativistic systems. New solitary wave solutions of the fractional phi-four equation were found with the help of the Riccati-Bernoulli sub-ODE method together with the Bäcklund transformation. The conformable fractional derivative played the role of improving the modeling of the complex dynamical systems. The obtained solutions, which were illustrated by giving 2D, 3D MATLAB plots and contour illustrations, were s eful in nuclear, particle physics and fluid mechanics. Thus, the current work demonstrates the applicability of the proposed approach in handling the fractional order deviations and contributes to the investigation of the dynamic behavior of the PF model.
Citation: Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi. Lump-type kink wave phenomena of the space-time fractional phi-four equation[J]. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637
This article examines the space-time fractional phi-four (PF) model which is an improvement of the Klein-Fock-Gordon (KFG) model that is relevant in quantum mechanics, transmission of ultra-short pulses in optical fibers, de Broglie wave duality, and compound particles in spinless relativistic systems. New solitary wave solutions of the fractional phi-four equation were found with the help of the Riccati-Bernoulli sub-ODE method together with the Bäcklund transformation. The conformable fractional derivative played the role of improving the modeling of the complex dynamical systems. The obtained solutions, which were illustrated by giving 2D, 3D MATLAB plots and contour illustrations, were s eful in nuclear, particle physics and fluid mechanics. Thus, the current work demonstrates the applicability of the proposed approach in handling the fractional order deviations and contributes to the investigation of the dynamic behavior of the PF model.
[1] | R. Hirota, Exact N-soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattices, J. Math. Phys., 14 (1973), 810–814. https://doi.org/10.1063/1.1666400 doi: 10.1063/1.1666400 |
[2] | E. W. Weisstein, CRC concise encyclopedia of mathematics, 2 Eds., New York: CRC Press, 2002. https://doi.org/10.1201/9781420035223 |
[3] | D. Sherriffe, D. Behera, Analytical approach for travelling wave solution of non-linear fifth-order time-fractional Korteweg-De Vries equation, Pramana-J. Phys., 96 (2022). https://doi.org/10.1007/s12043-022-02313-2 doi: 10.1007/s12043-022-02313-2 |
[4] | R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661. https://doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661 |
[5] | M. Safari, D. D. Ganji, M. Moslemi, Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Comput. Math. Appl., 58 (2009), 2091–2097. https://doi.org/10.1016/j.camwa.2009.03.043 doi: 10.1016/j.camwa.2009.03.043 |
[6] | S. Duran, An investigation of the physical dynamics of a traveling wave solution called a bright soliton, Phys. Scripta, 96 (2021), 125251. https://doi.org/10.1088/1402-4896/ac37a1 doi: 10.1088/1402-4896/ac37a1 |
[7] | N. H. Aljahdaly, A. R. Seadawy, W. A. Albarakati, Analytical wave solution for the generalized nonlinear seventh-order KdV dynamical equations arising in shallow water waves, Mod. Phys. Lett. B, 34 (2020), 2050279. |
[8] | E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383–392. https://doi.org/10.1016/S0375-9601(02)01516-5 doi: 10.1016/S0375-9601(02)01516-5 |
[9] | Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrdinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. |
[10] | Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430 |
[11] | F. Liu, X. Zhao, Z. Zhu, Z. Zhai, Y. Liu, Dual-microphone active noise cancellation paved with Doppler assimilation for TADS, Mech. Syst. Signal Pr., 184 (2023), 109727. https://doi.org/10.1016/j.ymssp.2022.109727 doi: 10.1016/j.ymssp.2022.109727 |
[12] | D. Huang, Z. Zhang, X. Fang, M. He, H. Lai, B. Mi, STIF: A spatial-temporal integrated framework for end-to-end Micro-UAV trajectory tracking and prediction with 4-D MIMO radar, IEEE Internet Things, 10 (2023), 18821–18836. https://doi.org/10.1109/JIOT.2023.3244655 doi: 10.1109/JIOT.2023.3244655 |
[13] | T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247 |
[14] | T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method, Chaos Soliton. Fract., 158 (2022), 112007. https://doi.org/10.1016/j.chaos.2022.112007 doi: 10.1016/j.chaos.2022.112007 |
[15] | C. H. He, C. Liu, Variational principle for singular waves, Chaos Soliton. Fract., 172 (2023), 113566. https://doi.org/10.1016/j.chaos.2023.113566 doi: 10.1016/j.chaos.2023.113566 |
[16] | T. Liu, J. Yu, Y. Zheng, C. Liu, Y. Yang, Y. Qi, A nonlinear multigrid method for the parameter identification problem of partial differential equations with constraints, Mathematics, 10 (2022), 2938. https://doi.org/10.3390/math10162938 doi: 10.3390/math10162938 |
[17] | H. Yasmin, A. H. Almuqrin, Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique, AIMS Math., 9 (2024), 20441–20466. https://doi.org/10.3934/math.2024994 doi: 10.3934/math.2024994 |
[18] | H. Yasmin, A. H. Almuqrin, Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies, AIMS Math., 9 (2024), 16721–16752. https://doi.org/10.3934/math.2024811 doi: 10.3934/math.2024811 |
[19] | Y. Jawarneh, A. H. Ganie, M. M. Al-Sawalha, A. Ali, Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-MKdV systems, AIMS Math., 9 (2024), 371–390. https://doi.org/10.3934/math.2024021 doi: 10.3934/math.2024021 |
[20] | M. M. Al-Sawalha, S. Muhammad, Y. Khan, R. Shah, Optimal power management of a stand-alone hybrid energy management system: Hydro-photovoltaic-fuel cell, Ain Shams Eng. J., 14 (2024), 103089. https://doi.org/10.1016/j.asej.2024.103089 doi: 10.1016/j.asej.2024.103089 |
[21] | A. S. Alshehry, R. Shah, A. Ali, I. Khan, Fractional-order view analysis of Fisher's and foam drainage equations within Aboodh transform, Eng. Computation., 41 (2024), 489–515. https://doi.org/10.1108/EC-08-2023-0475 doi: 10.1108/EC-08-2023-0475 |
[22] | A. S. Alshehry, A. A. Khammash, R. Shah, Numerical analysis of dengue transmission model using Caputo-Fabrizio fractional derivative, Open Phys., 22 (2024), 20230169. https://doi.org/10.1515/phys-2023-0169 doi: 10.1515/phys-2023-0169 |
[23] | A. H. Ganie, A. A. Alderremy, R. Shah, S. Aly, An efficient semi-analytical technique for the fractional-order system of Drinfeld-Sokolov-Wilson equation, Phys. Scripta, 99 (2024), 015253. https://doi.org/10.1088/1402-4896/ad1796 doi: 10.1088/1402-4896/ad1796 |
[24] | A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944 |
[25] | H. Yasmin, H. A. Alyousef, S. Asad, I. Khan, R. T. Matoog, S. A. El-Tantawy, The Riccati-Bernoulli sub-optimal differential equation method for analyzing the fractional Dullin-Gottwald-Holm equation and modeling nonlinear waves in fluid mediums, AIMS Math., 9 (2024), 16146–16167. https://doi.org/10.3934/math.2024781 doi: 10.3934/math.2024781 |
[26] | M. K. Kaplan, A. E. Bekir, A novel analytical method for time-fractional differential equations, Optik, 127 (2016), 8209–8214. https://doi.org/10.1016/j.ijleo.2016.05.152 doi: 10.1016/j.ijleo.2016.05.152 |
[27] | F. Tchier, M. Inc, Z. S. Korpinar, D. Baleanu, Solution of the time fractional reaction diffusion equations with residual power series method, Adv. Mech. Eng., 8 (2016), 1–10. https://doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535 |
[28] | A. Zafar, Rational exponential solutions of conformable spacetime fractional equal width equations, Nonlinear Eng., 8 (2019), 350–355. https://doi.org/10.1515/nleng-2018-0076 doi: 10.1515/nleng-2018-0076 |
[29] | D. Foukrach, Approximate solution to a Brgers system with time and space fractional derivatives using Adomian decomposition method, J. Interdiscip. Math., 21 (2018), 111–125. https://doi.org/10.1080/09720502.2014.986914 doi: 10.1080/09720502.2014.986914 |
[30] | S. S. Ray, New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods, Chinese Phys. B, 25 (2016), 040204. https://doi.org/10.1088/1674-1056/25/4/040204 doi: 10.1088/1674-1056/25/4/040204 |
[31] | S. S. Ray, S. Sahoo, A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada-Kotera equation, Rep. Math. Phys., 75 (2015), 63–72. https://doi.org/10.1016/S0034-4877(15)60024-6 doi: 10.1016/S0034-4877(15)60024-6 |
[32] | B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066 |
[33] | R. Roy, M. A. Akbar, A. R. Seadawy, D. Baleanu, Search for adequate closed form wave solutions to space-time fractional nonlinear equations, Part. Differ. Equ. Appl. Math., 4 (2021), 100025. https://doi.org/10.1016/j.padiff.2021.100025 doi: 10.1016/j.padiff.2021.100025 |
[34] | K. Hosseini, P. Mayeli, R. Ansari, Modified Kudryashov method for solving the conformable time fractional Klein-Gordon equations with quadratic and cubic non-linearities, Optik, 130 (2017), 737–742. https://doi.org/10.1016/j.ijleo.2016.10.136 doi: 10.1016/j.ijleo.2016.10.136 |
[35] | A. Ebaid, Exact solutions for the generalized Klein-Gordon equation via transformation and exp-function method and comparison with Adomian's method, J. Comput. Appl. Math., 223 (2009), 278–290. https://doi.org/10.1016/j.cam.2008.01.010 doi: 10.1016/j.cam.2008.01.010 |
[36] | G. Akram, F. Batool, A. Riaz, Two reliable techniques for the analytical study of conformable time-fractional phi-4 equation, Opt. Quant. Electron., 50 (2018), 22. https://doi.org/10.1007/s11082-017-1288-9 doi: 10.1007/s11082-017-1288-9 |
[37] | F. Mahmud, M. Samsuzzoha, M. A. Akbar, The generalized Kudryashov method to obtain exact traveling wave solutions of the phi-four equation and the Fisher equation, Results Phys., 7 (2017), 4296–4302. https://doi.org/10.1016/j.rinp.2017.10.049 doi: 10.1016/j.rinp.2017.10.049 |
[38] | H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional phi-4 equation, Chinese J. Phys., 56 (2018), 2805–2816. https://doi.org/10.1016/j.cjph.2018.08.001 doi: 10.1016/j.cjph.2018.08.001 |
[39] | X. Deng, M. Zhao, X. Li, Travelling wave solutions for a nonlinear variant of the phi-four equation, Math. Comput. Model., 49 (2009), 617–622. https://doi.org/10.1016/j.mcm.2008.03.011 doi: 10.1016/j.mcm.2008.03.011 |
[40] | Z. Krpinar, Some analytical solutions by mapping methods for nonlinear conformable time-fractional phi-4 equation, Therm. Sci., 2019, 341. |
[41] | M. A. E. Abdelrahman, H. A. Alkhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional phi-4 equation, Results Phys., 18 (2020), 103294. https://doi.org/10.1016/j.rinp.2020.103294 doi: 10.1016/j.rinp.2020.103294 |
[42] | M. Kaplan, A. Bekir, The modified simple equation method for solving some fractional-order nonlinear equations, Pramana-J. Phys., 87 (2016), 15. https://doi.org/10.1007/s12043-016-1276-9 doi: 10.1007/s12043-016-1276-9 |
[43] | H. Tariq, G. Akram, New approach for exact solutions of time fractional Cahn-Allen equation and time fractional phi-4 equation, Phys. A, 473 (2017), 352–362. https://doi.org/10.1016/j.physa.2016.12.081 doi: 10.1016/j.physa.2016.12.081 |
[44] | M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799. |
[45] | M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017). https://doi.org/10.4172/2090-0902.1000214 doi: 10.4172/2090-0902.1000214 |
[46] | M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrdinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5 |
[47] | X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differential Equ., 1 (2015), 117–133. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4 |
[48] | D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325. https://doi.org/10.1177/1532708610365480 doi: 10.1177/1532708610365480 |