
Although the concept of connectedness may seem simple, it holds profound implications for topology and its applications. The concept of connectedness serves as a fundamental component in the Intermediate Value Theorem. Connectedness is significant in various applications, including geographic information systems, population modeling and robotics motion planning. Furthermore, connectedness plays a crucial role in distinguishing between different topological spaces. In this paper, we define soft weakly connected sets as a new class of soft sets that strictly contains the class of soft connected sets. We characterize this new class of sets by several methods. We explore various results related to soft subsets, supersets, unions, intersections and subspaces within the context of soft weakly connected sets. Additionally, we provide characterizations for soft weakly connected sets classified as soft pre-open, semi-open or α-open sets. Furthermore, we introduce the concept of a soft weakly connected component as follows: Given a soft point ax in a soft topological space (X,Δ,A), we define the soft weakly component of (X,Δ,A) determined by ax as the largest soft weakly connected set, with respect to the soft inclusion (˜⊆) relation, that contains ax. We demonstrate that the family of soft weakly components within a soft topological space comprises soft closed sets, forming a soft partition of the space. Lastly, we establish that soft weak connectedness is preserved under soft α-continuity.
Citation: Samer Al-Ghour, Hanan Al-Saadi. Soft weakly connected sets and soft weakly connected components[J]. AIMS Mathematics, 2024, 9(1): 1562-1575. doi: 10.3934/math.2024077
[1] | Hamed Faraji, Shahroud Azami, Ghodratallah Fasihi-Ramandi . h-Almost Ricci solitons with concurrent potential fields. AIMS Mathematics, 2020, 5(5): 4220-4228. doi: 10.3934/math.2020269 |
[2] | Adara M. Blaga, Sharief Deshmukh . Einstein solitons with unit geodesic potential vector field. AIMS Mathematics, 2021, 6(8): 7961-7970. doi: 10.3934/math.2021462 |
[3] | Yanlin Li, Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Maged Zakaria Youssef . Solitonic effect on relativistic string cloud spacetime attached with strange quark matter. AIMS Mathematics, 2024, 9(6): 14487-14503. doi: 10.3934/math.2024704 |
[4] | Mohd. Danish Siddiqi, Fatemah Mofarreh . Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime. AIMS Mathematics, 2024, 9(8): 21628-21640. doi: 10.3934/math.20241051 |
[5] | Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921 |
[6] | Shahroud Azami, Rawan Bossly, Abdul Haseeb . Riemann solitons on Egorov and Cahen-Wallach symmetric spaces. AIMS Mathematics, 2025, 10(1): 1882-1899. doi: 10.3934/math.2025087 |
[7] | Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603 |
[8] | Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of ∗-Ricci–Yamabe solitons on LP-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096 |
[9] | Amira Ishan . On concurrent vector fields on Riemannian manifolds. AIMS Mathematics, 2023, 8(10): 25097-25103. doi: 10.3934/math.20231281 |
[10] | Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300 |
Although the concept of connectedness may seem simple, it holds profound implications for topology and its applications. The concept of connectedness serves as a fundamental component in the Intermediate Value Theorem. Connectedness is significant in various applications, including geographic information systems, population modeling and robotics motion planning. Furthermore, connectedness plays a crucial role in distinguishing between different topological spaces. In this paper, we define soft weakly connected sets as a new class of soft sets that strictly contains the class of soft connected sets. We characterize this new class of sets by several methods. We explore various results related to soft subsets, supersets, unions, intersections and subspaces within the context of soft weakly connected sets. Additionally, we provide characterizations for soft weakly connected sets classified as soft pre-open, semi-open or α-open sets. Furthermore, we introduce the concept of a soft weakly connected component as follows: Given a soft point ax in a soft topological space (X,Δ,A), we define the soft weakly component of (X,Δ,A) determined by ax as the largest soft weakly connected set, with respect to the soft inclusion (˜⊆) relation, that contains ax. We demonstrate that the family of soft weakly components within a soft topological space comprises soft closed sets, forming a soft partition of the space. Lastly, we establish that soft weak connectedness is preserved under soft α-continuity.
Given an open bounded domain Ω⊂Rd which has a smooth boundary Γ, and a positive real number T. We consider the non-linear hyperbolic partial different equation with the strong damping αΔ2ut, as follows
utt+αΔ2ut+βΔ2u=F(x,t,u),(x,t)∈Ω×(0,T), | (1.1) |
associated with the final value functions
u(x,T)=ρ(x),ut(x,T)=ξ(x),x∈Ω, | (1.2) |
and the Dirichlet boundary condition
u(x,t)=0,(x,t)∈Γ×(0,T), | (1.3) |
where α,β are positive constants, and the source F(x,t,u) is a given function of the variable u.
As we all know, the amplitude of a wave is related to the amount of energy it carries. A high amplitude wave carries a large amount of energy and vice versa. A wave propagates through a certain environment, its energy will decrease as time goes on, so wave amplitude also decreases (called damped wave). The damped wave equations are widely used in science and engineering, especially in physics. They can describe how waves propagate. It applies to all kinds of waves, from water waves [8] to sound and vibrations [13,21], and even light and radio waves [10].
Let us briefly describe some previous results related to the Problem (1.1). In recent years, much attention has been paid to the study on the properties and asymptotic behavior of the solution on Problem (1.1) subject to the initial conditions u(x,0)=ρ(x), ut(x,0)=ξ(x) (pioneering works [1,2,5,9,15]). However, to the best of our knowledge, there are not any result on backward problem (1.1)–(1.3).
In practice we usually do not have these final value functions, instead they are suggested from the experience of the researcher. A more reliable way is to use their observed values. However, we all know that observations always come with random errors, these errors are derived from the ability of the measuring device (measurement error). It is therefore natural that observations are observed usually in the presence of some noise. In this paper, we will consider the case where these perturbation are an additive stochastic white noise
ρϵ(x)=ρ(x)+ϵW(x),ξϵ(x)=ξ(x)+ϵW(x), | (1.4) |
where ϵ is the amplitude of the noise and W(x) is a Gaussian white noise process. Suppose further that even the observations (1.4) cannot be observed exactly, but they can only be observed in discretized form
⟨ρϵ,φp⟩=⟨ρ,φp⟩+ϵ⟨W,φp⟩,⟨ξϵ,φp⟩=⟨ξ,φp⟩+ϵ⟨W,φp⟩,p=1,…,N, | (1.5) |
where {φp} is a orthonormal basic of Hilbert space H; ⟨,⟩ denotes the inner product in H; Wp:=⟨W,φp⟩ are standard normal distribution; and ⟨ρϵ,φp⟩ are independent random variables for orthonormal functions φp. For more detail on the white noise model see, [3,11,12].
It is well-known that Problem (1.1)–(1.4) is ill-posed in the sense of Hadamard (if the solution exists, then it does not depend continuously on the final values), and regularization methods for it are required. The aim of this paper is to recover the unknown final value functions ρ, ξ from indirect and noisy discrete observations (1.5) and then we use them to establish a regularized solution by the Fourier truncation method. To the best of our knowledge, the present paper may be the fist study for ill-posed problem for hyperbolic equations with Gaussian white noise. We have learned more ideas from these articles[14,17,18,20], but the detailed technique is different.
The organizational structure of this paper is as follows. Section 2 introduces some preliminary materials. Section 3 uses the Fourier series to obtain the mild solution and analyse the ill-posedness of problem. Section 4 presents an example of an ill-posed problem with random noise. In Section 5, we draw into main results: first we propose a new regularized solution, and then we give the convergent estimates between a mild solution and a regularized solution under some priori assumptions on the exact solution. To end this section, we discuss a regularization parameter choice rule. Finally, Section 6 reports numerical implementations to support our theoretical results and to show the validity of the proposed reconstruction method.
Throughout this paper, let us denote the Hilbert space H:=L2(Ω), and ⟨⋅,⋅⟩ is the inner product of H. Since Ω is the bounded open set, there exists a Hilbert orthonormal basic {φp}∞p=1 in H (φp∈H10(Ω)∩C∞(Ω)) and a sequence {λp}∞p=1 of real, 0≤λ1≤λ2≤…≤limp→∞λp=+∞, such that −Δφp(x)=λpφp(x) for x∈Ω and φp(x)=0 for x∈∂Ω. We say that λp are the eigenvalues of of −Δ and φp are the associated eigenfunctions. The Sobolev class of function is defined as follows
Hμ={f∈H:∞∑p=1λμp⟨f,φp⟩2<∞}. |
It is a Hilbert space endowed with the norm ‖f‖2Hμ=∑∞p=1λμp⟨f,φp⟩2. For τ,ν>0, following [4,6], we introduce the special Gevrey classes of functions
Gσ,ν={f∈H:∞∑p=1eσλpλνp⟨f,ep⟩2<+∞}. |
We remark that Gσ,ν is also the Hilbert space endowed with the norm ‖f‖2Gσ,ν=∑∞p=1eσλpλνp⟨f,ei⟩2.
Definition 2.1 (Bochner space [22]). Given a probability measure space (˜Ω,M,μ), a Hilbert space H. The Bochner space L2(˜Ω,H)≡L2((˜Ω,M,μ);H) is defined to be the functions u:˜Ω↦H such that the corresponding norm is finite
‖u‖L2(˜Ω,H):=(∫˜Ω‖u(ω)‖2Hdμ(ω))1/2=(E‖u‖2H)1/2<+∞. | (2.1) |
Definition 2.2 (Reconstruction of the final value functions). Given ρ,ξ∈Hμ (μ>0), which have sequences of n (is known as sample size) discrete observations ⟨ρϵ,φp⟩ and ⟨ξϵ,φp⟩, p=1,…,n. Non-parametric estimation of ρ and ξ are suggested as
˜ρn(x)=n∑p=1⟨ρϵ,φp⟩φp(x),˜ξϵn(x)=n∑p=1⟨ξϵ,φp⟩φp(x). | (2.2) |
Lemma 2.1. Given ρ,ξ∈Hμ (μ>0), then the estimation errors are
E||˜ρn−ρ||2H≤ϵ2n+1λμn||ρ||2Hμ,E‖˜ξN−ξ‖2H≤ϵ2n+1λμn||ξ||2Hμ. | (2.3) |
Here n(ϵ):=n depends on ϵ and satisfies that limϵ→0+n(ϵ)=+∞.
Proof. Our proof starts with the observation that
E||˜ρn−ρ||H=E(n∑p=1⟨ρϵ−ρ,φp⟩2)+∞∑p=n+1⟨ρ,φp⟩2=ϵE(n∑p=1W2p)+∞∑p=n+1λ−μpλμp⟨ρ,φp⟩2≤ϵE(n∑p=1W2p)+1λμn∞∑p=n+1λμp⟨ρ,φp⟩2. |
The assumption Wp=⟨W,φp⟩iid∼N(0,1) implies that EW2p=1. We then have the desired the first result. The same conclusion can be drawn for the remaining case.
Taking the inner product on both side of (1.1) and (1.2) with φp, and set up(t)=⟨u(⋅,t),φp⟩, ρp(t)=⟨ρ,φp⟩, ξp(t)=⟨ξ,φp⟩, and Fp(u)=⟨F(⋅,t,u(⋅,t)),φp⟩, then
{u″p(t)+αλ2pu′p(t)+βλ2pup=Fp(u)(t),up(T)=ρp,up′(T)=ξp. | (3.1) |
In this work we assume that Δp:=α2λ4p−4βλ2p>0 then a quadratic equation k2−αλ2pk+βλ2p=0 has two different solutions k−p=αλ2p−√Δp2,k+p=αλ2p+√Δp2. Multiplying both sides the first equation of System (3.1) by ϕp(τ)=e(τ−t)k+p−e(τ−t)k−p√Δp, and integrating both sides from t to T,
∫Ttϕp(τ)u″p(τ)dτ+αλ2p∫Ttϕp(τ)u′p(τ)dτ+βλ2p∫Ttϕp(τ)updτ=∫Ttϕp(τ)Fp(u)(τ)dτ. | (3.2) |
The left hand side of (3.2) now becomes
[ϕp(τ)u′p(τ)−ϕ′p(τ)up(τ)+αλ2pϕp(τ)up(τ)]Tt+∫Tt[ϕ″p(τ)−αλ2pϕ′p(τ)+βλ2pϕp(τ)]up(τ)dτ. |
Since k−p, k+p satisfy the equation k2−αλ2pk+βλ2p=0, then ϕ″(τ)−αλ2pϕ′p(τ)+βλ2p=0. Hence, (3.2) becomes
[ϕp(τ)u′p(τ)−ϕ′p(τ)up(τ)+αλ2pϕp(τ)up(τ)]Tt=∫Ttϕp(τ)Fp(u)(τ)dτ. | (3.3) |
It is worth noticing that ϕp(t)=0, ϕ′p(t)=1 and −ϕ′p(T)+αλ2pϕp(T)=k−pe(T−t)k+p−k+pe(T−t)k−p√Δp. Therefore, (3.3) now becomes
up(t)=k+pe(T−t)k−p−k−pe(T−t)k+p√Δpρp−e(T−t)k+p−e(T−t)k−p√Δpξp+∫Ttk+pe(τ−t)k−p−k−pe(τ−t)k+p√ΔpFp(u)(τ)dτ. |
Lemma 3.1. Let ρ,ξ∈H. Suppose that the given problem (1.1)–(1.3) has a solution u∈C([0,T],H), then the mild solution is represented in terms of the Fourier series as follows
u(x,t)=R(T−t)ρ(x)−S(T−t)ξ(x)+∫TtS(τ−t)F(x,τ,u)dτ, | (3.4) |
where the operators R(t)f and S(t)f are
R(t)f=∞∑p=1(k+petk−p−k−petk+p√Δp⟨f,φp⟩)φp(x);S(t)f=∞∑p=1(etk+p−etk−p√Δp⟨f,φp⟩)φp(x). | (3.5) |
In this section, we present an example of Problem (1.1)–(1.3) with random noise (1.4) which is ill-posed in the sense of Hadamard (does not depend continuously on the final data). We consider the particular case as follows
{˜untt+αΔ2˜unt+βΔ2˜un=F(˜un),(x,t)∈Ω×(0,T),˜un(x,T)=0,x∈Ω,˜unt(x,T)=˜ξϵn(x),x∈Ω,˜un(x,t)=0,(x,t)∈Γ×(0,T), | (4.1) |
where F(˜un)(x,t)=∑∞p=1e−αλ2pT2T2⟨˜un(⋅,t),φp⟩φp(x). For simple computation, we assume that Ω=(0,π). It immediately follows that λp=p2. We assume further that the function ξ(x)=0 (unknown) has observations ⟨ξϵ,φp⟩=ϵ⟨W,φp⟩, p=1,…,n. Then the statistical estimate of ξ(x) is in the form.
˜ξϵn(x)=n∑p=1ϵ⟨W,φp⟩φp(x). | (4.2) |
Using Lemma 3.1, System (4.1) has the mild solution
˜un(x,t)=−S(T−t)˜ξϵn+∫TtS(τ−t)F(˜un)(τ)dτ. | (4.3) |
We first show that this nonlinear integral equation has unique solution ˜un∈L∞([0,T];L2(˜Ω,H)). Indeed, let us denote
Φ(u)(x,t)=−S(T−t)˜ξϵn+∫TtS(τ−t)F(u)(τ)dτ. | (4.4) |
Let u1,u2∈L∞([0,T];L2(˜Ω,H)). Using the Hölder inequality and Parseval's identity, we obtain
E‖Φ(u1)(⋅,t)−Φ(u2)(⋅,t)‖2H=E‖∫TtS(τ−t)(F(u1)(⋅,τ)−F(u2)(⋅,τ))dτ‖2H≤TE∫Tt∞∑p=1(e(τ−t)k+p−e(τ−t)k−p√Δp⏟Πp(τ)⟨F(v1)(⋅,τ)−F(v2)(⋅,τ),φp⟩⏟ΠFp(τ))2dτ. |
Since |e−(τ−t)k−p−e−(τ−t)k+p|≤(τ−t)|k+p−k−p|≤T√Δp and (τ−t)(k+p+k−p)≤Tαλ2p, then
|Πp(τ)|=e(τ−t)(k+p+k−p)|e−(τ−t)k−p−e−(τ−t)k+p|√Δp≤Teαλ2pT. | (4.5) |
From defining the function F as above, it follows that ΠFp(τ)=e−αλ2pT2T2⟨u1(⋅,τ)−u2(⋅,τ),φp⟩. Thus
E‖Φ(u1)(⋅,t)−Φ(u2)(⋅,t)‖2H≤14TE∫Tt∞∑p=1⟨u1(⋅,τ)−u2(⋅,τ),φp⟩2dτ≤14‖u1−u2‖2L∞([0,T];L2(˜Ω,H)). |
Hence, we have that ‖Φ(u1)−Φ(u2)‖2L∞([0,T];L2(˜Ω,H))≤14‖u1−u2‖2L∞([0,T];L2(˜Ω,H)). This means that Φ is a contraction. The Banach fixed point theorem leads to a conclude that Φ(u)=u has a unique solution u∈L∞([0,T];L2(˜Ω,H)).
We then point out that System (4.1) does not depend continuously on the final data. We start by
E‖˜un(⋅,t)‖2H≥E‖S(T−t)˜ξϵn‖2H−12E‖∫TtS(τ−t)F(˜un)(τ)dτ‖2H. | (4.6) |
It is easy to verify that
E‖∫TtS(τ−t)F(˜un)(τ)dτ‖2H≤14E‖u(⋅,t)‖2H. |
This leads to
E‖˜un(⋅,t)‖2H≥89E‖S(T−t)˜ξϵn‖2H. | (4.7) |
It is worth recalling that E⟨˜ξϵn,φp⟩2=ϵ2, so
E‖S(T−t)˜ξϵn‖2H=n∑p=1[e(T−t)k+p−e(T−t)k−pk+p−k−p]2E⟨˜ξϵn,φp⟩2≥[e(T−t)k+n−e(T−t)k−nk+n−k−n]2ϵ2. | (4.8) |
We note that k+n−k−n=√Δp=√α2λ4n−βλ2n>√α2λ41−βλ21, then we have
[e(T−t)k+n−e(T−t)k−nk+n−k−n]2=e2(T−t)k+n[1−e−(T−t)(k+n−k−n)]2(k+n−k−n)2≥e2(T−t)k+n[1−e−(T−t)√α2λ41−4βλ21]2α2λ4n−4βλ2n. |
The function h(t)=e(T−t)k+n[1−e−(T−t)√α2λ41−4βλ21] is a decreasing function with respect to variable t∈[0,T], so sup0≤t≤Th(t)=h(0). This leads to
sup0≤t≤Th2(t)α2λ4n−4βλ2n=e2Tk+n[1−e−T√α2λ41−4βλ21]2α2λ4n−4βλ2n≥e2Tλn[1−e−T√α2λ41−4βλ21]2α2λ4n−4βλ2n. | (4.9) |
Combining (4.7)–(4.9) yields
E‖˜un(⋅,t)‖2H≥89e2Tλn[1−e−T√α2λ41−4βλ21]2α2λ4n−4βλ2nϵ2≥89e2Tn2[1−e−T√α2−4β]2α2n8−4βn4ϵ2. |
Let us choose n(ϵ):=n=√12Tln(1ϵ3). When ϵ→0+, we have E‖˜ξϵn‖2H=ϵ2n(ϵ)→0. However,
E‖˜un‖2C([0,T];L2(Ω))=891ϵ[1−e−T√α2−4β]2α2[12Tln(1ϵ3)]4−4β[12Tln(1ϵ3)]2→+∞. |
Thus, we can conclude that Problem (1.1)–(1.3) with random noise (1.4) which is ill-posed in the sense of Hadamard.
To come up with a regularized solution, we first denote a truncation operator 1Nf=∑Np=1⟨f,φp⟩φp(x) for all f∈H. Now, let us consider a problem as follows
{˜UNtt+αΔ2˜UNt+βΔ2˜UN=1NF(x,t,˜UN),(x,t)∈Ω×(0,T),˜UN(x,T)=1N˜ρn(x),x∈Ω,˜UNt(x,T)=1N˜ξϵn(x),x∈Ω,˜UN(x,t)=0,(x,t)∈Γ×(0,T), | (5.1) |
where ˜ρn(x), ˜ξϵn(x) as in Definition 2.2 and N, n are called the regularized parameter and the sample size respectively. Applying Lemma 3.1, Problem (5.1) has the mild solution
˜UN(x,t)=RN(T−t)˜ρϵn(x)−SN(T−t)˜ξϵn(x)+∫TtSN(τ−t)F(x,τ,˜UN)dτ, | (5.2) |
where
RN(t)f=N∑p=1k+petk−p−k−petk+p√Δp⟨f,φp⟩φp(x);SN(t)f=N∑p=1etk+p−etk−p√Δp⟨f,φp⟩φp(x). | (5.3) |
The non-linear integral equation is called the regularized solution of Problem (1.1)–(1.3) with the perturbation random model (1.4). And N serves as the regularization parameter.
Lemma 5.1 ([16,19]). Given f∈H and t∈[0,T]. We have the following estimates:
‖RN(t)f‖2H≤CRe2αtk2N‖f‖2H;‖SN(t)f‖2H≤CSe2αtk2N‖f‖2H. | (5.4) |
where CR, CS are constants dependent on α, T.
Theorem 5.1. Given the functions ρ,ξ∈H. Assume that F∈C(Ω×[0,T]×R) satisfies the globally Lipschitz property with respect to the third variable i.e., there exists a constant L>0 independent of x,t,u1,u2 such that
‖F(⋅,t,u1(⋅,t))−F(⋅,t,u2(⋅,t))‖H≤L‖u1(⋅,t)−u2(⋅,t)‖H. |
Then the nonlinearintegral equation (5.2) has a unique solution ˜UN∈L∞([0,T],L2(˜Ω;H)).
Proof. Define the operator P:L∞([0,T],L2(˜Ω;H))↦L∞([0,T],L2(˜Ω;H)) as following
P(v)(x,t)=RN(T−t)˜ρϵn(x)−SN(T−t)˜ξϵn(x)+∫TtSN(τ−t)F(x,τ,v)dτ. |
For integer m≥1, we shall begin with showing that for any v1,v2∈L∞([0,T],L2(˜Ω;H))
E‖Pm(v1)(⋅,t)−Pm(v2)(⋅,t)‖2H≤[L2CSTe2αTλ2N]m(T−t)mm!‖v1−v2‖2L∞([0,T],L2(˜Ω;H)). | (5.5) |
We now proceed by induction on m. For the base case (m=1),
E‖P(v1)(⋅,t)−P(v2)(⋅,t)‖2H=E‖∫TtSN(τ−t)(F(x,τ,v1)−F(x,τ,v2))dτ‖2H≤TE∫TtCSe2αtλ2N‖F(⋅,τ,v1)−F(⋅,τ,v2)‖2Hdτ≤T(T−t)L2CSe2αTλ2N‖v1−v2‖2L∞([0,T],L2(˜Ω;H)), |
where we apply Lemma 5.1 and the Lipschitz condition of F. Thus it is correct for m=1. For the inductive hypothesis, it is true for m=m0. We show that (5.5) is true for m+1.
E‖Pm+1(v1)(⋅,t)−Pm+1(v2)(⋅,t)‖2H=E‖P(Pm(v1))(⋅,t)−P(Pm(v2))(⋅,t)‖2H=E‖∫TtSN(τ−t)(F(x,τ,Pm(v1))−F(x,τ,Pm(v2)))dτ‖2H≤TE∫TtCSe2αtλ2N‖F(⋅,τ,Pm(v1))−F(⋅,τ,Pm(v2))‖2Hdτ≤[L2CSTe2αTλ2N]m+1‖v1−v2‖2L∞([0,T],L2(˜Ω;H))∫Tt(T−τ)mm!dτ. | (5.6) |
From the inductive hypothesis, we have
E‖Pm+1(v1)(⋅,t)−Pm+1(v2)(⋅,t)‖2H≤[L2CSTe2αTλ2N]m+1‖v1−v2‖2L∞([0,T],L2(˜Ω;H))∫Tt(T−τ)mm!dτ. |
Hence, by the principle of mathematical induction, Formula (5.5) holds. We realize that,
limm→∞[L2CSTe2αTλ2N]mm!=0, |
and therefore, there will exist a positive number m=m0, such that Pm0 is a contraction. It means that Pm0(˜UN)=˜UN has a unique solution ˜UN∈L∞([0,T];L2(˜Ω,H)). This leads to P(Pm0(˜UN))=P(˜UN). Since P(Pm0(˜UN))=Pm0(P(˜UN)), it follows that Pm0(P(˜UN))=P(˜UN). Hence P(˜UN) is a fixed point of Pm0. By the uniqueness of the fixed point of Pm0, we conclude that P(˜UN)=˜UN has a unique solution ˜UN∈L∞([0,T];L2(˜Ω,H)).
Theorem 5.2. Let ρ,ξ∈Hμ, (μ>0). Assume that System (1.1)–(1.3) has the exact solution u∈C([0,T];Gσ,2), where σ>2αT. Given ε>0, the following estimate holds
E‖˜UN(⋅,t)−u(⋅,t)‖2H≤2e−2αtλ2N(2λ−2N‖u‖L∞([0,T];Gσ,2))e2CSL2T(T−t)+2e2α(T−t)λ2N[3CR(ϵ2n+1λμn||ρ||2Hμ)+3CS(ϵ2n+1λμn||ξ||2Hμ)]e3CSL2T(T−t), | (5.7) |
where the regularization parameter N(ϵ):=N and the sample size n(ϵ):=n are choosen such that
limϵ→0+N(ϵ)=+∞,limϵ→0+ϵ2n(ϵ)e2αTλ2N(ϵ)=limϵ→0+e2αTλ2N(ϵ)λμn(ϵ)=0. | (5.8) |
Remark 5.1. The order of convergence of (5.7) is
e−2αtλ2N(ϵ)max{ϵ2n(ϵ)e2αTλ2N(ϵ);e2αTλ2N(ϵ)λμn(ϵ);1λ2N(ϵ)}. | (5.9) |
There are many ways to choose the parameters n(ϵ),N(ϵ), that satisfies (5.8). Since λn(ϵ)∼(n(ϵ))2/d [7], one of the ways we can do by choosing the regularization parameter N(ϵ) such that λN(ϵ) satisfies e2αTλ2N(ϵ)=(n(ϵ))a, where 0<a<2μ/d. Then we obtain λ2N(ϵ)=a2αTln(n(ϵ)). The sample size n(ϵ) is chosen as n(ϵ)=(1/ϵ)b/(a+1), (0<b<2). In this case, the error will be of order
ϵtbT(a+1)max{ϵ2−b;ϵba+1(2μd−a);ab2α(a+1)ln1ϵ}. |
Proof of Theorem 5.2. Let us define the integral equation
uN=RN(T−t)ρ(x)−SN(T−t)ξ(x)+∫TtSN(τ−t)F(x,τ,uN)dτ. |
Then, we have
E‖˜UN(⋅,t)−u(⋅,t)‖2H≤2E‖˜UN(⋅,t)−uN(⋅,t)‖2H+2E‖uN(⋅,t)−u(⋅,t)‖2H. | (5.10) |
For easy tracking, we divide the above estimate into two main steps:
Step 1. We have
E‖˜UN(⋅,t)−uN(⋅,t)‖2H≤3E‖RN(T−t)(˜ρϵn−ρ)‖2H+3E‖SN(T−t)(˜ξϵn−ξ)‖2H+3E‖∫TtSN(τ−t)(F(x,τ,˜UN)−F(x,τ,uN))dτ‖2H. |
By Höder's inequality and the results in Lemma 5.1, we have
E‖˜UN(⋅,t)−uN(⋅,t)‖2H≤3CRe2α(T−t)λ2NE‖˜ρϵn−ρ‖2H+3CSe2α(T−t)λ2NE‖˜ξϵn−ξ‖2H+3TE∫TtCSe2α(τ−t)λ2N‖F(⋅,τ,˜UN)−F(⋅,τ,uN))‖2Hdτ. |
Use the results of Lemma 2.1 and the Lipschitz property of F, we have
E‖˜UN(⋅,t)−uN(⋅,t)‖2H≤3CRe2α(T−t)λ2N(ϵ2n+1λμn||ρ||2Hμ)+3CSe2α(T−t)λ2N(ϵ2n+1λμn||ξ||2Hμ)+3CSL2TE∫Tte2α(τ−t)λ2N‖˜UN(⋅,τ)−uN(⋅,τ)‖2Hdτ. | (5.11) |
Multiplying both sides (5.11) to e2αtλ2N, we derive that
e2αtλ2NE‖˜UN(⋅,t)−uN(⋅,t)‖2H≤3CRe2αTλ2N(ϵ2n+1λμn||ρ||2Hμ)+3CSe2αTλ2N(ϵ2n+1λμn||ξ||2Hμ)+3CSL2TE∫Tte2ατλ2N‖˜UN(⋅,τ)−uN(⋅,τ)‖2Hdτ. |
Gronwall's inequality leads to
e2αtλ2NE‖˜UN(⋅,t)−uN(⋅,t)‖2H≤e2αTλ2N[3CR(ϵ2n+1λμn||ρ||2Hμ)+3CS(ϵ2n+1λμn||ξ||2Hμ)]e3CSL2T(T−t). | (5.12) |
Step 2. To evaluate the remining term, we define the truncation version of the solution u as following
χNu(x,t)=RN(T−t)ρ(x)−SN(T−t)ξ(x)+∫TtSN(τ−t)F(x,τ,u)dτ. |
Then, we have
‖uN(⋅,t)−u(⋅,t)‖2H≤2‖uN(⋅,t)−χNu(⋅,t)‖2H+2‖χNu(⋅,t)−u(⋅,t)‖2H. | (5.13) |
Sub-step 1.1. By Höder's inequality, Lemma 5.1 and the Lipschitz property of F, we have
‖uN(⋅,t)−χNu(⋅,t)‖2H=‖∫TtSN(τ−t)(F(x,τ,uN)−F(x,τ,u))dτ‖2H≤T∫TtCSe2α(τ−t)λ2N‖F(⋅,τ,uN)−F(⋅,τ,u)‖2Hdτ≤CSL2TE∫Tte2α(τ−t)λ2N‖uN(⋅,τ)−u(⋅,τ)‖2Hdτ. | (5.14) |
Since u∈C([0,T];Gσ,2), then
‖χNu(⋅,t)−u(⋅,t)‖2H=∞∑p=N+1⟨u(⋅,t),φp⟩2≤e−2αtλNλ−2N∞∑p=N+1e2αtλpλ2p⟨u(⋅,t),φp⟩2≤e−2αtλNλ−2N‖u(⋅,t)‖L∞([0,T];Gσ,2). | (5.15) |
Substituting (5.14) and (5.15) into (5.13), we have
‖uN(⋅,t)−u(⋅,t)‖2H≤2CSL2TE∫Tte2α(τ−t)λ2N‖uN(⋅,τ)−u(⋅,τ)‖2Hdτ+2e−2αtλNλ−2N‖u‖L∞([0,T];Gσ,2). |
Multiplying both sides above formula to e2αtλN, we have
e2αtλ2N‖uN(⋅,t)−u(⋅,t)‖2H≤2CSL2TE∫Tte2ατλ2N‖uN(⋅,τ)−u(⋅,τ)‖2Hdτ+2λ−2N‖u‖L∞([0,T];Gσ,2). |
Using Gronwall's inequality, we obtain
e2αtλ2N‖uN(⋅,t)−u(⋅,t)‖2H≤(2λ−2N‖u‖L∞([0,T];Gσ,2))e2CSL2T(T−t). | (5.16) |
The proof is completed by combining (5.10), (5.12) and (5.16).
We propose the general scheme of our numerical calculation. For simplicity, we fix T=1 and Ω=(0,π). The eigenelements of the Dirichlet problem for the Laplacian in Ω have the following form:
φp=√2πsin(px),λp=p2, for p=1,2,… |
To find a numerical solution to Eq (5.2), we first need to define a set of Nx×Nt grid points in the domain Ω×[0,T]. Let Δx=π/Nx is the time step, Δt=1/Nt is the spatial step, the coordinates of the mesh points are xj=jΔx, j=0,…,Nx, and ti=iΔt, i=0,…,Nt, and the values of the regularized solution ˜UN(x,t) at these grid points are ˜UN(xj,ti)≈˜Uij, where we denote ˜Uij by the numerical estimate of the regularized solution ˜UN(x,t) of at the point (xj,ti).
Initialization step. The numerical process starts when time t=T. Since ˜UN(x,T)=RN(0)˜ρϵn, then
˜UNtj≈˜UN(x,T)=N∑p=1⟨˜ρϵn,φp⟩φp(xj)=N∑p=1⟨ρϵ,φp⟩φp(xj),j=1,…,Nx. | (6.1) |
Iteration steps. For ti<T, we want to determine
˜UN(x,ti)=RN(T−ti)˜ρϵn−SN(T−ti)˜ξϵn+∫TtiSN(τ−ti)F(˜UN)(τ)dτ⏟I(ti), | (6.2) |
where I(ti) is performed in backward time as following
I(ti)=N∑p=1[∫Ttie(τ−ti)k+p−e(τ−ti)k−p√ΔpFp(˜UN)(τ)dτ]φp(x)=N∑p=1[Nt−1∑k=i∫tk+1tke(τ−ti)k+p−e(τ−ti)k−p√ΔpFp(˜UN)(tk+1)dτ]φp(x). |
It is worth pointing out that, the Simpson's rule leads to the approximation
Fp(˜UN)(ti)=⟨F(˜UN)(⋅,ti),φp⟩≈Δ3Nx∑h=1Ch[F(˜UN(xh,ti))φp(xh)], |
where
Ch={1,if h=0 or h=Nx,2,if h≠0,h≠Nx and h is odd,4,if h≠0,h≠Nx and h is even. |
Error estimation. We use the absolute error estimation between the regularized solution and the exact solution as follows
Err(ti)=(1Nx+1Nx∑j=0|u(xj,ti)−˜UN(xj,ti)|2)1/2. | (6.3) |
In this example, we fixed α=0.3, β=0.01 and present the inputs
ρ(x)=e−2sinx+e−1sin2x;ξ(x)=−2e−2sinx−e−1sin2x, |
and source data F(x,t,u)=f(x,t)+11+u2, where
f(x,t)=(4−2α+β)(e−2tsinx+e−4tsinxsin22x+e−6tsin3x+2e−5tsin2xsin2x)1+e−2tsin22x+e−4tsin2x+2e−3tsinxsin2x+(1−16α+16β)(e−tsin2x+e−3tsin22x+e−5tsinxsin2x+2e−4tsinxsin22x)1+e−2tsin22x+e−4tsin2x+2e−3tsinxsin2x. |
It is easy to check that the exact solution of Problem (1.1)–(1.3) is given by u(x,t)=e−tsin2x+e−2tsinx.
Figure 1 compares ρ(x), ξ(x) with their estimates ˜ρϵn(x), ˜ξϵn(x), respectively. When ϵ tends to 0, the estimates are consistent with that of the exact ones. Figure 2 presents a 3D graph of the exact solution u and the regularized solution for the case ϵ=1E−03. Figure 3 displays the numerical convergence for different values of ϵ and t.
Table 1 shows the values of Err(t) from (6.3) calculated numerically. As a conclusion, our proposed regularization method works properly and the numerical solution method is also feasible in practice.
ϵ | Err(14) | Err(12) | Err(34) |
5E−01 | 1.071213E+00 | 2.464307E−01 | 1.124781E−01 |
1E−01 | 3.161161E−02 | 5.976654E−03 | 2.063242E−03 |
1E−02 | 1.143085E−04 | 1.761839E−05 | 4.912298E−05 |
1E−03 | 5.851911E−06 | 2.820096E−07 | 2.488333E−10 |
This research is supported by Industrial University of Ho Chi Minh City (IUH) under grant number 130/HD-DHCN. Nguyen Anh Tuan thanks the Van Lang University for the support.
The authors declare no conflict of interest.
[1] |
U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463. http://doi.org/10.1016/j.camwa.2010.03.034 doi: 10.1016/j.camwa.2010.03.034
![]() |
[2] |
M. Akdag, A. Ozkan, Soft α-open sets and soft α -continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341. http://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341
![]() |
[3] |
H. Aktas, N. C. Agman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. http://doi.org/10.1016/j.ins.2006.12.008 doi: 10.1016/j.ins.2006.12.008
![]() |
[4] |
S. Al Ghour, A. Bin-Saadon, On some generated soft topological spaces and soft homogeneity, Heliyon, 5 (2019), e02061. https://doi.org/10.1016/j.heliyon.2019.e02061 doi: 10.1016/j.heliyon.2019.e02061
![]() |
[5] |
S. Al Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. http://doi.org/10.3390/sym12020265 doi: 10.3390/sym12020265
![]() |
[6] |
S. Al Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. Soft Comput., 2022 (2022), 9860015. http://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
![]() |
[7] |
H. H. Al-jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelof spaces via soft regular closed sets, Afr. Mat., 33 (2022), 23. http://doi.org/10.1007/s13370-021-00952-z doi: 10.1007/s13370-021-00952-z
![]() |
[8] |
T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. http://doi.org/10.1007/s00500-019-04295-7 doi: 10.1007/s00500-019-04295-7
![]() |
[9] |
T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. http://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
![]() |
[10] |
T. M. Al-shami, E. S. A. Abo-Tabl, Connectedness and local connectedness on infra soft topological spaces, Mathematics, 9 (2021), 1759. http://doi.org/10.3390/math9151759 doi: 10.3390/math9151759
![]() |
[11] |
T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. http://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092
![]() |
[12] |
T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M. E. El-Shafei, Compactness and connectedness via the class of soft somewhat open sets, AIMS Mathematics, 8 (2022), 815–840. http://doi.org/10.3934/math.2023040 doi: 10.3934/math.2023040
![]() |
[13] |
T. M. Al-shami, R. A. Hosny, A. Mhemdi, R. Abu-Gdairi, S. Saleh, Weakly soft b-open sets and their usages via soft topologies: A novel approach, J. Intell. Fuzzy Syst., 45 (2023), 7727–7738. http://doi.org/10.3233/JIFS-230436 doi: 10.3233/JIFS-230436
![]() |
[14] | I. Arockiarani, A. Selvi, On soft slightly πgcontinuous functions, J. Prog. Res. Math., 3 (2015), 168–174. http://scitecresearch.com/journals/index.php/jprm/article/view/105 |
[15] |
A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2011), 113–119. http://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
![]() |
[16] |
B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. http://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136
![]() |
[17] |
M. K. El-Bably, M. I. Ali, E. S. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. http://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495
![]() |
[18] |
M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Mathematics, 8 (2023), 9082–9105. http://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
![]() |
[19] |
M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023), 4723233. http://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
![]() |
[20] |
M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. http://doi.org/10.1007/s40314-020-01161-3 doi: 10.1007/s40314-020-01161-3
![]() |
[21] |
F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Fuzzy Sets Syst.: Theory Appl., 56 (2008), 2621–2628. http://doi.org/10.1016/j.camwa.2008.05.011 doi: 10.1016/j.camwa.2008.05.011
![]() |
[22] |
S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacettepe J. Math. Stat., 44 (2015), 559–568. http://doi.org/10.15672/HJMS.2015449426 doi: 10.15672/HJMS.2015449426
![]() |
[23] |
S. Hussain, A note on soft connectedness, J. Egypt. Math. Soc., 23 (2015), 6–11. http://doi.org/10.1016/j.joems.2014.02.003 doi: 10.1016/j.joems.2014.02.003
![]() |
[24] |
S. Hussain, Binary soft connected spaces and an application of binary soft sets in decision making problem, Fuzzy Inf. Eng., 11 (2019), 506–521. http://doi.org/10.1080/16168658.2020.1773600 doi: 10.1080/16168658.2020.1773600
![]() |
[25] |
M. Irfan Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. http://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
![]() |
[26] |
Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., 56 (2008), 1408–1413. http://doi.org/10.1016/j.camwa.2008.02.035 doi: 10.1016/j.camwa.2008.02.035
![]() |
[27] |
Y. Jiang, Y. Tang, Q. Chen, J. Wang, S. Tang, Extending soft sets with description logics, Comput. Math. Appl., 59 (2010), 2087–2096. http://doi.org/10.1016/j.camwa.2009.12.014 doi: 10.1016/j.camwa.2009.12.014
![]() |
[28] |
Y. B. Jun, K. J. Lee, C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl., 57 (2009), 367–378. http://doi.org/10.1016/j.camwa.2008.11.002 doi: 10.1016/j.camwa.2008.11.002
![]() |
[29] |
Y. B. Jun, K. J. Lee, A. Khan, Soft ordered semigroups, Math. Logic Quart., 56 (2010), 42–50. http://doi.org/10.1002/malq.200810030 doi: 10.1002/malq.200810030
![]() |
[30] |
Z. Kong, L. Gao, L. Wang, S. Li, The normal parameter reduction of soft sets and its algorithm, Comput. Math. Appl., 56 (2008), 3029–3037. http://doi.org/10.1016/j.camwa.2008.07.013 doi: 10.1016/j.camwa.2008.07.013
![]() |
[31] |
D. V. Kovkov, V. M. Kolbanov, D. A. Molodtsov, Soft sets theory-based optimization, J. Comput. Syst. Sci. Int., 46 (2007), 872–880. http://doi.org/10.1134/S1064230707060032 doi: 10.1134/S1064230707060032
![]() |
[32] |
F. Lin, Soft connected spaces and soft paracompact spaces, Int. J. Math. Sci. Eng. Phys. Sci., 6 (2013), 1–7. http://doi.org/10.5281/zenodo.1335680 doi: 10.5281/zenodo.1335680
![]() |
[33] |
P. K. Maji, R. Biswas, R. Roy, An application of soft sets in decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. http://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
![]() |
[34] |
P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. http://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
![]() |
[35] |
P. Majumdar, S. K. Samanta, Similarity measure of soft sets, New Math. Nat. Comput., 4 (2008), 1–12. http://doi.org/10.1142/S1793005708000908 doi: 10.1142/S1793005708000908
![]() |
[36] |
D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 9–31. http://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[37] | D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application, Fuzzy Syst. Soft Comput., 1 (2006), 8–39. |
[38] | E. Peyghan, B. Samadi, A. Tayebi, Some results related to soft topological spaces, Facta Univ. Ser. Math. Inform., 29 (2014), 325–336. |
[39] |
M. Riaz, N. Cagman, I. Zareef, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521–6536. http://doi.org/10.3233/JIFS-182919 doi: 10.3233/JIFS-182919
![]() |
[40] |
M. Riaz, S. T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Comput., 24 (2020), 18259–18272. http://doi.org/10.1007/s00500-020-05342-4 doi: 10.1007/s00500-020-05342-4
![]() |
[41] |
S. Saleh, T. M. Al-Shami, L. R. Flaih, M. Arar, R. Abu-Gdairi, Ri-separation axioms via supra soft topological spaces, J. Math. Comput. Sci., 32 (2024), 263–274. http://doi.org/10.22436/jmcs.032.03.07 doi: 10.22436/jmcs.032.03.07
![]() |
[42] |
A. Sezgin, A. O. Atagun, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457–1467. http://doi.org/10.1016/j.camwa.2011.01.018 doi: 10.1016/j.camwa.2011.01.018
![]() |
[43] |
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. http://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
![]() |
[44] | S. S. Thakur, A. S. Rajput, P-connectedness between soft sets, Facta Univ. Ser. Math. Inform., 31 (2016), 335–347. |
[45] |
S. S. Thakur, A. S. Rajput, Connectedness between soft sets, New Math. Nat. Comput., 14 (2018), 53–71. http://doi.org/10.1142/S1793005718500059 doi: 10.1142/S1793005718500059
![]() |
[46] |
Z. Xiao, L. Chen, B. Zhong, S. Ye, Recognition for soft information based on the theory of soft sets, Proceedings of the International Conference on Services Systems and Services Management, 2005, 1104–1106. http://doi.org/10.1109/ICSSSM.2005.1500166 doi: 10.1109/ICSSSM.2005.1500166
![]() |
[47] |
Z. Xiao, K. Gong, S. Xia, Y. Zou, Exclusive disjunctive soft sets, Comput. Math. Appl., 59 (2010), 2128–2137. http://doi.org/10.1016/j.camwa.2009.12.018 doi: 10.1016/j.camwa.2009.12.018
![]() |
[48] |
W. Xu, W. J. Ma, S. Wang, G. Hao, Vague soft sets and their properties, Comput. Math. Appl., 59 (2010), 787–794. http://doi.org/10.1016/j.camwa.2009.10.015 doi: 10.1016/j.camwa.2009.10.015
![]() |
[49] |
H. L. Yang, X. Liao, S. G. Li, On soft continuous mappings and soft connectedness of soft topological spaces, Hacettepe J. Math. Stat., 44 (2015), 385–398. http://doi.org/10.15672/HJMS.2015459876 doi: 10.15672/HJMS.2015459876
![]() |
[50] | E. D. Yildirim, A. C. Guler, O. B. Ozbakir, On soft ˜I-Baire spaces, Ann. Fuzzy Math. Inform., 10 (2015), 109–121. |
[51] |
Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl.-Based Syst., 21 (2008), 941–945. http://doi.org/10.1016/j.knosys.2008.04.004 doi: 10.1016/j.knosys.2008.04.004
![]() |
1. | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed, On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type, 2023, 8, 2473-6988, 18206, 10.3934/math.2023925 |
ϵ | Err(14) | Err(12) | Err(34) |
5E−01 | 1.071213E+00 | 2.464307E−01 | 1.124781E−01 |
1E−01 | 3.161161E−02 | 5.976654E−03 | 2.063242E−03 |
1E−02 | 1.143085E−04 | 1.761839E−05 | 4.912298E−05 |
1E−03 | 5.851911E−06 | 2.820096E−07 | 2.488333E−10 |