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Abstract: Although the concept of connectedness may seem simple, it holds profound implications
for topology and its applications. The concept of connectedness serves as a fundamental component
in the Intermediate Value Theorem. Connectedness is significant in various applications, including
geographic information systems, population modeling and robotics motion planning. Furthermore,
connectedness plays a crucial role in distinguishing between different topological spaces. In this paper,
we define soft weakly connected sets as a new class of soft sets that strictly contains the class of soft
connected sets. We characterize this new class of sets by several methods. We explore various results
related to soft subsets, supersets, unions, intersections and subspaces within the context of soft weakly
connected sets. Additionally, we provide characterizations for soft weakly connected sets classified
as soft pre-open, semi-open or α-open sets. Furthermore, we introduce the concept of a soft weakly
connected component as follows: Given a soft point ax in a soft topological space (X,∆, A), we define
the soft weakly component of (X,∆, A) determined by ax as the largest soft weakly connected set,
with respect to the soft inclusion (⊆̃) relation, that contains ax. We demonstrate that the family of soft
weakly components within a soft topological space comprises soft closed sets, forming a soft partition
of the space. Lastly, we establish that soft weak connectedness is preserved under soft α-continuity.
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1. Introduction and preliminaries

Some mathematical concepts, such as the theory of fuzzy sets, the theory of intuitionistic fuzzy
sets, the theory of vague sets, the theory of rough sets and the theory of probability, might be regarded
as mathematical instruments for dealing with uncertainties. Some applications of these mathematical
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concepts appear in [17–19,39,40]. However, each of these theories has its own set of problems.
Molodtsov [36] invented the notion of soft sets in 1999 in order to deal with uncertainties while
modeling issues with inadequate information. He effectively utilized soft set theory in game theory,
smoothness of functions, operations research, Riemann integration, Perron integration, probability,
and theory of measurement in another study [37]. The properties and uses of soft sets have been
investigated in [25,27,30,31,33–35,37,42,47,48,51] and others. More information on the algebraic
structure of soft sets may be found in [1,3,21,26,28,29]. Shabir and Naz [43] began researching soft
topological spaces as a generalization of topological spaces in 2011. Many soft topological notions,
including soft separation axioms [8, 9, 20, 22, 41], soft covering properties [6,7,11,12,15,38], soft
connectedness [10,23,24,32,44,45,49], and different weak and strong types of soft continuity [13],
have been developed and investigated in recent years.

Connectedness is a key topic of topology that can provide numerous links between other scientific
fields and mathematical models. The concept of connectedness conveys the impression of picture
elements hanging together in an object by giving connectedness strength to every potential path
between every possible pair of image elements. It is a useful tool for creating picture segmentation
algorithms. In the present paper, we will introduce and investigate the concept of soft weak
connectedness in soft topological spaces. This research not only gives a theoretical basis for future
soft topology applications but can also contribute to the development of information systems.

This article is organized as follows:
In Section 1, after the introduction, we give some definitions which will be used in this paper.
Section 2 defines the concept of a soft weakly connected set, which is a weaker form of a soft

weakly connected set. We will obtain various characterizations of soft weakly connected sets. Within
the setting of soft weakly connected sets, we will investigate several results related to soft subsets,
supersets, unions, intersections, and subspaces.

Section 3 defines soft weakly connected components in a given soft topological space. We will
show that this class of soft sets consists of soft closed sets and forms a soft partition of the space. In
addition, we will discuss the behavior of soft weak connected sets under soft α-continuity.

Section 4 contains some findings and potential future studies.
We will now go over several significant concepts and terminologies that will be used in the sequel.
Let Y be an initial universe and A be a set of parameters. A soft set over Y relative to A is a function

G : A −→ P (Y), where P (Y) denotes the powerset of Y . S S (Y, A) denotes the family of all soft sets
over Y relative to A. Let G ∈ S S (Y, A). If G (a) = ∅ for every a ∈ A, then G is called the null soft set
over Y relative to A and denoted by 0A. If G (a) = Y for every a ∈ A, then G is called the absolute soft
set over Y relative to A and denoted by 1A. G is called a soft point over Y relative to A and denoted
by ay if there exist a ∈ A and y ∈ Y such that G (a) = {y} and G (b) = ∅ for all b ∈ A − {a}. S P (Y, A)
denotes the family of all soft points over Y relative to A. If for some a ∈ A and Z ⊆ Y , G (a) = Z
and G (b) = ∅ for all b ∈ A − {a}, then G will be denoted by aZ. If for some Z ⊆ Y , G (a) = Z for all
a ∈ A, then G will be denoted by CZ. If G ∈ S S (Y, A) and ay ∈ S P (Y, A), then ay is said to belong to
G (notation: ay∈̃G) if y ∈ G (a).
Definition 1.1. [43] Let Y be an initial universe and A be a set of parameters. Let Ψ ⊆ S S (Y, A). Then
Ψ is called a soft topology on Y relative to A if

(1) 0A, 1A ∈ Ψ,
(2) Ψ is closed under arbitrary soft union,
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(3) Ψ is closed under finite soft intersection.
The triplet (Y,Ψ, A) is called a soft topological space. The members of Ψ are called soft open sets

in (Y,Ψ, A) and their complements are called soft closed sets in (Y,Ψ, A).
This study adheres to the terminology and concepts utilized in [4,5]. STS will be used in the present

research to refer to soft topological space. Let (R,Ψ,M) be an STS and K ∈ S S (R,M). The soft interior
of K in (R,Ψ,M) and the soft closure of K in (R,Ψ,M), respectively, shall be referred to by the terms
IntΨ(K) and ClΨ(K), while Ψc and CO (R,Ψ,M) stand for the family of the family of soft closed sets
on (R,Ψ,M) and the family of clopen sets on (R,Ψ,M), respectively.
Definition 1.2. An STS (X,Ψ, A) is called

(a) [32] soft connected if CO (X,Ψ, A) = {0A, 1A}.
(b) [32] soft disconnected if it is not soft connected.
(c) [14] soft locally indiscrete if Ψ = Ψc.

Definition 1.3. Let (X,Ψ, A) be an STS and let G ∈ S S (X, A). Then G is called.
(a) [46] soft pre-open if G⊆̃IntΨ (ClΨ (G)).
(b) [16] soft semi-open if G⊆̃ClΨ (IntΨ (G)).
(c) [2] soft α-open if G⊆̃IntΨ (ClΨ (IntΨ (G))).
(d) [50] soft dense if ClΨ (G) = 1A.
We will denote the family of soft α-open in (X,Ψ, A) by Ψα. It is proved in [2] that Ψα forms a soft

topology that is finer than Ψ.
Definition 1.4. [2] A soft function fpu : (R,Ψ,M) −→ (L,Θ,N) is called soft α-continuous if f −1

pu (G) ∈
Ψα for all G ∈ Θ.

2. Soft weak connectedness

In this section, we define the concept of a soft weakly connected set, which is a weaker form of a soft
weakly connected set. We obtain various characterizations of soft weakly connected sets. Within the
setting of soft weakly connected sets, we investigate several results related to soft subsets, supersets,
unions, intersections and subspaces.
Definition 2.1. Let (L,∆,R) be a STS and let G ∈ S S (L,R). Then

(a) G is called soft weakly connected in (L,∆,R) if there are no K,H ∈ CO (L,∆,R) such that
1R = K∪̃H, K∩̃H = 0R and K∩̃G , 0R , G∩̃H.

(b) G is called soft weakly disconnected in (L,∆,R) if G is not soft weakly connected in (L,∆,R).
Theorem 2.2. Let (L,∆,R) be a STS and let Y be a non-empty subset of L. If CY is soft weakly
disconnected in (L,∆,R), then (Y,∆Y ,R) is soft disconnected.
Proof. Suppose that CY is soft weakly disconnected in (L,∆,R). Then there are K,H ∈ CO (L,∆,R)
such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃CY , 0R , H∩̃CY . Since K,H ∈ CO (L,∆,R), K∩̃CY ,
H∩̃CY ∈ CO (Y,∆Y ,R). Since 1R = K∪̃H and K∩̃H = 0R, CY =

(
K∪̃H

)
∩̃CY =

(
K∩̃CY

)
∪̃

(
H∩̃CY

)
and(

K∩̃H
)
∩̃CY = 0R∩̃CY = 0R. Therefore, (Y,∆Y ,R) is soft disconnected.

Corollary 2.3. Let (L,∆,R) be a STS and let Y be a non-empty subset of L. If (Y,∆Y ,R) is soft
connected, then CY is soft weakly connected in (L,∆,R).
Theorem 2.4. A STS (L,∆,R) is soft connected if and only if G is soft weakly connected for every
G ∈ S S (L,R) − {0R}.
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Proof. Necessity. Suppose that (L,∆,R) is soft connected and suppose to the contrary that there exists
G ∈ S S (L,R) − {0R} such that G is soft weakly disconnected. Then there are K,H ∈ CO (L,∆,R) such
that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since K∩̃G , 0R , G∩̃H, then K , 0R , H.
This shows that (L,∆,R) is soft disconnected, a contradiction.

Sufficiency. Suppose that G is soft weakly connected for every G ∈ S S (L,R) − {0R}, and suppose
to the contrary that (L,∆,R) is soft disconnected. Then there are K,H ∈ CO (L,∆,R) − {0R} such that
1R = K∪̃H, K∩̃H = 0R. Since K = K∩̃1R and H = H∩̃1R, K∩̃1R , 0R , H∩̃1R. Thus, we have
1R ∈ S S (L,R) − {0R} while 1R is soft weakly disconnected, a contradiction.

The converse of Theorem 2.2 does not have to be true in general, as demonstrated by the following
two examples:
Example 2.5. Let L = {2, 3, 4}, R = {a}, and ∆ =

{
0R, 1R, a2, a3, a{2.3}

}
. Let Y = {2, 3}. Then ∆Y =

{0R,CY , a2, a3}. Since a2, a3 ∈ CO (Y,∆Y ,R) − {0R}, a2∪̃a3 = CY , and a2∩̃a3 = 0R, then (Y,∆Y ,R) is soft
disconnected. On the other hand, if CY is soft weakly disconnected in (L,∆,R), then by Theorem 2.4,
(L,∆,R) is soft disconnected, but (L,∆,R) is soft connected.
Example 2.6. Let L = R and A = {a, b, c}. Define K,G ∈ S S (L, A) by K = {(a, {1}) , (b, {1, 2}) , (c,N)}
and G = {(a,N − {1}) , (b,N − {1, 2}) , (c, ∅)}. Let ∆ = {0A, 1A,K,G,CN} and Y = N. Then ∆Y =

{0R,CY ,G,K,CN}. Since G,K ∈ CO (Y,∆Y , A) − {0A}, G∪̃K = CY , and G∩̃K = 0A, then (Y,∆Y , A) is
soft disconnected. On the other hand, if CY is soft weakly disconnected in (L,∆, A), then by Theorem
2.4, (L,∆, A) is soft disconnected, but (L,∆, A) is soft connected.
Theorem 2.7. Let (L,∆,R) and (L,Γ,R) be soft disconnected STSs such that ∆ ⊆ Γ. If G is soft weakly
connected in (L,Γ,R), then G is soft weakly connected in (L,∆,R).
Proof. Suppose that G is soft weakly connected in (L,Γ,R). Suppose to the contrary that G is soft
weakly disconnected in (L,∆,R). Then there are K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R,
and K∩̃G , 0R , G∩̃H. Since ∆ ⊆ Γ, K,H ∈ CO (L,Γ,R). This implies that G is soft weakly
disconnected in (L,∆,R), a contradiction.
Theorem 2.8. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then G is soft weakly connected
in (L,∆,R) if and only if for any K,H ∈ S S (L,R) such that Int∆(A) = A = Cl∆(A), Int∆(B) = B =

Cl∆(B), 1R = K∪̃H, and K∩̃H = 0R; we have G⊆̃K or G⊆̃H.
Proof. Necessity. Suppose that G is soft weakly connected in (L,∆,R). Let K,H ∈ S S (L,R) such
that Int∆(K) = K = Cl∆(K), Int∆(H) = H = Cl∆(H), 1R = K∪̃H, and K∩̃H = 0R. Since Int∆(K) =

K = Cl∆(K) and Int∆(H) = H = Cl∆(H), K,H ∈ CO (L,∆,R). Since G is soft weakly connected in
(L,∆,R), then we have K∩̃G = 0R or G∩̃H = 0R. Since 1R = K∪̃H and K∩̃H = 0R, then K = 1R − H
and H = 1R−K. Since we have K∩̃G = 0R or G∩̃H = 0R, then we have G⊆̃1R−K⊆̃H or G⊆̃1R−H⊆̃K.

Sufficiency. Suppose to the contrary that G is soft weakly connected in (L,∆,R). Then there are
K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since K,H ∈

CO (L,∆,R), then Int∆(K) = K = Cl∆(K) and Int∆(H) = H = Cl∆(H). Thus, by assumption, we must
have G⊆̃K or G⊆̃H. Without loss of generality, we may assume that G⊆̃K. Since 1R = K∪̃H and
K∩̃H = 0R, then K = 1R − H. Therefore, we have G⊆̃1R − H and hence 0R = G∩̃H, a contradiction.
Theorem 2.9. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then the following are
equivalent:

(a) G is soft weakly connected in (L,∆,R).
(b) For each K ∈ CO (L,∆,R) − {0R}, we have G⊆̃K or G⊆̃1R − K.
(c) For each K ∈ S S (L,R) − {0R} with Bd∆ (K) = 0R, G⊆̃K or G⊆̃1R − K.
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Proof. (a) −→ (b): Let K ∈ CO (L,∆,R) − {0R}. Then we have Int∆(K) = K = Cl∆(K), Int∆(1R − K) =

1R −K = Cl∆(1R −K), 1R = K∪̃ (1R − K), and K∩̃ (1R − K) = 0R. So, by (a) and Theorem 2.8, we have
G⊆̃K or G⊆̃1R − K.

(b) −→ (c): Since Bd∆ (K) = 0R, K ∈ CO (L,∆,R). Thus, by (b), G⊆̃K or G⊆̃1R − K.
(c) −→ (a): Suppose to the contrary that G is soft weakly disconnected in (L,∆,R). Then there are

K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since 1R = K∪̃H and
K∩̃H = 0R, then H = 1R − K. Since K∩̃G , 0R, then K , 0R. So, we have K ∈ S S (L,R) − {0R} with
Bd∆ (K) = Cl∆ (K) ∩̃Cl∆ (1R − K) = K∩̃ (1R − K) = 0R and by (c), G⊆̃K or G⊆̃1R − K. Thus, we have
G∩̃H = (1R − K) ∩̃G = 0R or K∩̃G = 0R. However, K∩̃G , 0R , G∩̃H, a contradiction.
Theorem 2.10. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then the following are
equivalent:

(a) G is soft weakly connected in (L,∆,R).
(b) For every pair K,H ∈ S S (L,R)− {0R} of soft separated sets in (L,∆,R) such that 1R = K∪̃H we

have G⊆̃K or G⊆̃H.
Proof. (a) −→ (b): Suppose to the contrary that there are soft separated sets K,H ∈ S S (L,R) − {0R} in
(L,∆,R) such that 1R = K∪̃H and (1R − K) ∩̃G , 0R , G∩̃ (1R − H). Since K and H are soft separated
sets in (L,∆,R), K∩̃H = 0R. Since 1R = K∪̃H and K∩̃H = 0R, K = 1R − H and H = 1R − K. Thus, we
have K∩̃G , 0R , G∩̃H. Since 1R = K∪̃H, 1R = K∪̃Cl∆ (H) and 1R = H∪̃Cl∆ (K). Since K and H are
soft separated sets in (L,∆,R), K∩̃Cl∆ (H) = 0R and Cl∆ (K) ∩̃H = 0R. Thus, we have K = 1R−Cl∆ (H)
and H = 1R −Cl∆ (K) and hence K,H ∈ ∆. Therefore by (a), A < ∆c or B < ∆c, say A < ∆c. Then there
exists rx∈̃Cl∆ (K) − K = Cl∆ (K) ∩̃ (1R − K) = Cl∆ (K) ∩̃H, a contradiction.

(b) −→ (a): Suppose to the contrary that G is soft weakly disconnected in (L,∆,R). Then there are
K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since K,H ∈ ∆c and
K∩̃H = 0R, K∩̃Cl∆ (B) = 0R and Cl∆ (A) ∩̃H = 0R. Thus, K, K are soft separated sets in (L,∆,R).
Since K∩̃G , 0R , G∩̃H, K , 0R , H. Since 1R = K∪̃H, K∩̃H = 0R, K = 1R − H and H = 1R − K.
Therefore, by (b), G⊆̃K or G⊆̃H and so, G∩̃H = G∩̃ (1R − K) = 0R or G∩̃K = G∩̃ (1R − H) = 0R, a
contradiction.
Theorem 2.11. Let (L,∆,R) be soft disconnected, Y a non-empty subset of L, and G ∈ S S (Y,R). If G
is soft weakly connected in (Y,∆Y ,R), then G is soft weakly connected in (L,∆,R).
Proof. Suppose that G is soft weakly connected in (Y,∆Y ,R). Suppose to the contrary that G is soft
weakly disconnected in (L,∆,R). Then Then there are K,H ∈ CO (L,∆,R) such that 1R = K∪̃H,
K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since K,H ∈ CO (L,∆,R), K∩̃CY , H∩̃CY ∈ (Y,∆Y ,R). Since
1R = K∪̃H, then CY∩̃1R = CY∩̃

(
K∪̃H

)
=

(
CY∩̃K

)
∪̃

(
CY∩̃H

)
. Since K∩̃H = 0R, then(

CY∩̃K
)
∩̃

(
CY∩̃H

)
= CY∩̃

(
K∩̃H

)
= CY∩̃ (0R) = 0R. Since G ∈ S S (Y,R), then G∩̃CY = G. Therefore,

we have
(
CY∩̃K

)
∩̃G =

(
G∩̃CY

)
∩̃K = G∩̃K , 0R and

(
CY∩̃H

)
∩̃G =

(
G∩̃CY

)
∩̃H = G∩̃H , 0R. This

shows that G is soft weakly disconnected in (Y,∆Y ,R), a contradiction.
The following question is natural:
Let (L,∆,R) be a STS, Y a non-empty subset of L, and G ∈ S S (Y,R) such that G is soft weakly

connected in (L,∆,R). Is it true that G is soft weakly connected in (Y,∆Y ,R).
Each of the following two examples gives a negative answer to the above question:

Example 2.12. Let L = {2, 3, 4, 5}, R = {a}, ∆ =
{
0R, 1R, a{2}, a{3,4}, a{2,3,4}

}
, Y = {2, 3, 4}, and G = a{2,3}.

Then ∆Y =
{
0R,CY , a{2}, a{3,4}

}
. Let K = a{2} and H = a{3,4}. Then K,H ∈ CO (Y,∆Y ,R) such that

CY = K∪̃H, K∩̃H = 0R, K∩̃G = K , 0R, and G∩̃H = a{3} , 0R. This shows that G is soft weakly
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disconnected in (Y,∆Y ,R). Since CO (L,∆,R) = {0R, 1R}, then (L,∆,R) is soft connected, and by
Theorem 2.4, G is soft weakly connected in (L,∆,R).
Example 2.13. Let L = N and A = {a, b}. Define S ,T ∈ S S (L, A) by S = {(a, {1, 3}) , (b, {1, 2})} and
T = {(a, {2, 4}) , (b, {3, 4})}. Let Y = {1, 2, 3, 4} and G ∈ S S (Y, A) defined by G = {(a, {3}) , (b, {4})}.
Let ∆ = {0A, 1A, S ,T,CY}. Then ∆Y = {0A,CY , S ,T }. Then we have S ,T ∈ CO (Y,∆Y , A) such that
CY = S ∪̃T , S ∩̃T = 0A, S ∩̃G , 0A, and T ∩̃G , 0A. This shows that G is soft weakly disconnected
in (Y,∆Y , A). Since CO (L,∆, A) = {0A, 1A}, then (L,∆, A) is soft connected, and by Theorem 2.4, G is
soft weakly connected in (L,∆, A).
Theorem 2.14. Let (L,∆,R) be soft locally indiscrete, Y a non-empty subset of L, and G ∈ S S (Y,R).
If G is soft weakly connected in (L,∆,R), then G is soft weakly connected in (Y,∆Y ,R).
Proof. Suppose to the contrary that G is soft weakly disconnected in (Y,∆Y ,R). Then there are S ,T ∈
CO (Y,∆Y ,R) such that CY = S ∪̃T , S ∩̃T = 0R, and S ∩̃G , 0R , G∩̃T . Since S ,T ∈ ∆Y , there exist
K,H ∈ ∆ such that S = K∩̃CY and T = H∩̃CY . Put M = K − H and N = H∪̃

(
1R −

(
K∪̃H

))
. Since

(L,∆,R) is soft locally indiscrete, M, N ∈ CO (L,∆,R). Also, it is not difficult to see that 1R = M∪̃N,(
M∩̃N

)
= 0R, and M∩̃G , 0R , N∩̃G. This shows that G is soft weakly disconnected in (L,∆,R), a

contradiction.
Corollary 2.15. Let (L,∆,R) be soft locally indiscrete, Y a non-empty subset of L, and G ∈ S S (Y,R).
Then G is soft weakly connected in (L,∆,R) if and only if G is soft weakly connected in (Y,∆Y ,R).
Proof. The proof follows from Theorems 2.11 and 2.14.
Theorem 2.16. Let (L,∆,R) be soft disconnected, Y a non-empty subset of L such that
CY ∈ CO (L,∆,R) and (Y,∆Y ,R) is soft disconnected, and G ∈ S S (Y,R). If G is soft weakly connected
in (L,∆,R), then G is soft weakly connected in (Y,∆Y ,R).
Proof. Suppose to the contrary that G is soft weakly disconnected in (Y,∆Y ,R). Then there are S ,T ∈
CO (Y,∆Y ,R) such that CY = S ∪̃T , S ∩̃T = 0R, and S ∩̃G , 0R , G∩̃T . Since S ,T ∈ ∆Y , there
exist K,H ∈ ∆ such that S = K∩̃CY and T = H∩̃CY . Since CY ∈ ∆, S ,T ∈ ∆. Since CY ∈ ∆c,
1R − CY = CL−Y ∈ ∆. Put N = T ∪̃ (CL−Y). Then we have S ,N ∈ ∆, 1R = S ∪̃N,

(
S ∩̃N

)
= 0R, and

S ∩̃G , 0R , N∩̃G. Moreover, since S ,N ∈ ∆, 1R = S ∪̃N, and
(
S ∩̃N

)
= 0R, then S = 1R − N ∈ ∆c

and N = 1R − S ∈ ∆c and hence S ,N ∈ CO (L,∆,R). This shows that G is soft weakly disconnected in
(L,∆,R), a contradiction.
Theorem 2.17. Let (L,∆,R) be soft disconnected and let K,H ∈ S S (L,R)− {0R} be soft separated sets
in (L,∆,R) such that K∪̃H = CY for some Y ⊆ L. If G⊆̃CY such that G is soft weakly connected in
(Y,∆Y ,R), then G⊆̃K or G⊆̃H.
Proof. Since K and H are soft separated sets in (L,∆,R), then K∩̃Cl∆ (H) = 0R and Cl∆ (K) ∩̃H = 0R.
Thus, K∩̃Cl∆Y (H) = K∩̃

(
Cl∆ (H) ∩̃CY

)
=

(
Cl∆ (K) ∩̃H

)
∩̃CY = 0R∩̃CY = 0R and H∩̃Cl∆Y (K) =

H∩̃
(
Cl∆ (K) ∩̃CY

)
=

(
Cl∆ (H) ∩̃K

)
∩̃CY = 0R∩̃CY = 0R. Hence, since K and H are soft separated sets

in (Y,∆Y ,R). Therefore, by Theorem 2.10, G⊆̃K or G⊆̃H.
Theorem 2.18. A STS (L,∆,R) is soft connected if and only if for each ax, by ∈ S P (L,R) with
ax , by there exists a soft weakly connected set G in (L,∆,R) such that ax, by∈̃G.
Proof. Necessity. Suppose to the contrary that (L,∆,R) is soft connected. Take G = 1R. Then by
Theorem 2.4, G is soft weakly connected in (L,∆,R) such that ax, by∈̃G.

Sufficiency. Suppose the sufficiency condition holds but (L,∆,R) is soft disconnected. Then there
exist K,H ∈ ∆ − {0R} such that 1R = K∪̃H, K∩̃H = 0R. Choose ax∈̃K and by∈̃H. Then by assumption,
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there exists a soft weakly connected set G in (L,∆,R) such that ax, by∈̃G. Since 1R = K∪̃H, K∩̃H = 0R,
then K = 1R − H and H = 1R − K. Hence, K,H ∈ CO (L,∆,R). Since ax∈̃G∩̃K and by∈̃G∩̃H, then we
have K∩̃G , 0R , G∩̃H. This implies that G soft weakly disconnected in (L,∆,R), a contradiction.
Theorem 2.19. Let (L,∆,R) be a STS. If there is G ∈ S S (L,R) such that G is soft weakly connected
and soft dense in (L,∆,R), then (L,∆,R) is soft connected.
Proof. Suppose to the contrary that (L,∆,R) is soft disconnected. Then there exist K,H ∈ ∆ − {0R}

such that 1R = K∪̃H, K∩̃H = 0R. Since G is soft dense in (L,∆,R), then K∩̃G , 0R , G∩̃H. Since
1R = K∪̃H, K∩̃H = 0R, then K = 1R − H and H = 1R − K. Hence, K,H ∈ CO (L,∆,R). This implies
that G soft weakly disconnected in (L,∆,R), a contradiction.
Theorem 2.20. Let (L,∆,R) be soft disconnected and let G,N ∈ S S (L,R) such that G⊆̃N. If N is soft
weakly connected in (L,∆,R), then G is soft weakly connected in (L,∆,R).
Proof. Suppose to the contrary that G is soft weakly disconnected in (L,∆,R). Then there are K,H ∈
CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since G⊆̃N, then 0R ,

K∩̃G⊆̃K∩̃N and 0R , H∩̃G⊆̃H∩̃N. This shows that N is soft weakly disconnected in (L,∆,R), a
contradiction.
Corollary 2.21. Let (L,∆,R) be soft disconnected and let Gα ∈ S S (L,R) for all α ∈ z. If for some
β ∈ z, Gβ is soft weakly connected in (L,∆,R), then ∩̃α∈zGα is soft weakly connected in (L,∆,R).
Proof. Suppose that Gβ is soft weakly connected in (L,∆,R) for some β ∈ z. Since ∩̃α∈zGα⊆̃Gβ, then
by Theorem 2.20, ∩̃α∈zGα is soft weakly connected in (L,∆,R).
Corollary 2.22. Let (L,∆,R) be soft disconnected and let S ,T,G ∈ S S (L,R) such that S ⊆̃T and
G⊆̃T − S . If T is soft weakly connected in (L,∆,R), then S ∪̃G is soft weakly connected in (L,∆,R).
Proof. Suppose that T is soft weakly connected in (L,∆,R). Since S ⊆̃T and G⊆̃T − S ,
S ∪̃G⊆̃T ∪̃ (T − S ) ⊆̃T . Thus, by Theorem 2.20, S ∪̃G is soft weakly connected in (L,∆,R).
Theorem 2.23. Let (L,∆,R) be soft disconnected. If S and T are soft weakly connected in (L,∆,R)
such that S ∩̃T , 0R, then S ∪̃T is soft weakly connected in (L,∆,R).
Proof. Suppose to the contrary that S ∪̃T is soft weakly disconnected in (L,∆,R). Then there are
K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃

(
S ∪̃T

)
, 0R ,

(
S ∪̃T

)
∩̃H. By Theorem

2.9 (b),
(
S ⊆̃K and T ⊆̃K

)
,
(
S ⊆̃K and T ⊆̃H

)
,
(
S ⊆̃H and T ⊆̃K

)
, or

(
S ⊆̃H and T ⊆̃H

)
. If

(
S ⊆̃K and T ⊆̃H

)
or

(
S ⊆̃H and T ⊆̃K

)
, then 0R , S ∩̃T ⊆̃H∩̃K = 0R. Therefore,

(
S ⊆̃K and T ⊆̃K

)
or

(
S ⊆̃H and T ⊆̃H

)
and

hence S ∪̃T ⊆̃K or S ∪̃T ⊆̃H. Thus, we have
(
S ∪̃T

)
∩̃H = 0R or

(
S ∪̃T

)
∩̃K = 0R, a contradiction.

Theorem 2.24. Let (L,∆,R) be soft disconnected and let {Gα : α ∈ z} ⊆ S S (L,R) such that Gα∩̃Gβ ,

0R for all α, β ∈ z. If Gα is soft weakly connected in (L,∆,R) for all α ∈ z, then ∪̃α∈zGα is soft weakly
connected in (L,∆,R).
Proof. Suppose to the contrary that ∪̃α∈zGα is soft weakly disconnected in (L,∆,R). Then there are
K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃

(
∪̃α∈zGα

)
, 0R ,

(
∪̃α∈zGα

)
∩̃H. By

Theorem 2.9 (b), for all α ∈ z either Gα⊆̃K or Gα⊆̃H. Since Gα∩̃Gβ , 0R for all α, β ∈ z, then either
∪̃α∈zGα⊆̃K or ∪̃α∈zGα⊆̃H. Thus, we have

(
∪̃α∈zGα

)
∩̃H = 0R or

(
∪̃α∈zGα

)
∩̃K = 0R, a contradiction.

Corollary 2.25. Let (L,∆,R) be soft disconnected and let {Gα : α ∈ z} ⊆ S S (L,R) such that ∩̃α∈zGα ,

0R. If Gα is soft weakly connected in (L,∆,R) for all α ∈ z, then ∪̃α∈zGα is soft weakly connected in
(L,∆,R).
Theorem 2.26. Let (L,∆,R) be soft disconnected. If G is soft weakly connected in (L,∆,R), then
Cl∆ (G) is soft weakly connected in (L,∆,R).
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Proof. Suppose to the contrary that Cl∆ (G) is soft weakly disconnected in (L,∆,R). Then there are
K,H ∈ CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃Cl∆ (G) , 0R , Cl∆ (G) ∩̃H. Since
K,H ∈ ∆ and K∩̃Cl∆ (G) , 0R , Cl∆ (G) ∩̃H, then K∩̃G , 0R , G∩̃H. This shows that G is soft
weakly disconnected in (L,∆,R), a contradiction.
Corollary 2.27. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then G is soft weakly
connected in (L,∆,R) if and only if Cl∆ (G) is soft weakly connected in (L,∆,R).
Proof. The proof follows from Theorems 2.20 and 2.26.
Corollary 2.28. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then G is soft weakly
connected in (L,∆,R) if and only if each T ∈ S S (L,R) such that G⊆̃T ⊆̃ Cl∆ (G) is soft weakly
connected in (L,∆,R).
Proof. The proof follows from Theorems 2.20 and 2.26.
Theorem 2.29. Let (L,∆,R) be soft disconnected and let {Gi}i∈I ⊆ S S (L,R). If ∪̃i∈IGi⊆̃T and T is soft
weakly connected in (L,∆,R), then ∪̃i∈ICl∆ (Gi) is soft weakly connected in (L,∆,R).
Proof. Since T is soft weakly connected in (L,∆,R), by Theorem 2.26 we have Cl∆ (T ) is soft weakly
connected in (L,∆,R). Since ∪̃i∈ICl∆ (Gi) ⊆̃Cl∆

(
∪̃i∈IGi

)
⊆̃Cl∆ (T ), by Theorem 2.20, ∪̃i∈ICl∆ (Gi) is soft

weakly connected in (L,∆,R).
Theorem 2.30. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). If G is soft weakly connected
in (L,∆,R), then Cl∆ (Int∆ (Cl∆ (G))) is soft weakly connected in (L,∆,R).
Proof. Suppose that G is soft weakly connected in (L,∆,R). Then by Theorem 2.26, Cl∆ (G) is soft
weakly connected in (L,∆,R). Since Int∆ (Cl∆ (G)) ⊆̃Cl∆ (G), by Theorem 2.20, Int∆ (Cl∆ (G)) is soft
weakly connected in (L,∆,R). Again, by Theorem 2.26, Cl∆ (Int∆ (Cl∆ (G))) is soft weakly connected
in (L,∆,R).
Theorem 2.31. Let (L,∆,R) be soft disconnected. If S and T are soft weakly connected in (L,∆,R)
such that Cl∆ (S ) ∩̃Cl∆ (T ) , 0R, then Cl∆ (Int∆ (Cl∆ (S ))) ∪̃Cl∆ (Int∆ (Cl∆ (T ))) is soft weakly
connected in (L,∆,R).
Proof. Since S and T are soft weakly connected in (L,∆,R), by Theorem 2.26, Cl∆ (S ) and Cl∆ (T ) are
soft weakly connected in (L,∆,R). Hence, by Theorem 2.23, Cl∆ (S ) ∪̃Cl∆ (T ) is soft weakly connected
in (L,∆,R). Since Cl∆ (Int∆ (Cl∆ (S ))) ∪̃Cl∆ (Int∆ (Cl∆ (T ))) =

Cl∆
(
Int∆ (Cl∆ (S )) ∪̃Int∆ (Cl∆ (T ))

)
⊆̃ Cl∆

(
Cl∆ (S ) ∪̃Cl∆ (T )

)
= Cl∆ (S ) ∪̃Cl∆ (T ) ,

by Theorem 2.20, Cl∆ (Int∆ (Cl∆ (S ))) ∪̃Cl∆ (Int∆ (Cl∆ (T ))) is soft weakly connected in (L,∆,R).
Theorem 2.32. Let (L,∆,R) be soft disconnected. If G is soft weakly connected in (L,∆,R), then

(a) Cl∆ (Int∆ (G)) is soft weakly connected in (L,∆,R).
(b) Int∆ (Cl∆ (G)) is soft weakly connected in (L,∆,R).
(c) Int∆ (Cl∆ (Int∆ (G))) is soft weakly connected in (L,∆,R).

Proof. (a) Since G is soft weakly connected in (L,∆,R), by Theorem 2.26, Cl∆ (G) is soft weakly
connected in (L,∆,R). Since Cl∆ (Int∆ (G)) ⊆̃Cl∆ (G), by Theorem 2.20, Cl∆ (Int∆ (G)) is soft weakly
connected in (L,∆,R).

(b) Since G is soft weakly connected in (L,∆,R), by Theorem 2.26, Cl∆ (G) is soft weakly connected
in (L,∆,R). Since Int∆ (Cl∆ (G)) ⊆̃Cl∆ (G), by Theorem 2.20, Int∆ (Cl∆ (G)) is soft weakly connected
in (L,∆,R).
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(c) By (a), Cl∆ (Int∆ (G)) is soft weakly connected in (L,∆,R). Since
Int∆ (Cl∆ (Int∆ (G))) ⊆̃Cl∆ (Int∆ (G)), by Theorem 2.20, Int∆ (Cl∆ (Int∆ (G))) is soft weakly connected
in (L,∆,R).
Theorem 2.33. Let (L,∆,R) be soft disconnected and let G be soft pre-open in (L,∆,R). Then G is
soft weakly connected in (L,∆,R) if and only if Cl∆ (Int∆ (G)) is soft weakly connected in (L,∆,R).
Proof. Necessity. Follows from Theorem 2.32 (a).

Sufficiency. Suppose that Cl∆ (Int∆ (G)) is soft weakly connected in (L,∆,R). Since G is soft semi-
open in (L,∆,R), G⊆̃Cl∆ (Int∆ (G)). Thus, by Theorem 2.20, G is soft weakly connected in (L,∆,R).
Theorem 2.34. Let (L,∆,R) be soft disconnected and let G be soft semi-open in (L,∆,R). Then G is
soft weakly connected in (L,∆,R) if and only if Int∆ (Cl∆ (G)) is soft weakly connected in (L,∆,R).
Proof. Necessity. Follows from Theorem 2.32 (b).

Sufficiency. Suppose that Int∆ (Cl∆ (G)) is soft weakly connected in (L,∆,R). Since G is soft pre-
open in (L,∆,R), G⊆̃Int∆ (Cl∆ (G)). Thus, by Theorem 2.20, G is soft weakly connected in (L,∆,R).
Theorem 2.35. Let (L,∆,R) be soft disconnected and let G be soft α-open in (L,∆,R). Then G is soft
weakly connected in (L,∆,R) if and only if Int∆ (Cl∆ (Int∆ (G))) is soft weakly connected in (L,∆,R).
Proof. Necessity. Follows from Theorem 2.32 (c).

Sufficiency. Suppose that Int∆ (Cl∆ (Int∆ (G))) is soft weakly connected in (L,∆,R). Since G is soft
α-open in (L,∆,R), G⊆̃Int∆ (Cl∆ (Int∆ (G))). Thus, by Theorem 2.20, G is soft weakly connected in
(L,∆,R).
Theorem 2.36. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). If Int∆ (G) is soft weakly
connected in (L,∆,R) and G is soft semi-open in (L,∆,R), then G is soft weakly connected in (L,∆,R).
Proof. Since Int∆ (G) is soft weakly connected in (L,∆,R), by Theorem 2.26, Cl∆ (Int∆ (G)) is soft
weakly connected in (L,∆,R). Since G is soft semi-open in (L,∆,R), G⊆̃Cl∆ (Int∆ (G)). Thus, by
Theorem 2.20, G is soft weakly connected in (L,∆,R).

3. Soft weakly connected components and a soft mapping theorem

In this section, we define soft weakly connected components in a given soft topological space. We
show that this class of soft sets consists of soft closed sets and forms a soft partition of the space. In
addition, we discuss the behavior of soft weak connected sets under soft α-continuity.
Theorem 3.1. Let (L,∆,R) be soft disconnected. For any ax, by ∈ S P (L,R), define axCby if and only
if there exists a soft weakly connected set G in (L,∆,R) such that ax, by∈̃G. Then C is an equivalence
relation on S P (L,R).
Proof. To see that C is reflexive, let ax ∈ S P (L,R).
Claim. ax is soft weakly connected in (L,∆,R).
Proof of Claim. Suppose to the contrary that there are K,H ∈ CO (L,∆,R) such that 1R = K∪̃H,
K∩̃H = 0R, and K∩̃ax , 0R , ax∩̃H. Thus, we have ax∈̃ K∩̃H = 0R, a contradiction.

Therefore, by the above claim, axCax. This shows that C is reflexive.
To see that C is transitive, suppose that axCby and byCdz. Then there are soft weakly connected sets

S ,T in (L,∆,R) such that ax, by∈̃S and by, dz∈̃T . Since by∈̃S ∩̃T , by Theorem 2.21, S ∪̃T is soft weakly
connected in (L,∆,R). Since ax, dz∈̃S ∪̃T , axCdz. This shows that C is transitive.

Finally, it is clear from the definition that C is symmetric.
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Definition 3.2. Let (L,∆,R) be soft disconnected and let ax ∈ S P(L,R). Let C be the equivalence
relation described in Theorem 3.1. The equivalence class determined by ax relative to the equivalence
relation C will be denoted by C (ax) and the soft set ∪̃by∈C(ax)by will be denoted by Cax and will be called
the soft weakly-component (w-component, for short) of (L,∆,R) determined by ax.
Theorem 3.3. Let (L,∆,R) be soft disconnected ax ∈ S P(L,R). Then

(a) ax∈̃Cax .
(b) Cax is soft weakly connected in (L,∆,R).
(c) If K is a soft weakly connected in (L,∆,R) and Cax⊆̃K, then G = K.
(d) Cax is soft closed in (L,∆,R).

Proof. (a) Since C is reflexive, then ax ∈ C (ax) and so, ax∈̃∪̃by∈C(ax)by = Cax .
(b) Let G = ∪̃

{
T : ax∈̃T and T is soft weakly connected in (L,∆,R)

}
. Since

ax∈̃∩̃
{
T : ax∈̃T and T is soft weakly connected in (L,∆,R)

}
, by Corollary 2.23, G is soft weakly

connected in (L,∆,R).
Claim. G = Cax and hence Cax is soft weakly connected in (L,∆,R).
Proof of Claim. To see that G⊆̃Cax , let by∈̃G. Then there exists a soft weakly connected set T in
(L,∆,R) such that ax, by∈̃T . Hence, by∈̃Cax .

To see that Cax⊆̃G, let by∈̃Cax . Then there exists a soft weakly connected set T in (L,∆,R) such that
ax, by∈̃T . Hence, by∈̃G.

(c) Let K be soft weakly connected in (L,∆,R) such that Cax⊆̃K. To see that K⊆̃Cax , let by∈̃K. Since
ax∈̃Cax⊆̃K, then we have ax, by∈̃K where K is soft weakly connected in (L,∆,R). Hence, by∈̃Cax .

(d) By (b), Cax is soft weakly connected in (L,∆,R). So, by Theorem 2.24, Cl∆
(
Cax

)
is soft weakly

connected in (L,∆,R). Since Cax⊆̃Cl∆
(
Cax

)
, then by (c), Cax = Cl∆

(
Cax

)
. This shows that Cax is soft

closed in (L,∆,R).
Example 3.4. Let L = {1, 2, 3, 4} and A = {a, b}. Define S ,T ∈ S S (L, A) by S = {(a, {1, 2}) , (b, {3, 4})}
and T = {(a, {3, 4}) , (b, {1, 2})}. Let Let ∆ = {0A, 1A, S ,T }. Then Ca1 = Ca2 = Cb3 = Cb4 = S and
Ca3 = Ca4 = Cb1 = Cb2 = T .
Theorem 3.5. Let (L,∆,R) be soft disconnected and let G ∈ S S (L,R). Then G is soft weakly
disconnected in (L,∆,R) if and only if G is soft weakly disconnected in (L,∆α,R).
Proof. Necessity. Suppose that G is soft weakly disconnected in (L,∆,R). Then there exist K,H ∈
CO (L,∆,R) such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since CO (L,∆,R) ⊆
CO (L,∆α,R), then K,H ∈ CO (L,∆α,R). This shows that G is soft weakly disconnected in (L,∆α,R).

Sufficiency. Suppose that G is soft weakly disconnected in (L,∆α,R). Then there exist K,H ∈ ∆α

such that 1R = K∪̃H, K∩̃H = 0R, and K∩̃G , 0R , G∩̃H. Since K∩̃H = 0R, then Int∆ (K) ∩̃Int∆ (H) =

0R. So, Int∆ (K) ∩̃Cl∆ (Int∆ (H)) = 0R and hence, Int∆ (K) ∩̃Int∆ (Cl∆ (Int∆ (H))) = 0R. Therefore,
Cl∆ (Int∆ (K)) ∩̃Int∆ (Cl∆ (Int∆ (H))) = 0R and thus,

Int∆ (Cl∆ (Int∆ (K))) ∩̃Int∆ (Cl∆ (Int∆ (H))) = 0R. Since K,H ∈ ∆α, then K⊆̃Int∆ (Cl∆ (Int∆ (K))) and
H⊆̃Int∆ (Cl∆ (Int∆ (H))). Put S = Int∆ (Cl∆ (Int∆ (K))) and T = Int∆ (Cl∆ (Int∆ (H))). Then S ,T ∈ ∆,
K⊆̃S , H⊆̃T , and S ∩̃T = 0R. Since 1R = K∪̃H⊆̃S ∪̃T , then 1R = S ∪̃T . Finally, since K∩̃G , 0R ,

G∩̃H, K⊆̃S , and H⊆̃T , then we have S ∩̃G , 0R , G∩̃T . This shows that G is soft weakly disconnected
in (L,∆,R).
Theorem 3.6. Let (L,∆,R) and (M,Π, B) be soft disconnected and fpu : (L,∆,R) −→ (M,Π, B) be
soft α-continuous. If G is soft weakly connected in (L,∆,R), then fpu (G) is soft weakly connected in
(M,Π, B).
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Proof. Suppose to the contrary that fpu (G) is soft weakly disconnected in (M,Π, B). Then there exist
K,H ∈ CO (M,Π, B) such that 1B = K∪̃H, K∩̃H = 0B, and K∩̃ fpu (G) , 0B , fpu (G) ∩̃H. Hence,
f −1
pu (K) ∪̃ f −1

pu (H) = f −1
pu

(
K∪̃H

)
= f −1

pu (1B) = 1R, f −1
pu (K) ∩̃ f −1

pu (H) = f −1
pu

(
K∩̃H

)
= f −1

pu (0B) = 0R, and
f −1
pu (K) ∩̃G , 0R , G∩̃ f −1

pu (H). Since fpu is soft α-continuous, f −1
pu (K) , f −1

pu (H) ∈ ∆α. This implies that
G is soft weakly disconnected in (L,∆α,R). Therefore, by Theorem 3.5, G is soft weakly disconnected
in (L,∆,R), a contradiction.

4. Conclusions

The study of soft sets and soft topology is particularly significant during the investigation of
possible applications in classical and non-classical logic. Soft topological spaces, which are a
collection of information granules based on soft set theory, are the mathematical descriptions of
approximate reasoning about information systems. Here, the concept of soft weak connectedness as a
weaker type of soft connectedness is defined. Several properties and characterizations regarding soft
weakly connected sets are introduced. Furthermore, using soft weakly connected sets, soft weakly
connected components, it is proven that the family of soft weakly components within a soft
topological space comprises soft closed sets, forming a soft partition of the space. In addition, the
behavior of soft weak connected sets under soft α-continuity is discussed.

These two new concepts will also serve to strengthen the foundations of the soft topology toolbox.
The findings of this paper can be applied to problems with uncertainties in many disciplines, and they
will motivate future research into soft topology in order to carry out a generic framework for practical
applications.

In the future, we may look at the following topics: (1) Defining soft weakly pre-connected sets,
and (2) finding an application for our new two conceptions in the “decision-making problem” or
“information systems” or “expert systems”.
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