This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.
Citation: Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas. A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions[J]. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
[1] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[2] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[3] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[4] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[5] | Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099 |
[6] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
[7] | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750 |
[8] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[9] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[10] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.
Fractional calculus gained a great interest in view of its applications in a variety of disciplines such as mathematical sciences, dynamical systems, engineering, finance, control theory, etc.; for details and explanation, see [1,2,3,4] and the references cited therein. Examples of fractional differential systems include distributed-order dynamical systems [5], quantum evolution of complex systems [6], Chua circuit [7], Lorenz system [8], Duffing system [9], synchronization of coupled fractional-order chaotic systems [10,11,12], systems of nonlocal thermoelasticity [13,14], anomalous diffusion [15,16], etc.
There has also been witnessed a great surge in developing the theoretical aspects (existence, uniqueness and stability of solutions) of fractional order boundary value problems. In [17], the authors studied a coupled Riemann-Stieltjes type integro-multipoint boundary value problem of Caputo-type sequential fractional differential equations by using the standard fixed point theorems. The existence of solutions for a nonlinear fractional system involving both Caputo and Riemann-Liouville generalized fractional derivatives with coupled integral boundary conditions was investigated in [18]. One can find some more interesting results on the topic in the articles [19,20,21,22,23,24,25,26,27] and the references cited therein. In a recent work [28], the authors studied a system of generalized coupled fractional differential equations equipped with uncoupled Riemann-Stieltjes and generalized fractional integral boundary conditions.
Keeping in mind that the concept of the coupled boundary data is more general and important, we introduce a class of nonlocal coupled multipoint integral boundary conditions containing Riemann-Stieltjes and generalized fractional integrals and solve the system considered in [28] with these boundary conditions. In precise terms, we apply the fixed point approach to develop the existence criteria for solutions to the following system of nonlinear generalized coupled fractional differential equations complemented with nonlocal coupled multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions:
{ρDα0+u(t)=f(t,u(t),v(t),ρDγ10+v(t)),t∈[0,T],ρDβ0+v(t)=g(t,u(t),ρDγ20+u(t),v(t)),t∈[0,T],u(0)=v(0)=0∫T0u(s)dH1(s)=λ1ρIδ10+v(ξ1)+m∑p=1apv(ηp),ξ1∈(0,T),∫T0v(s)dH2(s)=λ2ρIδ20+u(ξ2)+m∑p=1bpu(ηp),ξ2∈(0,T), | (1.1) |
where ρDα0+ and ρDβ0+ are the generalized fractional derivative operators of order 1<α,β≤2, respectively, 0<γ1,γ2<1, ρIδ10+ and ρIδ20+ are the generalized fractional integral operators of order δ1,δ2>0, respectively, ∫T0u(s)dHi(s) (i=1,2) are the Riemann-Stieltjes integrals with respect to the functions Hi:[0,T]→R, f,g∈C([0,T]×R3,R), λ1,λ2,ap,bp∈R and ηp∈(0,T),p=1,2,…,m.
Here, we emphasize that the system of fractional differential equations in (1.1) reduces to the one with Hadamard and Riemann-Liouville fractional differential and integral operators, respectively, for ρ→0+ and ρ=1. Thus, the results obtained in this paper will correspond to the Hadamard and Riemann-Liouville fractional differential systems equipped with coupled multipoint Riemann-Stieltjes and Hadamard/Riemann-Liouville fractional integral boundary conditions as special cases.
We arrange the rest of the article as follows. Some preliminary concepts related to our work are outlined in Section 2. The main results for the given problem will be derived in Section 3. An illustrative example is also included in Section 3. Section 4 contains some concluding remarks.
Here, we recall some basic concepts of fractional calculus related to our work. For 1≤p≤∞, c∈R, define
Xpc(a,b)={ϕ:(a,b)→R;ϕis Lebesgue measurable function,‖ϕ‖Xpc<∞}, |
where
‖ϕ‖Xpc=(∫ba|xsϕ(x)|pdxx)1p. |
Definition 2.1. [29] The generalized fractional integral of order α>0 of function f∈Xpc(a,b) is defined as
ρIα0+f(t)=ρ1−αΓ(α)∫tasρ−1(tρ−sρ)1−αf(s)ds, |
where ρ>0, −∞<a<t<b<∞ and Γ(⋅) is the Gamma function.
Definition 2.2. [30] The generalized fractional derivative of order α>0 associated with the generalized fractional integral is defined for 0≤a<x<b<∞ as
ρDα0+f(t)=(t1−ρddt)nρIn−α0+f(t)=ρα−n+1Γ(n−α)(t1−ρddt)n∫tasρ−1(tρ−sρ)α−n+1f(s)ds, |
where n=[α]+1, [α] denotes the integer part of real number α.
For example, we have
ρDγ0+tρ(α−1)=Γ(α)Γ(α+1−γ)ργ(α−γ)tρ(α−1−γ). |
Lemma 2.3. [31] The equality ρDα0+ρIα0+g(t)=g(t), ρ>0 holds for g∈Xpc(a,b), a>0.
Lemma 2.4. [30] Let q1,q2∈C, 1≤p≤∞ and 0<a<b<∞, then, for f∈Xpc(a,b), ρ>0,
ρIq10+ρIq20+f=ρIq1+q20+fandρDq10+ρDq20+f=ρDq1+q20+f. |
Let C([0,T],R) denote the set of all continuous functions from [0,T] to R. Set
X={Φ|Φ∈C([0,T],R)andρDγ20+Φ∈C([0,T],R)}, |
endowed with the norm
‖Φ‖X=supt∈[0,T]|Φ(t)|+supt∈[0,T]|ρDγ20+Φ(t)|:=‖Φ‖+‖ρDγ20+Φ‖. |
As argued in [32], (X,‖⋅‖X) is a Banach space. Also, we define
Y={Ψ|Ψ∈C([0,T],R)andρDγ10+Ψ∈C([0,T],R)} |
endowed with the norm
‖Ψ‖Y=supt∈[0,T]|Ψ(t)|+supt∈[0,T]|ρDγ10+Ψ(t)|:=‖Ψ‖+‖ρDγ10+Ψ‖. |
Likewise, (Y,‖⋅‖Y) is a Banach space.
We know from [32] that the space (X×Y,‖⋅‖X×Y) with the norm ‖(Φ,Ψ)‖X×Y=‖Φ‖X+‖Ψ‖Y for any (Φ,Ψ)∈X×Y is a Banach space.
Let AC[0,T] denote the space of absolutely continuous functions on [0,T].
Lemma 2.5. [31] Let ρ>0, 1<α≤2, u∈Xpc(0,T) and ρI2−α0+u∈AC2ρ[0,T], where
AC2ρ[0,T]={g:[0,T]→R:(t1−ρddt)g(t)∈AC[0,T]}, |
then the solution of the equation ρDα0+u(t)=0 is
u(t)=c1tρ(α−1)+c2tρ(α−2), |
where ci∈R, i=1,2 are constants. Moreover,
ρIα0+ρDα0+u(t)=u(t)+c1tρ(α−1)+c2tρ(α−2). |
In the following lemma, we solve the linear variant of the system (1.1), which facilitates the conversion of the given nonlinear problem into an equivalent fixed point problem.
Lemma 2.6. Assume that Θ1,Θ2∈C([0,T],R) with ρI2−α0+u,ρI2−β0+v∈AC2ρ[0,T] and Λ≠0. Then, the following system
{ρDα0+u(t)=Θ1(t),t∈[0,T],ρDβ0+v(t)=Θ2(t),t∈[0,T],u(0)=v(0)=0∫T0u(s)dH1(s)=λ1ρIδ10+v(ξ1)+m∑p=1apv(ηp),ξ1∈(0,T)∫T0v(s)dH2(s)=λ2ρIδ20+u(ξ2)+m∑p=1bpu(ηp),ξ2∈(0,T), | (2.1) |
has a solution (u,v) given by
u(t)=ρIα0+Θ1(t)+tρ(α−1)Λ[A2{λ1ρIβ+δ10+Θ2(ξ1)−∫T0ρIα0+Θ1(s)dH1(s)+m∑p=1apρIβ0+Θ2(ηp)}+B1{λ2ρIα+δ20+Θ1(ξ2)−∫T0ρIβ0+Θ2(s)dH2(s)+m∑p=1bpρIα0+Θ1(ηp)}], | (2.2) |
v(t)=ρIβ0+Θ2(t)+tρ(β−1)Λ[B2{λ1ρIβ+δ10+Θ2(ξ1)−∫T0ρIα0+Θ1(s)dH1(s)+m∑p=1apρIβ0+Θ2(ηp)}+A1{λ2ρIα+δ20+Θ1(ξ2)−∫T0ρIβ0+Θ2(s)dH2(s)+m∑p=1bpρIα0+Θ1(ηp)}], | (2.3) |
where
Λ=A1A2−B1B2,A1=∫T0sρ(α−1)dH1(s),A2=∫T0sρ(β−1)dH2(s),B1=λ1Γ(β)ρδ1(β+δ1)ξρ(β+δ1−1)1+m∑p=1apηρ(β−1)p,B2=λ2Γ(α)ρδ2(α+δ2)ξρ(α+δ2−1)2+m∑p=1bpηρ(α−1)p. | (2.4) |
Proof. Solving the system of fractional differential equations in (1.1), we get
u(t)=ρIα0+Θ1(t)+c1tρ(α−1)+c2tρ(α−2),v(t)=ρIβ0+Θ2(t)+c3tρ(β−1)+c4tρ(β−2). | (2.5) |
Making use of the condition u(0)=v(0)=0 in (2.5), we get c2=c4=0, and then applying the generalized integral operators ρIβ0+ and ρIα0+ to the first and second equations in (2.5), respectively, we obtain
ρIδ20+u(t)=ρIδ2+α0+Θ1(t)+c1Γ(α)ρδ2Γ(α+δ2)tρ(α+δ2−1),ρIδ10+v(t)=ρIδ1+β0+Θ2(t)+c3Γ(β)ρδ1Γ(β+δ1)tρ(β+δ1−1). | (2.6) |
Using (2.5) and (2.6) in the conditions:
∫T0u(s)dH1(s)=λ1ρIδ10+v(ξ1)+m∑p=1apv(ηp),∫T0v(s)dH2(s)=λ2ρIδ20+u(ξ2)+m∑p=1bpu(ηp), |
we obtain a system of equations in the unknown constants c1 and c3 given by
c1A1−c3B1=λ1ρIδ1+β0+Θ2(ξ1)−∫T0ρIα0+Θ1(s)dH1(s)+m∑p=1apρIβ0+Θ2(ηp), | (2.7) |
−c1B2+c3A2=λ2ρIα+δ10+Θ1(ξ2)−∫T0ρIβ0+Θ2(s)dH2(s)+m∑p=1bpρIα0+Θ1(ηp), | (2.8) |
where A1,A2,B1 and B2 are defined in (2.4). Solving the systems (2.7) and (2.8) for c1 and c3, we find that
c1=1Λ[B1{λ2ρIα+δ20+Θ1(ξ2)−∫T0ρIβ0+Θ2(s)dH2(s)+m∑p=1bpρIα0+Θ1(ηp)}+A2{λ1ρIδ1+β0+Θ2(ξ1)−∫T0ρIα0+Θ1(s)dH1(s)+m∑p=1apρIβ0+Θ2(ηp)}],c3=1Λ[B2{λ1ρIβ+δ10+Θ2(ξ1)−∫T0ρIα0+Θ1(s)dH1(s)+m∑p=1apρIβ0+Θ2(ηp)}+A1{λ2ρIα+δ20+Θ1(ξ2)−∫T0ρIβ0+Θ2(s)dH2(s)+m∑p=1bpρIα0+Θ1(ηp)}], |
where Λ is given in (2.4). Inserting the above values and c2=c4=0 in (2.5), we get the solutions (2.2) and (2.3), respectively. The converse of the lemma can be established by direct computation. The proof is finished.
Relative to the problem (1.1), in view of Lemma 2.6, we define an operator G:X×Y→X×Y as
G(u,v)(t)=(G1(u.v),G2(u,v)), | (2.9) |
where
G1(u,v)(t)=ρIα0+f(t,u(t),v(t),ρDγ10+v(t))+tρ(α−1)Λ[A2{λ1ρIβ+δ10+g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))−∫T0ρIα0+f(s,u(s),v(s),ρDγ10+v(s))dH1(s)+m∑p=1apρIβ0+g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))}+B1{λ2ρIα+δ20+f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))−∫T0ρIβ0+g(s,u(s),ρDγ20+u(s),v(s))dH2(s)+m∑p=1bpρIα0+f(ηp,u(ηp),v(ηp),ρDγ10+v(ηp))}],t∈[0,T], |
and
G2(u,v)(t)=ρIβ0+g(t,u(t),ρDγ20+u(t),v(t))+tρ(β−1)Λ[B2{λ1ρIβ+δ10+g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))−∫T0ρIα0+f(s,u(s),v(s),ρDγ10+v(s))dH1(s)+m∑p=1apρIβ0+g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))}+A1{λ2ρIα+δ20+f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))−∫T0ρIβ0+g(s,u(s),ρDγ20+u(s),v(s))dH2(s)+m∑p=1bpρIα0+f(ηp,u(ηp),v(ηp),ρDγ10+v(ηp))}],t∈[0,T]. |
Lemma 2.7. [31] If ϑ:[0,T]→R is a continuous function, w:[0,T]→R is a function of bounded variation on [0,T] and M=maxt∈[0,T]|ϑ(t)|, then
|∫T0ϑ(s)dw(s)|≤MVT0w, |
where VT0w denotes the variation of function w defined by
VT0w=supPn∑j=0|w(si)−w(si−1)|, |
and P:0=s0<s1<…<sn=T is an arbitrary partition of [0,T].
Recall that w is called a bounded variation function on [0,T] if VT0w<∞.
Before proceeding for our main results, we set our notation as follows:
M1=TραραΓ(α+1)+Tρ(α−1)|Λ|[|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβpρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραpραΓ(α+1)],M′1=TρβρβΓ(β+1)+Tρ(β−1)|Λ|[|B2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|B2|TραραΓ(α+1)VT0H1+|B2|m∑p=1apηρβpρβΓ(β+1)+|A1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|A1|TρβρβΓ(β+1)VT0H2+|A1|m∑p=1bpηραpραΓ(α+1)],M2=Tρ(α−γ2)ρ(α−γ2)Γ(α−γ2+1)+Γ(α)|Λ|Γ(α+1−γ2)ργ2(α−γ2)Tρ(α−γ2−1)×[|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβpρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραpραΓ(α+1)],M′2=Tρ(β−γ1)ρ(β−γ1)Γ(β−γ1+1)+Γ(β)|Λ|Γ(β+1−γ1)ργ1(β−γ1)Tρ(β−γ1−1)×[|B2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|B2|TραραΓ(α+1)VT0H1+|B2|m∑p=1apηρβpρβΓ(β+1)+|A1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|A1|TρβρβΓ(β+1)VT0H2+|A1|m∑p=1bpηραpραΓ(α+1)]. | (3.1) |
In our first result, we show the existence of at least one solution to the system (1.1) by applying the Leray-Schauder alternative [33].
Theorem 3.1. Suppose that f,g∈C([0,T]×R3,R) and there exist constants b0f,b0g>0 and bif,big≥0,i=1,2,3 such that the following condition holds:
(H1) |f(t,ϖ1,ϖ2,ϖ3)|≤b0f+∑3i=1bif|ϖi|, and |g(t,ϖ1,ϖ2,ϖ3)|≤b0g+∑3i=1big|ϖi|,
for all ϖi∈R,i=1,2,3.
If [M1+M2+M′1+M′2](b1f+max{b1g,b2g})<1 and [M1+M2+M′1+M′2](max{b2f,b3f}+b3g)<1, then the system (1.1) has at least one solution on [0,T].
Proof. We complete the proof in three steps.
Step 1. We claim that G is uniformly bounded. Observe that continuity of f and g implies that G is a continuous operator. Assume that Bq={(u,v)∈X×Y:‖(u,v)‖X×Y≤q} is a bounded subset of X×Y. By (H1), for any (ζ,σ)∈Bq, we have
|f(t,ζ(t),σ(t),ρDγ10+σ(t))|≤b0f+b1f|ζ|+b2f|σ|+b3f|ρDγ10+σ|≤b0f+b1f‖ζ‖X+max{b2f,b3f}‖σ‖Y≤b0f+[b1f+max{b2f,b3f}]‖(ζ,σ)‖X×Y≤b0f+[b1f+max{b2f,b3f}]q:=Υf. |
Similarly, we obtain
|g(t,ζ(t),ρDγ20+ζ(t),σ(t))|≤b0g+[max{b1g,b2g}+b3g]q:=Υg. |
Hence, for any (ζ,σ)∈Bq, one can get
|G1(ζ,σ)(t)|≤(Υf+Υg)[TραραΓ(α+1)+Tρ(α−1)|Λ|{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]≤(Υf+Υg)M1 |
and
|ρDγ20+G1(ζ,σ)(t)|≤(Υf+Υg)[Tρ(α−γ2)ρα−γ2Γ(α−γ2+1)+Γ(α)|Λ|Γ(α+1−γ2)ργ2(α−γ2)Tρ(α−γ2−1)×{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]≤(Υf+Υg)M2. |
Thus, we have
‖G1(ζ,σ)‖X≤(Υf+Υg)(M1+M2). | (3.2) |
Similarly, one can obtain that
‖G2(ζ,σ)‖Y≤(Υf+Υg)(M′1+M′2). | (3.3) |
Consequently, it follows from (3.2) and (3.3) that ‖G(ζ,σ)‖X×Y≤(Υf+Υg)[(M1+M2)+(M′1+M′2)], which implies that G is a uniformly bounded operator.
Step 2. We claim that G is completely continuous. For that, let 0≤τ1<τ2≤T, then we have
|G1(ζ,σ)(τ2)−G1(ζ,σ)(τ1)|≤|∫τ10ρ1−αsρ−1[(τρ2−sρ)α−1−(τρ1−sρ)α−1]Γ(α)f(s,ζ(s),σ(s),ρDγ10+σ(s))ds|+|∫τ2τ1ρ1−αsρ−1(τρ2−sρ)α−1Γ(α)f(s,ζ(s),σ(s),ρDγ10+σ(s))ds|+|τρ(α−1)2−τρ(α−1)1||Λ|[|A2λ1|ρIβ+δ10+|g(ξ1,ζ(ξ1),ρDγ20+ζ(ξ1),σ(ξ1))|+|A2|∫T0ρIα0+|f(s,ζ(s),σ(s),ρDγ10+σ(s))|dH1(s)+|A2|m∑p=1apρIβ0+|g(ηp,ζ(ηp),ρDγ20+ζ(ηp),σ(ηp))|+|B1λ2|ρIα+δ20+|f(ξ2,ζ(ξ2),σ(ξ2),ρDγ10+σ(ξ2))|+|B1|∫T0ρIβ0+|g(s,ζ(s),ρDγ20+ζ(s),σ(s))|dH2(s)+|B1|m∑p=1bpρIα0+|f(ηp,ζ(ηp),σ(ηp),ρDγ10+σ(ηP))|]≤ΥfραΓ(α+1)[2(τρ2−τρ1)α+|τρα2−τρα1|]+(Υf+Υg)[τρ(α−1)2−τρ(α−1)1]|Λ|[|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)] |
and
|ρDγ20+G1(ζ,σ)(τ2)−ρDγ20+G1(ζ,σ)(τ1)|≤|∫τ10ρ1−α+γ2sρ−1[(τρ2−sρ)α−γ2−1−(τρ1−sρ)α−γ2−1]Γ(α−γ2)f(s,ζ(s),σ(s),ρDγ10+σ(s))ds|+|∫τ2τ1ρ1−α+γ2sρ−1(τρ2−sρ)α−γ2−1Γ(α−γ2)f(s,ζ(s),σ(s),ρDγ10+σ(s))ds|+Γ(α)|Λ|Γ(α+1−γ2)ργ2(α−γ2)[τρ(α−γ2−1)2−τρ(α−γ2−1)1]×[|A2λ1|ρIβ+δ10+|g(ξ1,ζ(ξ1),ρDγ20+ζ(ξ1),σ(ξ1))+|A2|∫T0ρIα0+|f(s,ζ(s),σ(s),ρDγ10+σ(s))|dH1(s)+|A2|m∑p=1apρIβ0+|g(ηp,ζ(ηp),ρDγ20+ζ(ηp),σ(ηp))|+|B1λ2|ρIα+δ20+|f(ξ2,ζ(ξ2),σ(ξ2),ρDγ10+σ(ξ2))+|B1|∫T0ρIβ0+|g(s,ζ(s),ρDγ20+ζ(s),σ(s))|dH2(s)+|B1|m∑p=1bpρIα0+|f(ηp,ζ(ηp),σ(ηp),ρDγ10+σ(ηP))]≤(Υf+Υg)ρα−γ2Γ(α−γ2+1)[2(τρ2−τρ1)α−γ2+|τρ(α−γ2)2−τρ(α−γ2)1|]+(Υf+Υg)Γ(α)|Λ|Γ(α−γ2)ργ2[τρ(α−γ2−1)2−τρ(α−γ2−1)1]×[|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)]. |
In consequence, we have that ‖G1(ζ,σ)(τ2)−G1(ζ,σ)(τ1)‖X→0 as τ2→τ1, independent of (ζ,σ)∈Bq. Similarly, we can find that ‖G2(ζ,σ)(τ2)−G2(ζ,σ)(τ1)‖Y→0 as τ2→τ1, independent of (ζ,σ)∈Bq. Thus, the operator G is equicontinuous. Hence, by the Arzelá-Ascoli Theorem, G is completely continuous.
Step 3. We define E={(u,v)∈X×Y|(u,v)=μG(u,v),0≤μ≤1} and show that it is bounded. Let (u,v)∈E, then (u,v)=μG(u,v) and u(t)=μG1(u,v),v(t)=μG2(u,v),∀t∈[0,T]. Hence, we get
|u(t)|≤ρIα0+|f(t,u,v,ρDγ10+v)|+tρ(α−1)|Λ|[|A2λ1|ρIβ+δ10+|g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))|+|A2|∫T0ρIα0+|f(s,u,v,ρDγ10+v)|dH1(s)+|A2|m∑p=1apρIβ0+|g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))|+|B1λ2|ρIα+δ20+|f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))+|B1|∫T0ρIβ0+|g(s,u,ρDγ20+u,v)|dH2(s)+|B1|m∑p=1bpρIα0+|f(ηp,u(ηp),v(ηp),ρDγ10+v(ηP))]≤(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y)+(b0g+max{b1g,b2g}‖u‖X+b3g‖v‖Y)×[TραραΓ(α+1)+Tρ(α−1)|Λ|{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1λ2|ξρ(α+δ2)1ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]=[(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y)+(b0g+max{b1g,b2g}‖u‖X+b3g‖v‖Y)]M1, |
and
|ρDγ20+G1(u,v)(t)|≤ρIα−γ20+|f(t,u,v,ρDγ10+v)|+Γ(α)|Λ|Γ(α+1−γ2)ργ2(α−γ2)tρ(α−γ2−1)×[|A2λ1|ρIβ+δ10+|g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))|+|A2|∫T0ρIα0+|f(s,u,v,ρDγ10+v)|dH1(s)+|A2|m∑p=1apρIβ0+|g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))|+|B1λ2|ρIα+δ20+|f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))|+|B1|∫T0ρIβ0+|g(s,u,ρDγ20+u,v)|dH2(s)+|B1|m∑p=1ρIα0+|f(ηp,u(ηp),v(ηp),ρDγ10+v(ηp))|]≤[(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y)+(b0g+max{b1g,b2g}‖u‖X+b3g‖v‖Y)]×{Tρ(α−γ2)ρα−γ2Γ(α−γ2+1)+Γ(α)|Λ|Γ(α+1−γ2)ργ2(α−γ2)Tρ(α−γ2−1)×[|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)]}=[(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y)+(b0g+max{b1g,b2g}‖u‖X+b3g‖v‖Y)]M2. |
In view of the foregoing inequalities, we obtain
‖u‖X≤(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y+b0g+max{b1g,b2g}‖u‖X+|b3g|‖v‖Y)(M1+M2). | (3.4) |
Similarly, we can find that
‖v‖Y≤(b0f+b1f‖u‖X+max{b2f,b3f}‖v‖Y+b0g+max{b1g,b2g}‖u‖X+b3g‖v‖Y)(M′1+M′2). | (3.5) |
Therefore, from (3.4) and (3.5), we have
‖u‖X+‖v‖Y≤(b0f+b0g)(M1+M2+M′1+M′2)+[b1f‖u‖X+max{b1g,b2g}‖u‖X+max{b2f,b3f}‖v‖Y+b3g‖v‖Y](M1+M2+M′1+M′2). |
By choosing
M0=min{1−(b1f+max{b1g,b2g})(M1+M2+M′1+M′2),1−(max{b2f,b3f}+b3g)(M1+M2+M′1+M′2)}, |
we obtain the inequality
‖(u,v)‖X×Y≤(b0f+b0g)(M1+M2+M′1+M′2)M0. |
Thus, E is bounded and the conclusion of the Leray-Schauder alternative applies, and, hence, the operator G has at least one fixed point, which corresponds to at least one solution of system (1.1).
In our next result, we establish the existence of a unique solution to the system (1.1) by means of the Banach's fixed point theorem.
Theorem 3.2. Suppose that the following conditions hold:
(H2) Hi:[0,T]×R→R (i=1,2) are functions of bounded variations on [0,T].
(H3) For f,g:[0,T]×R3→R, there exist constants Lf>0 and Lg>0 such that, for any t∈[0,T] and ϖi,ϱi∈R, i=1,2,3, we have
|f(t,ϖ1,ϖ2,ϖ3)−f(t,ϱ1,ϱ2,ϱ3)|≤Lf(|ϖ1−ϱ1|+|ϖ2−ϱ2|+|ϖ3−ϱ3|), |
and
|g(t,ϖ1,ϖ2,ϖ3)−g(t,ϱ1,ϱ2,ϱ3)|≤Lg(|ϖ1−ϱ1|+|ϖ2−ϱ2|+|ϖ3−ϱ3|). |
If
(Lf+Lg)(M1+M2+M′1+M′2)<1, | (3.6) |
then the system (1.1) has a unique solution on [0,T], where M1,M2,M′1 and M′2 are given in (3.1).
Proof. Set maxt∈[0,T]f(t,0,0,0)=f0<∞, maxt∈[0,T]g(t,0,0,0)=g0<∞ and define Br={(u,v)∈X×Y:‖(u,v)‖X×Y≤r} with
r>(f0+g0)(M1+M2+M′1+M′2)1−(Lf+Lg)(M1+M2+M′1+M′2). | (3.7) |
In the first step, it will be shown that GBr⊂Br. In view of the assumptions (H2) and (H3), for (u,v)∈X×Y, we have
|f(t,u(t),v(t),ρDγ10+v(t))|≤|f(t,0,0,0)|+|f(t,u(t),v(t),ρDγ10+v(t))−f(t,0,0,0)|≤f0+Lf(|u|+|v|+|ρDγ10+v|)≤f0+Lf(‖u‖X+‖v‖Y)=f0+Lf‖(u,v)‖X×Y≤f0+Lfr. |
Similarly, one can find that
|g(t,u(t),ρDγ20+u(t),v(t))|≤g0+Lg‖(u,v)‖X×Y≤g0+Lgr. |
Using the foregoing estimates, we obtain
|G1(u,v)(t)|≤ρIα0+|f(t,u(t),v(t),ρDγ10+v(t))|+tρ(α−1)|Λ|[|A2|{|λ1|ρIβ+δ10+|g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))|+∫T0ρIα0+|f(s,u(s),v(s),ρDγ10+v(s))|dH1(s)+m∑p=1apIβ0+|g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))|}+|B1|{|λ2|ρIα+δ20+|f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))|+∫T0ρIβ0+|g(s,u(s),ρDγ20+u(s),v(s))|dH2(s)+m∑p=1bpρIα0+|f(ηp,u(ηp),v(ηp),ρDγ10+v(ηp))|}]≤[(Lfr+f0)+(Lgr+g0)][TραραΓ(α+1)+Tρ(α−1)|Λ|{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραpραΓ(α+1)}]≤[(Lf+Lg)r+(f0+g0)]M1. |
In view of the relation: ρDγ20+ρIα0+=ρDγ20+ρIγ20+ρIα−γ20+=ρIα−γ20+ for γ2<α, we get
|ρDγ20+G1(u,v)(t)|≤ρIα−γ20+|f(t,u(t),v(t),ρDγ10+v(t))|+Γ(α)ργ2tρ(α−γ2−1)|Λ|Γ(α−γ2)×[|A2|{|λ1|ρIβ+δ10+|g(ξ1,u(ξ1),ρDγ20+u(ξ1),v(ξ1))|+∫T0ρIα0+|f(s,u(s),v(s),ρDγ10+v(s))|dH1(s)+m∑p=1apρIβ0+|g(ηp,u(ηp),ρDγ20+u(ηp),v(ηp))|}+|B1|{|λ2|ρIα+δ20+|f(ξ2,u(ξ2),v(ξ2),ρDγ10+v(ξ2))|+∫T0ρIβ0+|g(s,u(s),ρDγ20+u(s),v(s))|dH2(s)+m∑p=1bpρIα0+|f(ηp,u(ηp),v(ηp),ρDγ10+v(ηp))|}]≤[(Lfr+f0)+(Lgr+g0)][Tρ(α−γ2)ρα−γ2Γ(α−γ2+1)+Γ(α)|Λ|Γ(α−γ2)ργ2Tρ(α−γ2−1){|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]≤[(Lf+Lg)r+(f0+g0)]M2. |
Thus, we have
‖G1(u,v)‖X=‖G1(u,v)‖+‖ρDγ20+G1(u,v)‖≤((Lf+Lg)r+(f0+g0))M1+((Lf+Lg)r+(f0+g0))M2≤[(Lf+Lg)r+(f0+g0)](M1+M2). | (3.8) |
In a similar manner, we can obtain that
‖G2(u,v)‖Y=‖G2(u,v)‖+‖ρDγ10+G2(u,v)‖≤[(Lf+Lg)r+(f0+g0)](M′1+M′2). | (3.9) |
In view of (3.7), it follows from (3.8) and (3.9) that
‖G(u,v)‖X×Y=‖G1(u,v)‖X+‖G2(u,v)‖Y≤[(Lf+Lg)r+(f0+g0)](M1+M2+M′1+M′2)≤r. |
In the second step, we show that the operator G is a contraction. To this end, let ζ1,ζ2∈X and ς1,ς2∈Y, then we have
|G1(ζ1,ς1)(t)−G1(ζ2,ς2)(t)|≤ρIα0+|f(t,ζ1(t),ς1(t),ρDγ10+ς1(t))−f(t,ζ2(t),ς2(t),ρDγ10+ς2(t))|+tρ(α−1)|Λ|[|A2|{|λ1|ρIβ+δ10+|g(ξ1,ζ1(ξ1),ρDγ20+ζ1(ξ1),ς1(ξ1))−g(ξ1,ζ2(ξ1),ρDγ20+ζ2(ξ1),ς2(ξ1))|+∫T0ρIα0+|f(s,ζ1(s),ς1(s),ρDγ10+ς1(s))−f(s,ζ2(s),ς2(s),ρDγ10+ς2(s))|dH1(s)+m∑p=1apρIβ0+|g(ηp,ζ1(ηp),ρDγ20+ζ1(ηp),ς1(ηp))−g(ηp,ζ2(ηp),ρDγ20+ζ2(ηp),ς2(ηp))|}+|B1|{|λ2|ρIα+δ20+|f(ξ2,ζ1(ξ2),ς1(ξ2),ρDγ10+ς1(ξ2))−f(ξ2,ζ2(ξ2),ς2(ξ2),ρDγ10+ς2(ξ2))|+∫T0ρIβ0+|g(s,ζ1(s),ρDγ20+ζ1(s),ς1(s))−|g(s,ζ2(s),ρDγ20+ζ2(s),ς2(s))|dH2(s)+m∑p=1bpρIα0+|f(ηp,ζ1(ηp),ς1(ηp),ρDγ10+ς1(ηp))−f(ηp,ζ2(ηp),ς2(ηp),ρDγ10+ς2(ηp))|}]≤{(Lf+Lg)(‖ζ1−ζ2‖+‖ς1−ς2‖)+Lf‖ρDγ10+ς1−ρDγ10+ς2‖+Lg‖ρDγ20+ζ1−ρDγ20+ζ2‖}×[TραραΓ(α+1)+Tρ(α−1)|Λ|{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]≤[(Lf+Lg)(‖ζ1−ζ2‖+‖ς1−ς2‖)+Lf‖ρDγ10+ς1−ρDγ10+ς2‖+Lg‖ρDγ20+ζ1−ρDγ20+ζ2‖]M1≤(Lf+Lg)(‖ζ1−ζ2‖X+‖ς1−ς2‖Y)M1,∀t∈[0,T]. |
Also, we obtain
|ρDγ20+G1(ζ1,ς1)(t)−ρDγ20+G1(ζ2,ς2)(t)|≤ρIα−γ20+|f(t,ζ1(t),ς1(t),ρDγ10+ς1(t))−f(t,ζ2(t),ς2(t),ρDγ10+ς2(t))|+Γ(α)ργ2tρ(α−γ2−1)|Λ|Γ(α−γ2)×[|A2|{|λ1|ρIβ+δ10+|g(ξ1,ζ1(ξ1),ρDγ20+ζ1(ξ1),ς1(ξ1))−g(ξ1,ζ2(ξ1),ρDγ20+ζ2(ξ1),ς2(ξ1))|+∫T0ρIα0+|f(s,ζ1(s),ς1(s),ρDγ10+ς1(s))−f(s,ζ2(s),ς2(s),ρDγ10+ς2(s))|dH1(s)+m∑p=1apρIβ0+|g(ηp,ζ1(ηp),ρDγ20+ζ1(ηp),ς1(ηp))−g(ηp,ζ2(ηp),ρDγ20+ζ2(ηp),ς2(ηp))|}+|B1|{|λ2|ρIα+δ20+|f(ξ2,ζ1(ξ2),ς1(ξ2),ρDγ10+ς1(ξ2))−f(ξ2,ζ2(ξ2),ς2(ξ2),ρDγ10+ς2(ξ2))|+∫T0ρIβ0+|g(s,ζ1(s),ρDγ20+ζ1(s),ς1(s))−g(s,ζ2(s),ρDγ20+ζ2(s),ς2(s))|dH2(s)+m∑p=1bpρIα0+|f(ηp,ζ1(ηp),ς1(ηp),ρDγ10+ς1(ηp))−f(ηp,ζ2(ηp),ς2(ηp),ρDγ10+ς2(ηp))|}]≤{(Lf+Lg)(‖ζ1−ζ2‖+‖ς1−ς2‖)+Lf‖ρDγ10+ς1−ρDγ10+ς2‖+Lg‖ρDγ20+ζ1−ρDγ20+ζ2‖}×[Tρ(α−γ2)ρα−γ2Γ(α−γ2+1)+Γ(α)|Λ|Γ(α−γ2)ργ2Tρ(α−γ2−1)×{|A2λ1|ξρ(β+δ1)1ρβ+δ1Γ(β+δ1+1)+|A2|TραραΓ(α+1)VT0H1+|A2|m∑p=1apηρβρβΓ(β+1)+|B1λ2|ξρ(α+δ2)2ρα+δ2Γ(α+δ2+1)+|B1|TρβρβΓ(β+1)VT0H2+|B1|m∑p=1bpηραραΓ(α+1)}]≤[(Lf+Lg)(‖ζ1−ζ2‖+‖ς1−ς2‖)+Lf‖ρDγ10+ς1−ρDγ10+ς2‖+Lg‖ρDγ20+ζ1−ρDγ20+ζ2‖]M2≤(Lf+Lg)(‖ζ1−ζ2‖X+‖ς1−ς2‖Y)M2. |
Consequently, we have
|G1(ζ1,ς1)−G1(ζ2,ς2)‖X=‖ρDγ20+G1(ζ1,ς1)−ρDγ20+G1(ζ2,ς2)‖+‖G1(ζ1,ς1)−G1(ζ2,ς2)‖≤(Lf+Lg)(‖ζ1−ζ2‖X+‖ς1−ς2‖Y)(M1+M2). | (3.10) |
Using a similar procedure, one can obtain
‖G2(ζ1,ς1)−G2(ζ2,ς2)‖Y=‖ρDγ10+G2(ζ1,ζ1)−ρDγ10+G2(ζ2,ς2)‖+‖G2(ζ1,ς1)−G2(ζ2,ς2)‖≤(Lf+Lg)(‖ζ1−ζ2‖X+‖ς1−ς2‖Y)(M′1+M′2). | (3.11) |
From (3.10) and (3.11), we deduce that
‖G(ζ1,ς1)−G(ζ2,ς2)‖X×Y≤[M1+M2+M′1+M′2](Lf+Lg)(‖ζ1−ζ2‖X+‖ς1−ς2‖Y), |
which, by the conditions (3.6), implies that the operator G is a contraction. Thus, by Banach's fixed point theorem, G has a unique fixed point. Therefore, the system (1.1) has a unique solution on [0,T] and, hence, we have the conclusion.
Example
Consider the following fractional differential system:
{14D650+u(t)=f(t,u,v,ρDγ10+v),t∈[0,2],14D750+v(t)=g(t,u,ρDγ20+u,v),t∈[0,2],u(0)=0,∫T0u(s)dH1(s)=3214I350+v(ξ1)+2∑p=1apv(ηp),v(0)=0,∫T0v(s)dH2(s)=3214I450+u(ξ2)+2∑p=1bpu(ηp). | (5.1) |
Here, T=2,ξ1=ξ2=32,λ1=λ2=32,ρ=14,α=65,β=75,γ1=15,γ2=13,δ1=35,δ2=45,m=2,η1=138,η2=74,a1=12,a2=34,b1=1,b2=32,f(t,u,v,ρDγ10+v)=e−3t18√900+t2(11+tsin(u(t))+e−2tcos(v(t))+cos(π2t)|14D150+v(t)|+e−t) and g(t,u,ρDγ20+u,v)=12√3600+t2(tan−1(u(t))+e−3t2(1+t4)|v(t)|2+|v(t)|+|14D130+u(t)|4+4|14D130+u(t)|)+116.
Letting H1(t)=2+3t and H2(t)=5+4t2 and using the given values, we find that Lf=1540,Lg=1120,M1=29.930973,M′1=26.5686,M2=16.023896 and M′2=19.637255. Moreover,
(Lf+Lg)(M1+M2+M′1+M′2)≈0.938673948<1. |
Clearly, the hypotheses of Theorem 3.2 are satisfied and, hence, we deduce from its conclusion that the problem (5.1) has a unique solution on [0,2].
We have presented the criteria ensuring the existence and uniqueness of solutions for a coupled system of nonlinear generalized fractional differential equations equipped with nonlocal coupled multipoint boundary conditions involving Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system were assumed to be dependent on the unknown functions together with their lower order generalized fractional derivatives. We made use of the standard tools of the fixed point theory to accomplish the desired work. Our results were new in the given configuration and produced some new results by specializing the parameters involved in the problem at hand. For example, our results relate to the given coupled system of nonlinear generalized fractional differential equations supplemented with nonlocal multipoint and Riemann-Stieltjes type integral boundary conditions for λ1=0=λ2. In case we take ρ→0+ and ρ=1, the results established in this paper correspond to the Hadamard and Riemann-Liouville fractional differential systems equipped with coupled multipoint Riemann-Stieltjes and Hadamard/Riemann-Liouville fractional integral boundary conditions, respectively.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We thank the reviewers for their constructive remarks on our paper.
The authors declare that they have no conflict of interest.
[1] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[4] | J. Sabatier, O. P. Agarwal, J. A. T. Machado, Advances in fractional calculus, theoretical developments and applications in physics and engineering, Springer, New York, 2007. |
[5] | Z. Jiao, Y. Q. Chen, I. Podlubny, Distributed-order dynamic systems, Springer, New York, 2012. https://doi.org/10.1007/978-1-4471-2852-6_4 |
[6] |
D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–11399. https://doi.org/10.1103/physrevlett.82.1136 doi: 10.1103/physrevlett.82.1136
![]() |
[7] |
T. T. Hartley, C. F. Lorenzo, Q. H. Killory, Chaos in a fractional order Chua's system, IEEE Trans. CAS-I42 (1995), 485–490. https://doi.org/10.1109/81.404062 doi: 10.1109/81.404062
![]() |
[8] |
I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101. https://doi.org/10.1103/physrevlett.91.034101 doi: 10.1103/physrevlett.91.034101
![]() |
[9] |
Z. M. Ge, C. Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Soliton. Fract., 35 (2008), 705–717. https://doi.org/10.1016/j.chaos.2006.05.101 doi: 10.1016/j.chaos.2006.05.101
![]() |
[10] |
M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. https://doi.org/10.1007/s11071-012-0714-6 doi: 10.1007/s11071-012-0714-6
![]() |
[11] |
Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Soliton. Fract., 33 (2007), 270–289. https://doi.org/10.1016/j.chaos.2005.12.040 doi: 10.1016/j.chaos.2005.12.040
![]() |
[12] |
F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
![]() |
[13] |
M. Ostoja-Starzewski, Towards thermoelasticity of fractal media, J. Therm. Stress, 30 (2007), 889–896. https://doi.org/10.1080/01495730701495618 doi: 10.1080/01495730701495618
![]() |
[14] | Y. Z. Povstenko, Fractional thermoelasticity, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-15335-3_8 |
[15] |
R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/s0370-1573(00)00070-3 doi: 10.1016/s0370-1573(00)00070-3
![]() |
[16] |
I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today., 55 (2002), 48–54. https://doi.org/10.1063/1.1535007 doi: 10.1063/1.1535007
![]() |
[17] |
Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. M. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes integro-multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123
![]() |
[18] |
B. Ahmad, M. Alghanmi, A. Alsaedi, Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50 (2020), 1901–1922. https://doi.org/10.1216/rmj.2020.50.1901 doi: 10.1216/rmj.2020.50.1901
![]() |
[19] |
S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
![]() |
[20] |
S. Asawasamrit, Y. Thadang, S. K. Ntouyas, J. Tariboon, Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions, Axioms, 10 (2021), 130. https://doi.org/10.3390/axioms10030130 doi: 10.3390/axioms10030130
![]() |
[21] |
S. Belmor, F. Jarad, T. Abdeljawad, M. A. Alqudah, On fractional differential inclusion problems involving fractional order derivative with respect to another function, Fractals, 28 (2020), 2040002. https://doi.org/10.1142/s0218348x20400022 doi: 10.1142/s0218348x20400022
![]() |
[22] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, Singapore, 2021. https://doi.org/10.1142/12102 |
[23] |
B. Shiri, G. C. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015
![]() |
[24] |
B. Shiri, D. Baleanu, Generalized fractional differential equations for past dynamic, AIMS Math., 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793
![]() |
[25] |
H. Waheed, A. Zada, R. Rizwan, I. L. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. https://doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8
![]() |
[26] |
A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914
![]() |
[27] |
S. K. Ntouyas, B. Ahmad, J. Tariboon, Nonlocal integro-multistrip-multipoint boundary value problems for ¯ψ∗-Hilfer proportional fractional differential equations and inclusions, AIMS Math., 8 (2023), 14086–14110. https://doi.org/10.3934/math.2023720 doi: 10.3934/math.2023720
![]() |
[28] |
N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 6. https://doi.org/10.1007/s12346-022-00703-w doi: 10.1007/s12346-022-00703-w
![]() |
[29] |
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2015), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[30] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[31] |
B. Lupinska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Method. Appl. Sci., 41 (2018), 8985–8996. https://doi.org/10.1002/mma.4782 doi: 10.1002/mma.4782
![]() |
[32] |
X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 33 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
![]() |
[33] | A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
1. | Renhao Ma, Yuan Meng, Huihui Pang, The Existence Results of Solutions to the Nonlinear Coupled System of Hilfer Fractional Differential Equations and Inclusions, 2024, 8, 2504-3110, 194, 10.3390/fractalfract8040194 | |
2. | Saleh S Redhwan, Mohammed A Almalahi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Nonlinear dynamics of the complex periodic coupled system via a proportional generalized fractional derivative, 2024, 99, 0031-8949, 125270, 10.1088/1402-4896/ad9088 | |
3. | R. Poovarasan, V. Govindaraj, Existence of Solutions for a Coupled System of Ψ$$ \Psi $$‐Caputo Fractional Differential Equations With Integral Boundary Conditions, 2025, 0170-4214, 10.1002/mma.10810 |