This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.
Citation: Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas. A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions[J]. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
This paper was concerned with the existence and uniqueness results for a coupled system of nonlinear generalized fractional differential equations supplemented with a new class of nonlocal coupled multipoint boundary conditions containing Riemann-Stieltjes and generalized fractional integrals. The nonlinearities in the given system depend on the unknown functions as well as their lower order generalized fractional derivatives. We made use of the Leray-Schauder alternative and Banach contraction mapping principle to obtain the desired results. An illustrative example was also discussed. The paper concluded with some interesting observations.
[1] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[4] | J. Sabatier, O. P. Agarwal, J. A. T. Machado, Advances in fractional calculus, theoretical developments and applications in physics and engineering, Springer, New York, 2007. |
[5] | Z. Jiao, Y. Q. Chen, I. Podlubny, Distributed-order dynamic systems, Springer, New York, 2012. https://doi.org/10.1007/978-1-4471-2852-6_4 |
[6] | D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–11399. https://doi.org/10.1103/physrevlett.82.1136 doi: 10.1103/physrevlett.82.1136 |
[7] | T. T. Hartley, C. F. Lorenzo, Q. H. Killory, Chaos in a fractional order Chua's system, IEEE Trans. CAS-I42 (1995), 485–490. https://doi.org/10.1109/81.404062 doi: 10.1109/81.404062 |
[8] | I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101. https://doi.org/10.1103/physrevlett.91.034101 doi: 10.1103/physrevlett.91.034101 |
[9] | Z. M. Ge, C. Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Soliton. Fract., 35 (2008), 705–717. https://doi.org/10.1016/j.chaos.2006.05.101 doi: 10.1016/j.chaos.2006.05.101 |
[10] | M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. https://doi.org/10.1007/s11071-012-0714-6 doi: 10.1007/s11071-012-0714-6 |
[11] | Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Soliton. Fract., 33 (2007), 270–289. https://doi.org/10.1016/j.chaos.2005.12.040 doi: 10.1016/j.chaos.2005.12.040 |
[12] | F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155 |
[13] | M. Ostoja-Starzewski, Towards thermoelasticity of fractal media, J. Therm. Stress, 30 (2007), 889–896. https://doi.org/10.1080/01495730701495618 doi: 10.1080/01495730701495618 |
[14] | Y. Z. Povstenko, Fractional thermoelasticity, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-15335-3_8 |
[15] | R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/s0370-1573(00)00070-3 doi: 10.1016/s0370-1573(00)00070-3 |
[16] | I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today., 55 (2002), 48–54. https://doi.org/10.1063/1.1535007 doi: 10.1063/1.1535007 |
[17] | Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. M. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes integro-multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123 |
[18] | B. Ahmad, M. Alghanmi, A. Alsaedi, Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50 (2020), 1901–1922. https://doi.org/10.1216/rmj.2020.50.1901 doi: 10.1216/rmj.2020.50.1901 |
[19] | S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265 |
[20] | S. Asawasamrit, Y. Thadang, S. K. Ntouyas, J. Tariboon, Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions, Axioms, 10 (2021), 130. https://doi.org/10.3390/axioms10030130 doi: 10.3390/axioms10030130 |
[21] | S. Belmor, F. Jarad, T. Abdeljawad, M. A. Alqudah, On fractional differential inclusion problems involving fractional order derivative with respect to another function, Fractals, 28 (2020), 2040002. https://doi.org/10.1142/s0218348x20400022 doi: 10.1142/s0218348x20400022 |
[22] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, Singapore, 2021. https://doi.org/10.1142/12102 |
[23] | B. Shiri, G. C. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015 |
[24] | B. Shiri, D. Baleanu, Generalized fractional differential equations for past dynamic, AIMS Math., 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793 |
[25] | H. Waheed, A. Zada, R. Rizwan, I. L. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with $p$-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. https://doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8 |
[26] | A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914 |
[27] | S. K. Ntouyas, B. Ahmad, J. Tariboon, Nonlocal integro-multistrip-multipoint boundary value problems for $\overline\psi_\ast$-Hilfer proportional fractional differential equations and inclusions, AIMS Math., 8 (2023), 14086–14110. https://doi.org/10.3934/math.2023720 doi: 10.3934/math.2023720 |
[28] | N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 6. https://doi.org/10.1007/s12346-022-00703-w doi: 10.1007/s12346-022-00703-w |
[29] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2015), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[30] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[31] | B. Lupinska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Method. Appl. Sci., 41 (2018), 8985–8996. https://doi.org/10.1002/mma.4782 doi: 10.1002/mma.4782 |
[32] | X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 33 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001 |
[33] | A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8 |