Research article

On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions

  • Received: 07 December 2021 Revised: 18 April 2022 Accepted: 20 April 2022 Published: 29 April 2022
  • MSC : 34A12, 34A40

  • We study a coupled system of multi-term Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities supplemented with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. The uniqueness result for the given problem is based on the contraction mapping principle, while the existence results are derived with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$'s fixed point theorem and Leray-Schauder nonlinear alternative. Examples illustrating the main results are presented.

    Citation: Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas. On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions[J]. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704

    Related Papers:

  • We study a coupled system of multi-term Hilfer fractional differential equations of different orders involving non-integral and autonomous type Riemann-Liouville mixed integral nonlinearities supplemented with nonlocal coupled multi-point and Riemann-Liouville integral boundary conditions. The uniqueness result for the given problem is based on the contraction mapping principle, while the existence results are derived with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$'s fixed point theorem and Leray-Schauder nonlinear alternative. Examples illustrating the main results are presented.



    加载中


    [1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Yverdon: Gordon and Breach, 1993.
    [2] I. Podlubny, Fractional differential equations, New York/ London: Academic Press, 1999.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [4] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [5] K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [6] H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [7] J. R. Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. https://doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144
    [8] M. Benchohra, S. Bouriah, J. J. Nieto, Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 447–464. https://doi.org/10.24193/subbmath.2018.4.03 doi: 10.24193/subbmath.2018.4.03
    [9] S. Abbas, M. Benchohra, J. E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
    [10] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [11] C. Nuchpong, S. K. Ntouyas, J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18 (2020), 1879–1894. https://doi.org/10.1515/math-2020-0122 doi: 10.1515/math-2020-0122
    [12] S. Harikrishnan, K. Kanagarajan, E. M. Elsayed, Existence and stability results for Langevin equations with Hilfer fractional derivative, Res. Fixed Point Theory Appl., 2018 (2018), 20183. https://doi.org/10.30697/rfpta-2018-3 doi: 10.30697/rfpta-2018-3
    [13] A. Wongchareon, B. Ahmad, S. K. Ntouyas, J. Tariboon, Three-point boundary value problem for the Langevin equation with the Hilfer fractional derivative, Adv. Math. Phys., 2020 (2020), 9606428. https://doi.org/10.1155/2020/9606428 doi: 10.1155/2020/9606428
    [14] E. M. Elsayed, S. Harikrishnan, K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Math. Sci., 39 (2019), 1568–1578. https://doi.org/10.1007/s10473-019-0608-5 doi: 10.1007/s10473-019-0608-5
    [15] M. I. Abbas, On a Hilfer fractional differential equation with nonlocal Erdelyi-Kober fractional integral boundary conditions, Filomat, 34 (2020), 3003–3014. https://doi.org/10.2298/FIL2009003A doi: 10.2298/FIL2009003A
    [16] A. Wongchareon, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. https://doi.org/10.3390/math8111905 doi: 10.3390/math8111905
    [17] M. Yang, A. Alsaedi, B. Ahmad, Y. Zhou, Attractivity for Hilfer fractional stochastic evolution equations, Adv. Differ. Equ., 2020 (2020), 130. https://doi.org/10.1186/s13662-020-02582-4 doi: 10.1186/s13662-020-02582-4
    [18] M. S. Abdo, S. T. M. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for $\psi$-Hilfer fractional integrodifferential equations, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1757–1780. https://doi.org/10.1007/s11868-020-00355-x doi: 10.1007/s11868-020-00355-x
    [19] M. S. Abdo, K. Shah, S. K. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2020 (2020), 316. https://doi.org/10.1186/s13662-020-02775-x doi: 10.1186/s13662-020-02775-x
    [20] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Soliton. Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
    [21] J. E. Restrepo, D. Suragan, Hilfer-type fractional differential equations with variable coefficients, Chaos Soliton. Fract., 150 (2021), 111146. https://doi.org/10.1016/j.chaos.2021.111146 doi: 10.1016/j.chaos.2021.111146
    [22] C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. https://doi.org/10.1186/s13662-021-03424-7 doi: 10.1186/s13662-021-03424-7
    [23] P. Nawapol, S. K. Ntouyas, J. Tariboon, K. Nonlaopon, Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions, Mathematics, 9 (2021), 615. https://doi.org/10.3390/math9060615 doi: 10.3390/math9060615
    [24] K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. https://doi.org/10.1002/mma.7040 doi: 10.1002/mma.7040
    [25] B. Ahmad, S. K. Ntouyas, Hilfer–Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195
    [26] S. K. Ntouyas, A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions, Foundations, 1 (2021), 63–98. https://doi.org/10.3390/foundations1010007 doi: 10.3390/foundations1010007
    [27] A. Wongcharoen, S. K. Ntouyas, J. Tariboon, On coupled system for Hilfer fractional differential equations with nonlocal integral boundary conditions, J. Math., 2020 (2020), 2875152. https://doi.org/10.1155/2020/2875152 doi: 10.1155/2020/2875152
    [28] W. Sudsutad, S. K. Ntouyas, C. Thaiprayoon, Nonlocal coupled system for $\psi$-Hilfer fractional order Langevin equations, AIMS Mathematics, 6 (2021), 9731–9756. https://doi.org/10.3934/math.2021566 doi: 10.3934/math.2021566
    [29] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [30] M. A. Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1771) PDF downloads(128) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog