Research article Special Issues

Input-to-state stability of nonlinear systems with delayed impulse based on event-triggered impulse control

  • Received: 26 July 2024 Revised: 30 August 2024 Accepted: 06 September 2024 Published: 12 September 2024
  • MSC : 93C30

  • This paper investigates input-to-state stability (ISS) of nonlinear systems with delayed impulse under event-triggered impulse control, where external inputs are different in continuous and impulse dynamics. First, an event-triggered mechanism (ETM) is proposed to avoid Zeno behavior. In order to ensure ISS of the considered system, the relationship among event triggering parameters, impulse intensity, and impulse delay is constructed. Then, as an application, ETM and impulse control gain for a specific kind of nonlinear systems are presented based on linear matrix inequalities (LMI). Finally, two examples confirm the feasibility and usefulness of the proposed strategy.

    Citation: Linni Li, Jin-E Zhang. Input-to-state stability of nonlinear systems with delayed impulse based on event-triggered impulse control[J]. AIMS Mathematics, 2024, 9(10): 26446-26461. doi: 10.3934/math.20241287

    Related Papers:

  • This paper investigates input-to-state stability (ISS) of nonlinear systems with delayed impulse under event-triggered impulse control, where external inputs are different in continuous and impulse dynamics. First, an event-triggered mechanism (ETM) is proposed to avoid Zeno behavior. In order to ensure ISS of the considered system, the relationship among event triggering parameters, impulse intensity, and impulse delay is constructed. Then, as an application, ETM and impulse control gain for a specific kind of nonlinear systems are presented based on linear matrix inequalities (LMI). Finally, two examples confirm the feasibility and usefulness of the proposed strategy.



    加载中


    [1] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
    [2] Y. Jia, J. Wang, D. Cui, Switching delay effects on input-to-state stability of switched systems, Discrete Dyn. Nat. Soc., 2023 (2023), 2789626. https://doi.org/10.1155/2023/2789626 doi: 10.1155/2023/2789626
    [3] L. Long, Input/output-to-state stability for switched nonlinear systems with unstable subsystems, Int. J. Robust Nonlinear Control, 29 (2019), 3093–3110. https://doi.org/10.1002/rnc.4539 doi: 10.1002/rnc.4539
    [4] J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
    [5] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [6] D. Kuang, J. Li, D. Gao, Input-to-state stability of stochastic differential systems with hybrid delay-dependent impulses, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107661. https://doi.org/10.1016/j.cnsns.2023.107661 doi: 10.1016/j.cnsns.2023.107661
    [7] F. Huang, S. Gao, Stochastic integral input-to-state stability for stochastic delayed networked control systems and its applications, Commun. Nonlinear Sci. Numer. Simul., 138 (2024), 108177. https://doi.org/10.1016/j.cnsns.2024.108177 doi: 10.1016/j.cnsns.2024.108177
    [8] S. Liang, J. Liang, Finite-time input-to-state stability of nonlinear systems: the discrete-time case, Int. J. Syst. Sci., 54 (2023), 583–593. https://doi.org/10.1080/00207721.2022.2135418 doi: 10.1080/00207721.2022.2135418
    [9] L. Yang, S. Zhong, Dynamics of a delayed stage-structured model with impulsive harvesting and diffusion, Ecol. Complex, 19 (2014), 111–123. https://doi.org/10.1016/j.ecocom.2014.05.012 doi: 10.1016/j.ecocom.2014.05.012
    [10] J. Sun, Y. Zhang, Impulsive control of a nuclear spin generator, J. Comput. Appl. Math., 157 (2003), 235–242. https://doi.org/10.1016/S0377-0427(03)00454-0 doi: 10.1016/S0377-0427(03)00454-0
    [11] X. Liu, K. Zhang, W. Xie, Pinning impulsive synchronization of reaction-diffusion neural networks with time-varying delays, IEEE Trans. Neur. Net. Learn., 28 (2016), 1055–1067. https://doi.org/10.1109/TNNLS.2016.2518479 doi: 10.1109/TNNLS.2016.2518479
    [12] J. Lu, D. W. C. Ho, J. Cao, J. Kurths, Exponential synchronization of linearly coupled neural networks with impulsive disturbances, IEEE Trans. Neur. Net., 22 (2011), 329–336. https://doi.org/10.1109/TNN.2010.2101081 doi: 10.1109/TNN.2010.2101081
    [13] T. Yang, Impulsive control theory, Lecture Notes in Control and Information Sciences, Springer, 2001. https://doi.org/10.1007/3-540-47710-1
    [14] C. Yi, J. Feng, J. Wang, C. Xu, Y. Zhao, Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control, Appl. Math. Comput., 312 (2017), 78–90. https://doi.org/10.1016/j.amc.2017.04.030 doi: 10.1016/j.amc.2017.04.030
    [15] F. Cacace, V. Cusimano, P. Palumbo, Optimal impulsive control with application to antiangiogenic tumor therapy, IEEE Trans. Control Syst. Technol., 28 (2018), 106–117. https://doi.org/10.1109/TCST.2018.2861410 doi: 10.1109/TCST.2018.2861410
    [16] X. Tan, J. Cao, L. Rutkowski, G. Lu, Distributed dynamic self-triggered impulsive control for consensus networks: the case of impulse gain with normal distribution, IEEE Trans. Cybern., 51 (2019), 624–634. https://doi.org/10.1109/TCYB.2019.2924258 doi: 10.1109/TCYB.2019.2924258
    [17] Y. An, Y. Liu, Observer-based dynamic event-triggered adaptive control for uncertain nonlinear strict-feedback systems, Syst. Control Lett., 183 (2024), 105700. https://doi.org/10.1016/j.sysconle.2023.105700 doi: 10.1016/j.sysconle.2023.105700
    [18] Y. Liu, Q. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inf. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048
    [19] R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid dynamical systems, IEEE Control Syst. Mag., 29 (2009), 28–93. https://doi.org/10.1109/MCS.2008.931718 doi: 10.1109/MCS.2008.931718
    [20] D. P. Borgers, W. P. M. H. Heemels, Event-separation properties of event-triggered control systems, IEEE Trans. Autom. Control, 59 (2014), 2644–2656. https://doi.org/10.1109/TAC.2014.2325272 doi: 10.1109/TAC.2014.2325272
    [21] X. Tan, J. Cao, X. Li, Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy, IEEE Trans. Cybern., 49 (2018), 792–801. https://doi.org/10.1109/TCYB.2017.2786474 doi: 10.1109/TCYB.2017.2786474
    [22] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [23] J. Chen, B. Chen, Z. Zeng, Synchronization in multiple neural networks with delay and disconnected switching topology via event-triggered impulsive control strategy, IEEE Trans. Ind. Electron., 68 (2020), 2491–2500. https://doi.org/10.1109/TIE.2020.2975498 doi: 10.1109/TIE.2020.2975498
    [24] J. Zhang, X. Xing, Input-to-state stabilization of a class of uncertain nonlinear systems via observer-based event-triggered impulsive control, Complexity, 2020 (2020), 3951381. https://doi.org/10.1155/2020/3951381 doi: 10.1155/2020/3951381
    [25] P. Yu, F. Deng, X. Zhao, Y. Huang, Stability analysis of nonlinear systems in the presence of event-triggered impulsive control, Int. J. Robust Nonlinear Control, 34 (2024), 3835–3853. https://doi.org/10.1002/rnc.7165 doi: 10.1002/rnc.7165
    [26] X. Li, T. Zhang, J. Wu, Input-to-state stability of impulsive systems via event-triggered impulsive control, IEEE Trans. Cybern., 52 (2021), 7187–7195. https://doi.org/10.1109/TCYB.2020.3044003 doi: 10.1109/TCYB.2020.3044003
    [27] X. Li, P. Li, Input-to-state stability of nonlinear systems: event-triggered impulsive control, IEEE Trans. Autom. Control, 67 (2021), 1460–1465. https://doi.org/10.1109/TAC.2021.3063227 doi: 10.1109/TAC.2021.3063227
    [28] B. Liu, D. J. Hill, Z. Sun, Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events, IET Control Theory Appl., 12 (2018), 1167–1179. https://doi.org/10.1049/iet-cta.2017.0820 doi: 10.1049/iet-cta.2017.0820
    [29] J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
    [30] M. Wang, P. Li, X. Li, Event-triggered delayed impulsive control for input-to-state stability of nonlinear impulsive systems, Nonlinear Anal. Hybrid Syst., 47 (2023), 101277. https://doi.org/10.1016/j.nahs.2022.101277 doi: 10.1016/j.nahs.2022.101277
    [31] W. Liu, P. Li, X. Li, Impulsive systems with hybrid delayed impulses: input-to-state stability, Nonlinear Anal. Hybrid Syst., 46 (2022), 101248. https://doi.org/10.1016/j.nahs.2022.101248 doi: 10.1016/j.nahs.2022.101248
    [32] X. Li, W. Liu, S. Gorbachev, J. Cao, Event-triggered impulsive control for input-to-state stabilization of nonlinear time-delay systems, IEEE Trans. Cybern., 54 (2023), 2536–2544. https://doi.org/10.1109/TCYB.2023.3270487 doi: 10.1109/TCYB.2023.3270487
    [33] F. Shi, Y. Liu, Y. Li, J. Qiu, Input-to-state stability of nonlinear systems with hybrid inputs and delayed impulses, Nonlinear Anal. Hybrid Syst., 44 (2022), 101145. https://doi.org/10.1016/j.nahs.2021.101145 doi: 10.1016/j.nahs.2021.101145
    [34] X. Wu, Y. Tang, W. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66 (2016), 195–204. https://doi.org/10.1016/j.automatica.2016.01.002 doi: 10.1016/j.automatica.2016.01.002
    [35] X. Wang, M. Lemmon, On event design in event-triggered feedback systems, Automatica, 47 (2011), 2319–2322. https://doi.org/10.1016/j.automatica.2011.05.027 doi: 10.1016/j.automatica.2011.05.027
    [36] M. Abdelrahim, R. Postoyan, J. Daafouz, D. Nei, Stabilization of nonlinear systems using event-triggered output feedback controllers, IEEE Trans. Autom. Control, 61 (2014), 2682–2687. https://doi.org/10.1109/TAC.2015.2502145 doi: 10.1109/TAC.2015.2502145
    [37] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(365) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog