This paper develops an adaptive output feedback control for a class of functional constraint systems with unmeasurable states and unknown dead zone input. The constraint is a series of functions closely linked to state variables and time, which is not achieved in current research results and is more general in practical systems. Furthermore, a fuzzy approximator based adaptive backstepping algorithm is designed and an adaptive state observer with time-varying functional constraints (TFC) is constructed to estimate the unmeasurable states of the control system. Relying on the relevant knowledge of dead zone slopes, the issue of non-smooth dead-zone input is successfully solved. The time-varying integral barrier Lyapunov functions (iBLFs) are employed to guarantee that the states of the system remain within the constraint interval. By Lyapunov stability theory, the adopted control approach can ensure the stability of the system. Finally, the feasibility of the considered method is conformed via a simulation experiment.
Citation: Tianqi Yu, Lei Liu, Yan-Jun Liu. Observer-based adaptive fuzzy output feedback control for functional constraint systems with dead-zone input[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2628-2650. doi: 10.3934/mbe.2023123
This paper develops an adaptive output feedback control for a class of functional constraint systems with unmeasurable states and unknown dead zone input. The constraint is a series of functions closely linked to state variables and time, which is not achieved in current research results and is more general in practical systems. Furthermore, a fuzzy approximator based adaptive backstepping algorithm is designed and an adaptive state observer with time-varying functional constraints (TFC) is constructed to estimate the unmeasurable states of the control system. Relying on the relevant knowledge of dead zone slopes, the issue of non-smooth dead-zone input is successfully solved. The time-varying integral barrier Lyapunov functions (iBLFs) are employed to guarantee that the states of the system remain within the constraint interval. By Lyapunov stability theory, the adopted control approach can ensure the stability of the system. Finally, the feasibility of the considered method is conformed via a simulation experiment.
[1] | Z. Sabir, M. A. Z. Raja, A. Kamal, J. L. G. Guirao, D. Le, T. Saeed, et al., Neuro-swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system, Math. Biosci. Eng., 18 (2021), 5285–5308. https://doi.org/10.3934/mbe.2021268 doi: 10.3934/mbe.2021268 |
[2] | X. Li, D. W. C. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024 |
[3] | W. Chen, L. Jiao, R. Li, J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances, IEEE Trans. Fuzzy Syst., 18 (2010), 674–685. https://doi.org/10.1109/TFUZZ.2010.2046329 doi: 10.1109/TFUZZ.2010.2046329 |
[4] | H. Liang, L. Chen, Y. Pan, H. K. Lam, Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative-antagonistic interactions, IEEE Trans. Fuzzy Syst., https://doi:10.1109/TFUZZ.2022.3200730S |
[5] | W. Wang, J. Dong, D. Xu, Z. Yan, J. Zhou, Synchronization control of time-delay neural networks via event-triggered non-fragile cost-guaranteed control, Math. Biosci. Eng., 20 (2022), 52–75. http://dx.doi.org/10.3934/mbe.2023004 doi: 10.3934/mbe.2023004 |
[6] | H. Liang, Z. Du, T. Huang, Y. Pan, Neuroadaptive performance guaranteed control for multiagent systems with power integrators and unknown measurement sensitivity, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022). https://doi:10.1109/TNNLS.2022.3160532 |
[7] | Z. Sabir, M. A. Z. Raja, A. S. Alnahdi, M. B. Jeelani, M. A. Abdelkawy, Numerical investigations of the nonlinear smoke model using the gudermannian neural networks, Math. Biosci. Eng., 18 (2021), 5285–5308. https://doi.org/10.3934/mbe.2022018 doi: 10.3934/mbe.2022018 |
[8] | B. Chen, X. P. Liu, S. S. Ge, C. Lin, Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach, IEEE Trans. Fuzzy Syst., 20 (2012), 1012–1021. https://doi.org/10.1109/TFUZZ.2012.2190048 doi: 10.1109/TFUZZ.2012.2190048 |
[9] | H. Su, W. Zhang, Adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear systems with actuator faults, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 3456–3469. https://doi.org/10.1109/TSMC.2018.2883414 doi: 10.1109/TSMC.2018.2883414 |
[10] | F. Wang, B. Chen, X. Liu, C. Lin, Finite-time adaptive fuzzy tracking control design for nonlinear systems, IEEE Trans. Fuzzy Syst., 26 (2018), 1207–1216. https://doi.org/10.1109/TFUZZ.2017.2717804 doi: 10.1109/TFUZZ.2017.2717804 |
[11] | X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981 |
[12] | L. Liu, Y. J. Liu, S. C. Tong, Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems, IEEE Trans. Cybern,, 49 (2018), 2536–2545. https://doi.org/10.1109/TCYB.2018.2828308 |
[13] | S. Vutukuri, R. Padhi, Quaternion constrained robust attitude control using barrier Lyapunov function based back-stepping, IFAC-PapersOnLine, 55 (2022), 522–527. https://doi.org/10.1016/j.ifacol.2022.04.086 doi: 10.1016/j.ifacol.2022.04.086 |
[14] | Y. H. Liu, Y. Liu, Y. F. Liu, C. Y. Su, Adaptive fuzzy control with global stability guarantees for unknown strict-feedback systems using novel integral barrier Lyapunov functions, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 4336–4348. https://doi.org/10.1109/TSMC.2021.3094975 doi: 10.1109/TSMC.2021.3094975 |
[15] | K. P. Tee, S. S. Ge, Control of state-constrained nonlinear systems using integral barrier Lyapunov functionals, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 3239–3244. https://doi.org/10.1109/CDC.2012.6426196 |
[16] | D. Yang, X. Gao, E. Cui, Z. Ma, State-constraints adaptive backstepping control for active magnetic bearings with parameters nonstationarities and uncertainties, IEEE Transa. Ind. Electron., 68 (2021), 9822–9831. https://doi.org/10.1109/TIE.2020.3020034 doi: 10.1109/TIE.2020.3020034 |
[17] | Q. Zhou, L. Wang, C. Wu, H. Li, H. Du, Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 1–12. https://doi.org/10.1109/TSMC.2016.2557222 doi: 10.1109/TSMC.2016.2557222 |
[18] | K. P. Tee, S. S. Ge, E. H. Tay, Barrier Lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45 (2009), 918–927. https://doi.org/10.1016/j.automatica.2008.11.017 doi: 10.1016/j.automatica.2008.11.017 |
[19] | C. Enchang, Y. Jing, X. Gao, Full state constraints control of switched complex networks based on time-varying barrier Lyapunov functions, IET Control Theory Appl., 14 (2020), 2419–2428. https://doi.org/10.1049/iet-cta.2020.0165 doi: 10.1049/iet-cta.2020.0165 |
[20] | K. Yang, L. Zhao, Command-filter-based backstepping control for flexible joint manipulator systems with full-state constrains, Int. J. Control Autom. Syst., 20 (2022), 2231–2238. https://doi.org/10.1007/s12555-020-0810-1 doi: 10.1007/s12555-020-0810-1 |
[21] | P. Seifi, S. K. H. Sani, Barrier Lyapunov functions-based adaptive neural tracking control for non-strict feedback stochastic nonlinear systems with full-state constraints: A command filter approach, Math. Control Relat. Fields, 2022 (2022). https://doi:10.3934/mcrf.2022024 |
[22] | W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot with full-state constraints, IEEE Trans. Cybern., 46 (2016), 620–629. https://doi.org/10.1109/TCYB.2015.2411285 doi: 10.1109/TCYB.2015.2411285 |
[23] | K. Zhao, Y. Song, Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems, IEEE Trans. Autom. Control, 64 (2019), 1265–1272. https://doi.org/10.1109/TAC.2018.2845707 doi: 10.1109/TAC.2018.2845707 |
[24] | Z. Zhang, Z. Li, Y. Zhang, Y. Luo, Y. Li, Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 3251–3262. https://doi.org/10.1109/TNNLS.2015.2469147 doi: 10.1109/TNNLS.2015.2469147 |
[25] | Y. J. Liu, S. Lu, D. Li, S. Tong, Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 1546–1553. https://doi.org/10.1109/TSMC.2016.2633007 doi: 10.1109/TSMC.2016.2633007 |
[26] | K. Zhao, Y. D. Song, C. L. P. Chen, L. Chen, Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach, Automatica, 119 (2020). https://doi.org/10.1016/j.automatica.2020.109102 |
[27] | Y. J. Liu, W. Zhao, L. Liu, D. Li, S. C. Tong, C. L. P. Chen, Adaptive neural network control for a class of nonlinear systems with function constraints on states, IEEE Trans. Neural Networks Learn. Syst., 2021 (2021). https://doi:10.1109/TNNLS.2021.3107600 |
[28] | S. Ibrir, W. F. Xie, C. Su, Adaptive tracking of nonlinear systems with non-symmetric dead-zone input, Automatica, 43 (2007), 522–530. https://doi.org/10.1016/j.automatica.2006.09.022 doi: 10.1016/j.automatica.2006.09.022 |
[29] | X. Wang, C. Su, H. Hong, Robust adaptive control of a class of nonlinear systems with unknown dead-zone, Automatica, 40 (2004), 407–413. https://doi.org/10.1016/j.automatica.2003.10.021 doi: 10.1016/j.automatica.2003.10.021 |
[30] | L. Wu, J. H. Park, X. Xie, Y. Liu, Z. Yang, Event-triggered adaptive asymptotic tracking control of uncertain nonlinear systems with unknown dead-zone constraints, Appl. Math. Comput., 386 (2020). https://doi.org/10.1016/j.amc.2020.125528 |
[31] | Y. J. Liu, Y. Gao, S. C. Tong, Y. Li, Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone, IEEE Trans. Fuzzy Syst., 24 (2016), 16–28. https://doi.org/10.1109/TFUZZ.2015.2418000 doi: 10.1109/TFUZZ.2015.2418000 |
[32] | H. Li, S. Zhao, W. He, R. Lu, Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100 (2019), 99–107. https://doi.org/10.1016/j.automatica.2018.10.030 doi: 10.1016/j.automatica.2018.10.030 |
[33] | W. Xiao, L. Cao, G. Dong, Q. Zhou, Adaptive fuzzy control for pure-feedback systems with full state constraints and unknown nonlinear dead zone, Appl. Math. Comput., 343 (2019), 354–371. https://doi.org/10.1016/j.amc.2018.09.016 doi: 10.1016/j.amc.2018.09.016 |
[34] | M. V. Basin, P. C. Rodríguez-Ramírez, Sliding mode controller design for stochastic polynomial systems with unmeasured states, IEEE Trans. Ind. Electron., 61 (2014), 387–396. https://doi.org/10.1109/TIE.2013.2240641 doi: 10.1109/TIE.2013.2240641 |
[35] | S. C. Tong, Y. Li, Y. M. Li, Y. J. Liu, Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst. Man Cybern. Part B Cybern., 41 (2011), 1693–1704. https://doi.org/10.1109/TSMCB.2011.2159264 doi: 10.1109/TSMCB.2011.2159264 |
[36] | J. Yu, P. Shi, W. Dong, H. Yu, Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems, IEEE Trans. Ind. Electron., 62 (2015), 5962–5970. https://doi.org/10.1109/TIE.2015.2418317 doi: 10.1109/TIE.2015.2418317 |
[37] | C. Wang, C. Zhang, D. He, J. Xiao, L. Liu, Observer-based finite-time adaptive fuzzy back-stepping control for MIMO coupled nonlinear systems, Math. Biosci. Eng., 19 (2022), 10637–10655. https://doi.org/10.3934/mbe.2022497 doi: 10.3934/mbe.2022497 |
[38] | X. Xie, D. Yue, C. Peng, Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach, IEEE Trans. Fuzzy Syst., 25 (2017), 1281–1292. https://doi.org/10.1109/TFUZZ.2016.2612260 doi: 10.1109/TFUZZ.2016.2612260 |
[39] | N. Wang, S. C. Tong, Y. Li, Observer-based adaptive fuzzy control of nonlinear non-strict feedback system with input delay, IEEE Trans. Fuzzy Syst., 20 (2018), 236–245. https://doi.org/10.1007/s40815-017-0388-9 doi: 10.1007/s40815-017-0388-9 |
[40] | S. J. Yoo, Output-feedback fault detection and accommodation of uncertain interconnected systems with time-delayed nonlinear faults, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 758–766. https://doi.org/10.1109/TSMC.2016.2523900 doi: 10.1109/TSMC.2016.2523900 |
[41] | B. Ren, S. S. Ge, K. P. Tee, T. H. Lee, Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function, IEEE Trans. Neural Network, 21 (2010), 1339–1345. https://doi.org/10.1109/TNN.2010.2047115 doi: 10.1109/TNN.2010.2047115 |
[42] | L. Liu, A. Chen, Y. J. Liu, Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints, IEEE Trans. Cybern., 52 (2022), 7340–7351. https://doi.org/10.1109/TCYB.2021.3050510 doi: 10.1109/TCYB.2021.3050510 |
[43] | Y. Liu, Q. Zhu, N. Zhao, L. Wang, Adaptive fuzzy backstepping control for non-strict feedback nonlinear systems with time-varying state constraints and backlash-like hysteresis, Inf. Sci., 574 (2021), 606–624. https://doi.org/10.1016/j.ins.2021.07.068 doi: 10.1016/j.ins.2021.07.068 |
[44] | Y. J. Liu, M. Gong, L. Liu, S. C. Tong, C. L. P. Chen, Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time-varying state constraints, IEEE Trans. Cybern., 51 (2021), 1380–1389. https://doi.org/10.1109/TCYB.2019.2933700 doi: 10.1109/TCYB.2019.2933700 |