Thrust force and metal chips are essential focuses in SiCp/AL6063 drilling operations. Compared with conventional drilling (CD), the ultrasonic vibration-assisted drilling (UVAD) has attractive advantages: for instance, short chips, small cutting forces, etc. However, the mechanism of UVAD is still inadequate, especially in the thrust force prediction model and numerical simulation. In this study, a mathematical prediction model considering the ultrasonic vibration of the drill is established to calculate the thrust force of UVAD. A 3D finite element model (FEM) for the thrust force and chip morphology analysis is subsequently researched based on ABAQUS software. Finally, experiments of CD and UVAD of SiCp/Al6063 are performed. The results show that when the feed rate reaches 151.6 mm/min, the thrust force of UVAD decreases to 66.1 N, and width of the chip decreases to 228 um. As a result, the errors of the mathematical prediction and 3D FEM model of UVAD are about 12.1 and 17.4% for the thrust force, and the errors of the CD and UVAD of SiCp/Al6063 are 3.5 and 11.4% for the chip width, respectively. Compared with the CD, UVAD could reduce the thrust force and improve chip evacuation effectively.
Citation: Xu Ji, Fan Bai, Jiang Jiang, Hongge Fu, Qingjie Sun, Weiyu Zhu. Numerical simulation and experimental study for ultrasonic vibration-assisted drilling of SiCp/AL6063[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2651-2668. doi: 10.3934/mbe.2023124
Thrust force and metal chips are essential focuses in SiCp/AL6063 drilling operations. Compared with conventional drilling (CD), the ultrasonic vibration-assisted drilling (UVAD) has attractive advantages: for instance, short chips, small cutting forces, etc. However, the mechanism of UVAD is still inadequate, especially in the thrust force prediction model and numerical simulation. In this study, a mathematical prediction model considering the ultrasonic vibration of the drill is established to calculate the thrust force of UVAD. A 3D finite element model (FEM) for the thrust force and chip morphology analysis is subsequently researched based on ABAQUS software. Finally, experiments of CD and UVAD of SiCp/Al6063 are performed. The results show that when the feed rate reaches 151.6 mm/min, the thrust force of UVAD decreases to 66.1 N, and width of the chip decreases to 228 um. As a result, the errors of the mathematical prediction and 3D FEM model of UVAD are about 12.1 and 17.4% for the thrust force, and the errors of the CD and UVAD of SiCp/Al6063 are 3.5 and 11.4% for the chip width, respectively. Compared with the CD, UVAD could reduce the thrust force and improve chip evacuation effectively.
[1] | Ş. Karabulut, U. Gökmen, H. Çinici, Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles, Composites, Part B, 93 (2016), 43-55. https://doi.org/10.1016/j.compositesb.2016.02.054 doi: 10.1016/j.compositesb.2016.02.054 |
[2] | M. A. Kadivar, J. Akbari, R. Yousefi, A. Rahi, M. G. Nick, Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites, Rob. Comput. Integr. Manuf., 30 (2013), 344–350. https://doi.org/10.1016/j.rcim.2013.10.001 doi: 10.1016/j.rcim.2013.10.001 |
[3] | E. Ekici, A. R. Motorcu, Evaluation of drilling Al/SiC composites with cryogenically treated HSS drills, Int. J. Adv. Manuf. Technol., 74 (2014), 1495–1505. https://doi.org/10.1007/s00170-014-6085-z doi: 10.1007/s00170-014-6085-z |
[4] | Z. C. Yang, L. D. Zhu, G. X. Zhang, C. B. Ni, B. Lin, Review of ultrasonic vibration-assisted machining in advanced materials, Int. J. Mach. Tools Manuf., 156 (2020), 103594. https://doi.org/10.1016/j.ijmachtools.2020.103594 doi: 10.1016/j.ijmachtools.2020.103594 |
[5] | F. D. Ning, W. L. Cong, Ultrasonic vibration-assisted (UV-A) manufacturing processes: State of the art and future perspectives, J. Manuf. Processes, 51 (2020), 174-190. https://doi.org/10.1016/j.jmapro.2020.01.028 doi: 10.1016/j.jmapro.2020.01.028 |
[6] | F. D. Ning, W. L. Cong, Z. J. Pei, C. Treadwell, Rotary ultrasonic machining of CFRP: a comparison with grinding, Ultrasonics, 66 (2016), 125-132. https://doi.org/10.1016/j.ultras.2015.11.002 doi: 10.1016/j.ultras.2015.11.002 |
[7] | H. T. Zha, P. F. Feng, J. F. Zhang, D. W. Yu, Z. J. Wu, Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites, Int. J. Adv. Manuf. Technol., 97 (2018), 2099-2109. https://doi.org/10.1007/s00170-018-2075-x doi: 10.1007/s00170-018-2075-x |
[8] | M. Wang, W. Zheng, M. Zhou, Q. Zhang, Rotary ultrasonic machining of SiCp/Al composites: an experimental study on cutting force and machinability, Adv. Mech. Eng., 11 (2019), 12. https://doi.org/10.1177/1687814019898329 doi: 10.1177/1687814019898329 |
[9] | S. Q. Qin, L. D. Zhu, M. Wiercigroch, T. Y. Ren, Y. P. Hao, J. S. Ning, et al., Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling, Int. J. Mech. Sci., 227 (2022), 107375. https://doi.org/10.1016/j.ijmecsci.2022.107375 doi: 10.1016/j.ijmecsci.2022.107375 |
[10] | J. Kumabe, T. Soutome, Y. Nishimoto, Ultrasonic super-position vibration cutting of ceramics, J. Jpn. Soc. Precis. Eng., 52 (1986), 1851-1857. https://doi.org/10.2493/jjspe.52.1851 doi: 10.2493/jjspe.52.1851 |
[11] | X. X. Zhu, W. H. Wang, R. S. Jiang, Z. F. Zhang, B. Huang, X. W. Ma, Research on ultrasonic-assisted drilling in micro-hole machining of the DD6 superalloy, Adv. Manuf., 8 (2020), 405-417. https://doi.org/10.1007/s40436-020-00301-6 doi: 10.1007/s40436-020-00301-6 |
[12] | M. Baraheni, A. B. Bami, A. Alaei, S. Amini, Ultrasonic-assisted friction drilling process of aerospace aluminum alloy (AA7075): FEA and experimental study, Int. J. Lightweight Mater. Manuf., 4 (2021), 315-322. https://doi.org/10.1016/j.ijlmm.2021.03.001 doi: 10.1016/j.ijlmm.2021.03.001 |
[13] | X. F. Li, Z. G. Dong, R. K. Kang, Y. D. Wang, J. T. Liu, Y. Zhang, Comparison of thrust force in ultrasonic assisted drilling and conventional drilling of aluminum alloy, Mater. Sci. Forum, 861 (2016), 38–43. https://doi.org/10.4028/www.scientific.net/MSF.861.38 doi: 10.4028/www.scientific.net/MSF.861.38 |
[14] | G. F. Gao, Z. W. Xia, Z. J. Yuan, D. H. Xiang, B. Zhao, Influence of longitudinal-torsional ultrasonic-assisted vibration on micro-hole drilling Ti-6Al-4V, Chin. J. Aeronaut., 34 (2021), 247-260. https://doi.org/10.1016/j.cja.2020.06.012 doi: 10.1016/j.cja.2020.06.012 |
[15] | Z. Li, S. M. Yuan, J. Ma, J. Shen, A. D. L. Batako, Cutting force and specific energy for rotary ultrasonic drilling based on kinematics analysis of vibration effectiveness, Chin. J. Aeronaut., 35 (2022), 376-387. https://doi.org/10.1016/j.cja.2020.12.023 doi: 10.1016/j.cja.2020.12.023 |
[16] | Y. Li, Y. Yang, Y. Wang, F. Gao, Study on the simulation and experiment of ultrasonic-assisted vibration drilling of Ti6Al4V, in 2022 International Conference on Advances in Modern Physics Sciences and Engineering Technology (ICPSET 2022), 2242 (2022). https://doi.org/10.1088/1742-6596/2242/1/012011 |
[17] | A. M. Abdelaziz, H. Youssef, M. AI-Makky, H. EI-Hofy, Ultrasonic-assisted drilling of nickel-based super alloy inconel 601: an experimental study, in 19th International Conference on Applied Mechanics and Mechanical Engineering (AMME-19), IOP Conf. Ser.: Mater. Sci. Eng., Military Technical College, Egypt, 973 (2020). https://doi.org/10.1088/1757-899X/973/1/012047 |
[18] | C. B. Ni, L. D. Zhu, Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology, J. Mater. Process. Technol., 278 (2020), 116518. https://doi.org/10.1016/j.jmatprotec.2019.116518 doi: 10.1016/j.jmatprotec.2019.116518 |
[19] | Q. L. Niu, L. Jing, C. H. Wang, S. J. Li, X. Y. Qiu, C. P. Li, et al., Study on effect of vibration amplitude on cutting performance of SiCp/Al composites during ultrasonic vibration–assisted milling, Int. J. Adv. Manuf. Technol., 106 (2020), 2219-2225. https://doi.org/10.1007/s00170-019-04796-7 doi: 10.1007/s00170-019-04796-7 |
[20] | Z. Li, D. Y. Zhang, X. G. Jiang, W. Qin, D. X. Geng, Study on rotary ultrasonic-assisted drilling of titanium alloys (Ti6Al4V) using 8-facet drill under no cooling condition, Int. J. Adv. Manuf. Technol., 90 (2017), 3249-3264. https://doi.org/10.1007/s00170-016-9593-1 doi: 10.1007/s00170-016-9593-1 |
[21] | X. X. Xu, Y. L. Mo, C. S. Liu, B. Zhao, Research on drilling experiments of SiC particle reinforced aluminum-matrix composites with ultrasonic vibration, China. Mech. Eng., 21 (2010), 2573. Available from: http://www.cmemo.org.cn/EN/Y2010/V21/I21/2573. |
[22] | T. Dou, H. G. Fu, Z. L. Li, X. Ji, S. S. Bi, Prediction model, simulation, and experimental validation on thrust force and torque in drilling SiCp/Al6063, Int. J. Adv. Manuf. Technol., 103 (2019), 165-175. https://doi.org/10.1007/s00170-019-03366-1 doi: 10.1007/s00170-019-03366-1 |
[23] | F. Hu, L. J. Xie, J. F. Xiang, U. Umer, X. H. Nan, Finite modeling study on small-hole peck drilling of SiCp/Al composites, Int. J. Adv. Manuf. Technol., 96 (2018), 3719-3728. https://doi.org/10.1007/s00170-018-1730-6 doi: 10.1007/s00170-018-1730-6 |
[24] | Y. Chen, X. Zhang, Study on the cutting mechanism of SiCp/Al considering particle size and distribution, Int. J. Adv. Manuf. Technol., 115 (2021), 1211–1225. https://doi.org/10.1007/s00170-021-07225-w doi: 10.1007/s00170-021-07225-w |
[25] | C. B. Ni, L. D. Zhu, C. F. Liu, Z. C. Yang, Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V, Int. J. Mech. Sci., 142 (2018), 97-111. https://doi.org/10.1016/j.ijmecsci.2018.04.037 doi: 10.1016/j.ijmecsci.2018.04.037 |
[26] | Z. S. Lu, L. Yang, Theoretical analysis and simulation of the effect of vibration amplitude on ccutting force in precision ultrasonic vibration cutting, Key Eng. Mater., 329 (2007), 693–698. https://doi.org/10.4028/www.scientific.net/KEM.329.693 doi: 10.4028/www.scientific.net/KEM.329.693 |
[27] | S. S. F. Chang, G. M. Bone, Thrust force model for vibration-assisted drilling of aluminum 6061-T6, Int. J. Mach. Tools Manuf., 49 (2009), 1070–1076. https://doi.org/10.1016/j.ijmachtools.2009.07.011 doi: 10.1016/j.ijmachtools.2009.07.011 |
[28] | Y. C. Shi, S. Zong, Z. G. Li, X. L. Yu, Study on the effect of feed rate on the ultrasonic vibration drilling force, Mach. Tool. Hydraul., 47 (2019), 54-56. https://doi.org/10.3969/j.issn.1001-3881.2019.07.012 doi: 10.3969/j.issn.1001-3881.2019.07.012 |
[29] | Y. Feng, M. Zhang, Z. H. Zhu, B. H. Jia, X. Y. Wang, Axial cutting force prediction model of titanium matrix composites TiBw/TC4 in ultrasonic vibration–assisted drilling, Int. J. Adv. Manuf. Technol., 105 (2019), 121-135. https://doi.org/10.1007/s00170-019-04149-4 doi: 10.1007/s00170-019-04149-4 |
[30] | M. Elhachimi, S. Torbaty, P. Joyot, Mechanical modelling of high speed drilling. 1: predicting torque and thrust, Int. J. Mach. Tools Manuf., 39 (1999), 553–568. https://doi.org/10.1016/S0890-6955(98)00050-9 doi: 10.1016/S0890-6955(98)00050-9 |
[31] | C. J. Oxford, On the drilling of metals: 1-basic mechanics of the process, Trans. ASME, 77 (1955), 103-111. https://doi.org/10.1115/1.4014251 doi: 10.1115/1.4014251 |
[32] | S. Wiriyacosol, E. J. A. Armarego, Thrust and torque prediction in drilling from a cutting mechanics approach, CIRP Ann. - Manuf. Technol., 28 (1979), 87-91. |
[33] | X. H. Nan, L. J. Xie, W. X. Zhao, On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel, Int. J. Adv. Manuf. Technol., 84 (2016), 1927–1939. https://doi.org/10.1007/s00170-015-7782-y doi: 10.1007/s00170-015-7782-y |
[34] | L. Zhou, S. T. Huang, D. Wang, X. L. Yu, Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools, Int. J. Adv. Manuf. Technol., 52 (2011), 619–626. https://doi.org/10.1007/s00170-010-2776-2 doi: 10.1007/s00170-010-2776-2 |
[35] | L. H. Tang, J. L. Huang, L. M. Xie, Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool, Int. J. Adv. Manuf. Technol., 53 (2011), 1167–1181. https://doi.org/10.1007/s00170-010-2901-2 doi: 10.1007/s00170-010-2901-2 |
[36] | Abaqus 6.14 Documentation Abaqus/CAE User's Manual, 2014. |
[37] | V. K. Doomomra, K. Debnath, I. Singh, Drilling of metal matrix composites: experimental and finite element analysis, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 229 (2015), 886–890. https://doi.org/10.1177/0954405414534227 doi: 10.1177/0954405414534227 |