Bone cutting is a complicated surgical operation. It is very important to establish a kind of gradient porous bone model in vitro which is close to human bone for the research of bone cutting. Due to the existing bone cutting researches are based on solid bone model, which is quite different from human bone tissue structure. Therefore, Voronoi method was used to establish a gradient porous bone model similar to real bone tissue to simulate the process of bone drilling in this paper. High temperature and large cutting force during bone drilling can cause serious damage to bone tissue. Urgent research on bone drilling parameters is necessary to reduce cutting temperature and cutting force. The finite element analysis (FEA) of Voronoi bone models with different gradients is carried out, and a Voronoi model which is similar to real bone tissue is obtained and verified by combining the cutting experiment of pig bone. Then orthogonal experiments are designed to optimize the cutting parameters of Voronoi bone model. The range method is used to analyze the influence weights of cutting speed, feed speed and tip angle on cutting temperature and cutting force, and the least square method was used to predict the cutting temperature and cutting force, respectively. The gradient porous bone model constructed by Voronoi method was studied in detail in this paper. This study can provide theoretical guidance for clinical bone drilling surgery, and the prediction model of bone drilling has practical significance.
Citation: Wei Lin, Fengshuang Yang. Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542
Bone cutting is a complicated surgical operation. It is very important to establish a kind of gradient porous bone model in vitro which is close to human bone for the research of bone cutting. Due to the existing bone cutting researches are based on solid bone model, which is quite different from human bone tissue structure. Therefore, Voronoi method was used to establish a gradient porous bone model similar to real bone tissue to simulate the process of bone drilling in this paper. High temperature and large cutting force during bone drilling can cause serious damage to bone tissue. Urgent research on bone drilling parameters is necessary to reduce cutting temperature and cutting force. The finite element analysis (FEA) of Voronoi bone models with different gradients is carried out, and a Voronoi model which is similar to real bone tissue is obtained and verified by combining the cutting experiment of pig bone. Then orthogonal experiments are designed to optimize the cutting parameters of Voronoi bone model. The range method is used to analyze the influence weights of cutting speed, feed speed and tip angle on cutting temperature and cutting force, and the least square method was used to predict the cutting temperature and cutting force, respectively. The gradient porous bone model constructed by Voronoi method was studied in detail in this paper. This study can provide theoretical guidance for clinical bone drilling surgery, and the prediction model of bone drilling has practical significance.
[1] | J. E. Lee, Y. Rabin, O. B. Ozdoganlar, A new thermal model for bone drilling with applications to orthopaedic surgery, Med. Eng. Phys., 33 (2011), 1234–1244. https://doi.org/10.1016/j.medengphy.2011.05.014 doi: 10.1016/j.medengphy.2011.05.014 |
[2] | G. F. Tawy, P. J. Rowe, P. E. Riches, Thermal damage done to bone by burring and sawing with and without irrigation in knee arthroplasty, J. Arthroplasty, 31 (2016), 1102–1108. https://doi.org/10.1016/j.arth.2015.11.002 doi: 10.1016/j.arth.2015.11.002 |
[3] | N. Bertollo, H. R. M. Milne, L. P. Ellis, P. C. Stephens, R. M. Gillies, W. R. Walsh, A comparison of the thermal properties of 2- and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model, Clin. Biomech., 25 (2010), 613–617. https://doi.org/10.1016/j.clinbiomech.2010.02.007 doi: 10.1016/j.clinbiomech.2010.02.007 |
[4] | M. Steeves, C. Stone, J. Mogaard, S. Byrne, How pilot-hole size affects bone-screw pullout strength in human cadaveric cancellous bone, Can. J. Surg., 48 (2005), 207–212. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211539/. |
[5] | S. R. H. Davidson, D. F. James, Measurement of thermal conductivity of bovine cortical bone, Med. Eng. Phys., 22 (2000), 741–747. https://doi.org/10.1016/S1350-4533(01)00003-0 doi: 10.1016/S1350-4533(01)00003-0 |
[6] | A. Feldmann, P. Wili, G. Maquer, P. Zysset, The thermal conductivity of cortical and cancellous bone, Eur. Cells Mater., 35 (2018), 25–33. https://doi.org/10.22203/eCM.v035a03 doi: 10.22203/eCM.v035a03 |
[7] | J. Soriano, A. Garay, P. Aristimuño, P. J. Arrazola, Study and improvement of surgical drill bit geometry for implant site preparation, Int. J. Adv. Manuf. Technol., 74 (2014), 615–627. https://doi.org/10.1007/s00170-014-5998-x doi: 10.1007/s00170-014-5998-x |
[8] | M. F. A. Akhbar, A. R. Yusoff, Fast & Injurious: Reducing thermal osteonecrosis regions in the drilling of human bone with multi-objective optimization, Measurement, 152 (2020), 107385. https://doi.org/10.1016/j.measurement.2019.107385 doi: 10.1016/j.measurement.2019.107385 |
[9] | J. Sui, N. Sugita, M. Mitsuishi, Thermal modeling of temperature rise for bone drilling with experimental validation, J. Manuf. Eng., 137 (2015), 1–10. https://doi.org/10.1115/1.4030880 doi: 10.1115/1.4030880 |
[10] | R. K. Pandey, S. S. Panda, Drilling of bone: a comprehensive review, J. Clin. Orthop. Trauma, 4(2013), 15–30. https://doi.org/10.1016/j.jcot.2013.01.002 doi: 10.1016/j.jcot.2013.01.002 |
[11] | S. R. H. Davidson, D. F. James, Drilling in bone: modeling heat generation and temperature distribution, J. Biomech. Eng., 125 (2003), 305–314. https://doi.org/10.1115/1.1535190 doi: 10.1115/1.1535190 |
[12] | Y. C. Chen, Y. K. Tu, J. Y. Zhuang, Y. J. Tsai, C.Y. Yen, C. K. Hsiao, Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model, Med. Biol. Eng. Comput., 55 (2017), 1949–1957. https://doi.org/10.1007/s11517-017-1644-8 doi: 10.1007/s11517-017-1644-8 |
[13] | F. Karaca, B. Aksakal, M. Kom, Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study, Med. Eng. Phys., 33 (2011), 1221–1227. https://doi.org/10.1016/j.medengphy.2011.05.013 doi: 10.1016/j.medengphy.2011.05.013 |
[14] | T. Udiljak, D. Ciglar, S. Skoric, Investigation into bone drilling and thermal bone necrosis, Investig. Bone Drill. Therm. Bone Necrosis, 2(2007), 103–112. |
[15] | K. Alam, A. V. Mitrofanov, V. V. Silberschmidt, Finite element analysis of forces of plane cutting of cortical bone, Comput. Mater. Sci., 46 (2009), 738–743. https://doi.org/10.1016/j.commatsci.2009.04.035 doi: 10.1016/j.commatsci.2009.04.035 |
[16] | Y. Wang, M. Cao, X. Zhao, G. Zhu, C. McClean, Y. Zhao, et al., Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone, Med. Eng. Phys., 36 (2014), 1408–1415. https://doi.org/10.1016/j.medengphy.2014.04.007 doi: 10.1016/j.medengphy.2014.04.007 |
[17] | Y. Wang, M. Cao, Y. Zhao, G. Zhou, W. Liu, D. Li, Experimental investigations on microcracks in vibrational and conventional drilling of cortical bone, J. Nanomater., 2013 (2013), 845205. https://doi.org/10.1155/2013/845205 doi: 10.1155/2013/845205 |
[18] | R. Zakrasas, V. Jurenas, J. Baskutiene, Analysis of compact bone vibration assisted drilling, Solid State Phenom., 251 (2016), 183–187. https://doi.org/10.4028/www.scientific.net/SSP.251.183 doi: 10.4028/www.scientific.net/SSP.251.183 |
[19] | V. Ostaševičius, G. Balevičius, R. Zakrasas, J. Baskutiene, V. Jurenas, Investigation of vibration assisted drilling prospects for improving machining characteristics of hard to machine materials at high and low frequency ranges, Mechanika, 22 (2016), 125–131. https://doi.org/10.5755/j01.mech.22.2.14431 doi: 10.5755/j01.mech.22.2.14431 |
[20] | V. Gupta, P. M. Pandey, Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling, Med. Eng. Phys., 38 (2016), 1330–1338. https://doi.org/10.1016/j.medengphy.2016.08.012 doi: 10.1016/j.medengphy.2016.08.012 |
[21] | H. Paktinat, S. Amini. Ultrasonic assistance in drilling: FEM analysis and experimental approaches. Int. J. Adv. Manuf. Technol., 92 (2017), 2653–2665. https://doi.org/10.1007/s00170-017-0285-2 doi: 10.1007/s00170-017-0285-2 |
[22] | M. Nosouhi, R. Nosouhi, H. Paktinat, S. Amini, Finite element analysis and experimental investigation on the conventional and vibration assisted drilling, J. Mod. Processes Manuf. Prod., 6(2017), 22–33. |
[23] | Z. Liao, D. A. Axinte, D. Gao, A novel cutting tool design to avoid surface damage in bone machining, Int. J. Mach. Tools Manuf., 116 (2017), 52–59. https://doi.org/10.1016/j.ijmachtools.2017.01.003 doi: 10.1016/j.ijmachtools.2017.01.003 |
[24] | Y. Hu, X. Chen, J. Chen, C. Zhang, W. Fu, The influence of crescent texture parameters on the axial force when drilling bone, Med. Eng. Phys., 87 (2021), 87–94. https://doi.org/10.1016/j.medengphy.2020.12.001 doi: 10.1016/j.medengphy.2020.12.001 |
[25] | N. Sugita, K. Ishii, J. Sui, M. Terashima, Multi-grooved cutting tool to reduce cutting force and temperature during bone machining, CIRP Ann., 63 (2014), 101–104. https://doi.org/10.1016/j.cirp.2014.03.069 doi: 10.1016/j.cirp.2014.03.069 |
[26] | N. Sugita, T. Osa, R. Aoki, M. Mitsuishi, A new cutting method for bone based on its crack propagation characteristics, CIRP Ann., 58 (2009), 113–118. https://doi.org/10.1016/j.cirp.2009.03.057 doi: 10.1016/j.cirp.2009.03.057 |
[27] | M. F. A. Akhbar, A. W. Sulong, Surgical drill bit design and thermomechanical damage in bone drilling: a review, Ann. Biomed. Eng., 49 (2021), 29–56. https://doi.org/10.1007/s10439-020-02600-2 doi: 10.1007/s10439-020-02600-2 |
[28] | A. G. Robling, A. B. Castillo, C. H. Turner, Biomechanical and molecular regulation of bone remodeling, Annu. Rev. Biomed. Eng., 8 (2006), 455–498. https://doi.org/10.1146/annurev.bioeng.8.061505.095721 doi: 10.1146/annurev.bioeng.8.061505.095721 |
[29] | X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials, 83 (2016), 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012 doi: 10.1016/j.biomaterials.2016.01.012 |
[30] | S. Gómez, M. D. Vlad, J. López, E. Fernández, Design and properties of 3D scaffolds for bone tissue engineering, Acta Biomater., 42 (2016), 341–350. https://doi.org/10.1016/j.actbio.2016.06.032 doi: 10.1016/j.actbio.2016.06.032 |
[31] | J. Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., 20 (1998), 92–102. https://doi.org/10.1016/S1350-4533(98)00007-1 doi: 10.1016/S1350-4533(98)00007-1 |
[32] | E. Bednarczyk, T. Lekszycki, A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset, Z. Angew. Math. Phys., 67 (2016), 94–108. https://doi.org/10.1007/s00033-016-0687-2 doi: 10.1007/s00033-016-0687-2 |
[33] | I. Giorgio, M. Spagnuolo, U. Andreaus, D. Scerrato, A. M. Bersani, In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials, Math. Mech. Solids, 26 (2021), 1074–1103. https://doi.org/10.1177/1081286520978516 doi: 10.1177/1081286520978516 |
[34] | L. Placidi, F. Dell'Isola, N. Ianiro, G. Sciarra. Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena, Eur. J. Mech. A. Solids, 27 (2008), 582–606. https://doi.org/10.1016/j.euromechsol.2007.10.003 doi: 10.1016/j.euromechsol.2007.10.003 |
[35] | O. Devillers, M. Golin, K. Kedem, S. Schirra, Queries on Voronoi diagrams of moving points, Comput. Geom., 6 (1996), 315–327. https://doi.org/10.1016/0925-7721(95)00053-4 doi: 10.1016/0925-7721(95)00053-4 |
[36] | F. Aurenhammer, Voronoi diagrams - a survey of a fundamental data structure, ACM Comput. Surv., 23 (1991), 345–405. https://doi.org/10.1145/116873.116880 doi: 10.1145/116873.116880 |
[37] | G. Wang, L. Shen, J. Zhao, H. Liang, D. Xie, Z. Tian, et al., Design and compressive behavior of controllable irregular porous scaffolds: based on Voronoi-tessellation and for additive manufacturing, ACS Biomater. Sci. Eng., 4 (2018), 719–727. https://doi.org/10.1021/acsbiomaterials.7b00916 doi: 10.1021/acsbiomaterials.7b00916 |
[38] | H. Zhao, Y. Han, C. Pan, D. Yang, H. Wang, T. Wang, et al., Design and mechanical properties verification of gradient Voronoi scaffold for bone tissue engineering, Micromachines, 12 (2021), 1–23. https://doi.org/10.3390/mi12060664 doi: 10.3390/mi12060664 |
[39] | V. Prasannavenkadesan, P. Pandithevan, Johnson-cook model combined with cowper-symonds model for bone cutting simulation with experimental validation, J. Mech. Med. Biol., 21 (2021), 1–23. https://doi.org/10.1142/S021951942150010X doi: 10.1142/S021951942150010X |