Citation: Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model[J]. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
[1] | [ E. Bertuzzo,R. Casagrandi,M. Gatto,I. Rodriguez-Iturbe,A. Rinaldo, On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7 (2010): 321-333. |
[2] | [ E. Bertuzzo,L. Mari,L. Righetto,M. Gatto,R. Casagrandi,M. Blokesch,I. Rodriguez-Iturbe,A. Rinaldo, Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38 (2011): 1-5. |
[3] | [ V. Capasso,S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante, 27 (1979): 121-132. |
[4] | [ A. Carpenter, Behavior in the time of cholera: Evidence from the 2008-2009 cholera outbreak in Zimbabwe, in Social Computing, Behavioral-Cultural Modeling and Prediction, Springer, 8393 (2014), 237-244. |
[5] | [ D. L. Chao,M. E. Halloran,I. M. Longini Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci. USA, 108 (2011): 7081-7085. |
[6] | [ S. F. Dowell,C. R. Braden, Implications of the introduction of cholera to Haiti, Emerg. Infect. Dis., 17 (2011): 1299-1300. |
[7] | [ M. C. Eisenberg,Z. Shuai,J. H. Tien,P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013): 105-112. |
[8] | [ L. Evans, Partial Differential Equations American Mathematics Society, Providence, Rhode Island, 1998. |
[9] | [ H. I. Freedman,X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997): 340-362. |
[10] | [ J. K. Hale, Asymptotic Behavior of Dissipative Systems Mathematical surveys and monographs, American Mathematics Society, Providence, Rhode Island, 1988. |
[11] | [ D. M. Hartley,J. G. Morris,D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?, PLoS Med., 3 (2006): e7. |
[12] | [ S.-B. Hsu,F.-B. Wang,X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Differential Equations, 255 (2013): 265-297. |
[13] | [ Y. Lou,X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011): 543-568. |
[14] | [ P. Magal,X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005): 251-275. |
[15] | [ R. Martin,H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990): 1-44. |
[16] | [ Z. Mukandavire,S. Liao,J. Wang,H. Gaff,D. L. Smith,J. G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011): 8767-8772. |
[17] | [ R. L. M. Neilan,E. Schaefer,H. Gaff,K. R. Fister,S. Lenhart, Modeling optimal intervention strategies for cholera, B. Math. Biol., 72 (2010): 2004-2018. |
[18] | [ R. Piarroux,R. Barrais,B. Faucher,R. Haus,M. Piarroux,J. Gaudart,R. Magloire,D. Raoult, Understanding the cholera epidemic, Haiti, Emerg. Infect. Dis., 17 (2011): 1161-1168. |
[19] | [ A. Rinaldo,E. Bertuzzo,L. Mari,L. Righetto,M. Blokesch,M. Gatto,R. Casagrandi,M. Murray,S. M. Vesenbeckh,I. Rodriguez-Iturbe, Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections, Proc. Natl. Acad. Sci. USA, 109 (2012): 6602-6607. |
[20] | [ Z. Shuai,P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011): 118-126. |
[21] | [ H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Math. Surveys Monogr. 41 American Mathematical Society, Providence, Rhode Island, 1995. |
[22] | [ H. L. Smith,X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001): 6169-6179. |
[23] | [ H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992): 755-763. |
[24] | [ H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009): 188-211. |
[25] | [ J. P. Tian,J. Wang, Global stability for cholera epidemic models, Math. Biosci., 232 (2011): 31-41. |
[26] | [ J. H. Tien,D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, B. Math. Biol., 72 (2010): 1506-1533. |
[27] | [ J. H. Tien,Z. Shuai,M. C. Eisenberg,P. van den Driessche, Disease invasion on community net-works with environmental pathogen movement, J. Math. Biology, 70 (2015): 1065-1092. |
[28] | [ N. K. Vaidya,F.-B. Wang,X. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012): 2829-2848. |
[29] | [ J. Wang,S. Liao, A generalized cholera model and epidemic-endemic analysis, J. Biol. Dyn., 6 (2012): 568-589. |
[30] | [ J. Wang,C. Modnak, Modeling cholera dynamics with controls, Canad. Appl. Math. Quart., 19 (2011): 255-273. |
[31] | [ X. Wang,D. Posny,J. Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016): 2785-2809. |
[32] | [ X. Wang,J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015): 233-261. |
[33] | [ W. Wang,X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011): 147-168. |
[34] | [ W. Wang,X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012): 1652-1673. |
[35] | [ WHO Cholera outbreak, South Sudan Disease Outbreak News, 2014. Available from: http://www.who.int/csr/don/2014_05_30/en/. |
[36] | [ J. Wu, null, Theory and Applications of Partial Functional Differential Equations, , Springer, New York, 1996. |
[37] | [ K. Yamazaki,X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016): 1297-1316. |
[38] | [ X.-Q. Zhao, Dynamical Systems in Population Biology Springer-Verlag, New York, Inc., New York, 2003. |