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Abstract. We study the global stability issue of the reaction-convection-

diffusion cholera epidemic PDE model and show that the basic reproduction
number serves as a threshold parameter that predicts whether cholera will

persist or become globally extinct. Specifically, when the basic reproduction

number is beneath one, we show that the disease-free-equilibrium is globally
attractive. On the other hand, when the basic reproduction number exceeds

one, if the infectious hosts or the concentration of bacteria in the contaminated
water are not initially identically zero, we prove the uniform persistence result

and that there exists at least one positive steady state.

1. Introduction. Cholera is an ancient intestinal disease for humans. It has a
renowned place in epidemiology with John Snow’s famous investigations of London
cholera in 1850’s which established the link between contaminated water and cholera
outbreak. Cholera is caused by bacterium vibrio cholerae. The disease transmission
consists of two routes: indirect environment-to-human (through ingesting the con-
taminated water) and direct person-to-person transmission routes. Even though
cholera has been an object of intense study for over a hundred years, it remains
to be a major public health concern in developing world; the disease has resulted
in a number of outbreaks including the recent devastating outbreaks in Zimbabwe
and Haiti, and renders more than 1.4 million cases of infection and 28,000 deaths
worldwide every year [35].

It is well known that the transmission and spread of infectious diseases are com-
plicated by spatial variation that involves distinctions in ecological and geographical
environments, population sizes, socio-economic and demographic structures, human
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activity levels, contact and mixing patterns, and many other factors. In particu-
lar, for cholera, spatial movements of humans and water can play an important
role in shaping complex disease dynamics and patterns [6, 18]. There have been
many studies published in recent years on cholera modeling and analysis (see, e.g.,
[1, 3, 4, 11, 16, 17, 20, 25, 26, 29, 30, 31, 32, 37]). However, only a few mathemat-
ical models among this large body of cholera models have considered human and
water movement so far. Specifically, Bertuzzo et al. incorporated both water and
human movement and formulated a simple PDE model [1, 19] and a patch model
[2], in which only considered indirect transmission route. Chao et al. [5] proposed a
stochastic model to study vaccination strategies and accessed its impact on spatial
cholera outbreak in Haiti by using the model and data, for which both direct and
indirect transmission were included. Tien, van den Driessche and their collaborators
used network ODE models incorporating both water and human movement between
geographic regions, and their results establish the connection in disease threshold
between network and regions [7, 27]. Wang et al. [31] developed a generalized PDE
model to study the spatial spread of cholera dynamics along a theoretical river, em-
ploying general incidence functions for direct and indirect transmission and intrinsic
bacterial growth and incorporating both human/pathogen diffusion and bacterial
convection.

In the present paper, we shall pay our attention to a reaction-diffusion-convection
cholera model, which employs a most general formulation incorporating all different
factors. This PDE model was first proposed in [31] and received investigations
[31, 37]. Let us now describe this model explicitly in the following section.

2. Statement of main results. We study the following SIRS-B epidemic PDE
model for cholera dynamics with x ∈ [0, 1], t > 0:

∂S

∂t
= D1

∂2S

∂x2
+ b− β1SI − β2S

B

B +K
− dS + σR, (1a)

∂I

∂t
= D2

∂2I

∂x2
+ β1SI + β2S

B

B +K
− I(d+ γ), (1b)

∂R

∂t
= D3

∂2R

∂x2
+ γI −R(d+ σ), (1c)

∂B

∂t
= D4

∂2B

∂x2
− U ∂B

∂x
+ ξI + gB

(
1− B

KB

)
− δB, (1d)

(cf. [31]) subjected to the following initial and Neumann and Robin boundary
conditions respectively:

S(x, 0) = φ1(x), I(x, 0) = φ2(x), R(x, 0) = φ3(x), B(x, 0) = φ4(x), (2)

where each φi(i = 1, 2, 3, 4) is assumed to be nonnegative and continuous in space
x, and

∂Z

∂x
(x, t)

∣∣∣
x=0,1

= 0, Z = S, I,R, (3a)

D4
∂B

∂x
(x, t)− UB(x, t)|x=0 =

∂B

∂x
(x, t)|x=1 = 0. (3b)

Here S = S(x, t), I = I(x, t), and R = R(x, t) measure the number of susceptible,
infectious, and recovered human hosts at location x and time t, respectively. B =
B(x, t) denotes the concentration of the bacteria (vibrios) in the water environment.
The definition of model parameters is provided in Table 1.
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Table 1. Definition of parameters in model (1)

.

Parameter Definition
b Recruitment rate of susceptible hosts
d Natural death rate of human hosts
γ Recovery rate of infectious hosts
σ Rate of host immunity loss
δ Natural death rate of bacteria
ξ Shedding rate of bacteria by infectious hosts
β1 Direct transmission parameter
β2 Indirect transmission parameter
K Half saturation rate of bacteria
U Bacterial convection coefficient
KB Maximal carrying capacity of bacteria in the environment

We assume all of these parameters to be positive. Hereafter let us write ∂t, ∂x, ∂
2
xx

for ∂
∂t ,

∂
∂x ,

∂2

∂x2 , respectively.
To state our results clearly, let us denote the solution

u = (u1, u2, u3, u4) , (S, I,R,B) ∈ R4, φ , (φ1, φ2, φ3, φ4). (4)

We also denote the Lebesgue spaces Lp with their norms by ‖·‖Lp , p ∈ [1,∞].
Finally, we denote

X , C([0, 1],R4) =

4∏
i=1

Xi, Xi , C([0, 1],R), (5)

the space of R4-valued functions continuous in x ∈ [0, 1] with the usual sup norm

‖u‖C([0,1]) , ‖S‖C([0,1]) + ‖I‖C([0,1]) + ‖R‖C([0,1]) + ‖B‖C([0,1]). (6)

We define analogously

X+ , C([0, 1],R4
+) =

4∏
i=1

X+
i , X+

i , {f ∈ C([0, 1],R) : f ≥ 0}.

Understanding the global dynamical behavior of cholera modeling problems is
crucial in order to suggest effective measures to control the growth of the disease.
To the best of our knowledge, the existing literature has only studied local dynam-
ics of solutions of this general PDE model. The focus of the present work is global
disease threshold dynamics, which will be established in terms of the basic repro-
duction number R0 [12, 24, 33]. To that end, we conduct a rigorous investigation
on the disease using the model, and analyze both model parameters and the sys-
tem dynamics for a better understanding of disease mechanisms. Particularly, we
perform a careful analysis on the global threshold dynamics of the disease.

In review of previous results, firstly the authors in [32] defined RODE0 for the
SIRS-B ODE model, which can be extended to the SIRS-B PDE model as follows:
denoting

Θ1 ,

(
m∗β1 m∗ β2

K
ξ g

)
, Θ2 ,

(
D2∂

2
xx − (d+ γ) 0

0 D4∂
2
xx − U∂x − δ

)
, (7)
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where m∗ , b
d , we have RPDE0 , r(−Θ1Θ−12 ), the spectral radius of −Θ1Θ−12 ,

for which RODE0 is same except that the operators Θ1,Θ2 in (7) would have no
diffusive operators ∂2xx. Moreover, the authors in [32] proved that when RODE0 ≤ 1,
the model has the disease-free-equilibrium (DFE) (S, I,R,B) = (m∗, 0, 0, 0) which
is globally asymptotically stable (see Theorem 2.1 of [32]). On the other hand, when
RODE0 > 1, it was proven that this ODE model has two equilibriums, namely the
DFE which is unstable and endemic equilibrium which is globally asymptotically
stable (see Theorem 2.1 [32]). For the SIRS-B PDE model with diffusion, the
authors in [37] used spectral analysis tools from [24] to show that when RPDE0 < 1,
the DFE is locally asymptotically stable while if RPDE0 > 1, then there exists η > 0
such that any positive solution of (1) linearized at the DFE satisfies

lim sup
t→∞

‖(S(·, t), I(·, t), R(·, t), B(·, t))− (m∗, 0, 0, 0)‖C([0,1]) ≥ η. (8)

We emphasize here that both these stability and persistence results were local;
specifically the results were obtained via analysis on the (S, I,R,B) that solves the
system (1) linearized at the DFE (m∗, 0, 0, 0), not necessary the actual system (1).
The major difficulty was that because by definition RPDE0 gives information only
on the linearized system (see the definition RPDE0 = r(−Θ1Θ−12 ), (7), (13), (14)),
it seemed difficult to utilize the hypothesis that RPDE0 > 1 or RPDE0 < 1 to deduce
any information on the actual system (1) (see e.g. Theorem 4.3 (ii) of [34]).

In this paper, we overcome this major obstacle and extend these stability results
to global; moreover, we obtain the uniform persistence result. We also extend
Lemma 1 of [13], which have proven to be useful in various other papers (e.g.
Lemma 3.2, [28]) to the case with convection, which we believe will be useful in

many future work. For simplicity, let us hereafter denote R0 , RPDE0 , and by
u(x, t, φ) the solution at (x, t) ∈ [0, 1]× [0,∞) that initiated from φ:

Theorem 2.1. Suppose D = D1 = D2 = D3, φ ∈ X+. Then the system (1)
subjected to (2), (3) admits a unique global nonnegative solution u(x, t, φ) such
that u(x, 0, φ) = φ(x). Moreover, if R0 < 1, then the DFE (m∗, 0, 0, 0) is globally
attractive.

Theorem 2.2. Suppose D = D1 = D2 = D3, φ ∈ X+ and g < δ. Let u(x, t, φ) be
the unique global nonnegative solution of the system (1) subjected to (2), (3) such
that u(x, 0, φ) = φ(x) and Φt(φ) = u(t, φ) be its solution semiflow. If R0 > 1 and
φ2(·) 6≡ 0 or φ4(·) 6≡ 0, then the system (1) admits at least one positive steady state
a0 and there exists η > 0 such that

lim inf
t→∞

ui(x, t) ≥ η, ∀i = 1, 2, 4, (9)

uniformly ∀ x ∈ [0, 1].

Remark 1. 1. We remark that typically the persistence results in the caseR0 >
1 requires a hypothesis that the solution is positive (see e.g. Theorem 4.3 (ii)
of [34] and also Theorem 2.3 (2) of [37]). In the statement of Theorem 2.2,
we only require that φ2(·) 6≡ 0 or φ4(·) 6≡ 0. Due to the Proposition 2, we are
able to relax these conditions. Moreover, we note that sup in (8) is replaced
by inf in (9).

2. The proof was inspired by the work of [13, 28, 33].
3. We remark that it remains unknown what happens when R0 = 1; for this

matter, not global but even in the local case, it remains an open problem (see
Theorem 2.3 [37]).
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4. In the system (1), we chose a particular case of

f1(I) = β1I, f2(B) = β2
B

B +K
, h(B) = gB

(
1− B

KB

)
where f1, f2, h represent the direct, indirect transmission rates, intrinsic growth
rate of bacteria respectively (see [32, 31]). We remark for the purpose of our
subsequent proof that defining this way, f1, f2, h are all Lipschitz. It is clear
from the proof that some generalization is possible.

The rest of the article is organized as follows. The next section presents pre-
liminary results of this study. Section 4 verifies a key proposition as an extension
of Lemma 1 of [13], which has proved to be useful in various context. Our main
results are established in Sections 5-6. By employing the theory of monotone dy-
namical systems [38], we prove that (1) the disease free equilibrium (DFE) is globally
asymptotically stable if the basic reproduction number R0 is less than unity; (2)
there exists at least one positive steady state and the disease is uniformly persistent
in both the human and bacterial populations if R0 > 1. Additionally, we identify a
precise condition on model parameters for which the system admits a unique non-
negative solution, and study the global attractivity of this solution. In the end, a
brief discussion is given in Section 7, followed by Appendix.

3. Preliminaries. When there exists a constant c = c(a, b) ≥ 0 such that A ≤
cB,A = cB, we write A .a,b B,A ≈a,b B.

Following [21, 37], we let A0
i , i = 1, 2, 3 denote the differentiation operator

A0
iui , D∂2xxui, A0

4 , D4∂
2
xxu4 − U∂xu4,

defined on their domains

D(A0
i ) , {ψ ∈ C2((0, 1)) ∩ C1([0, 1]) : A0

iψ ∈ C([0, 1]), ∂xψ|x=0,1 = 0}, i = 1, 2, 3,

D(A0
4) , {ψ ∈ C2((0, 1)) ∩ C1([0, 1]) :

A0
4ψ ∈ C([0, 1]), D4∂xψ − Uψ|x=0 = ∂xψ|x=1 = 0},

respectively. We can then define Ai, (i = 1, 2, 3, 4) to be the closure of A0
i so that

Ai on Xi generates an analytic semigroup of bounded linear operator Ti(t), t ≥ 0
such that ui(x, t) = (Ti(t)φi)(x) satisfies

∂tui(t) = Aiui(t), ui(0) = φi ∈ D(Ai)

where

D(Ai) =

{
ψ ∈ Xi : lim

t→0+

(Ti(t)− I)ψ

t
= Aiψ exists

}
;

that is, for i = 1, 2, 3,

∂tui(x, t) = Di∂
2
xxui(x, t), t > 0, x ∈ (0, 1), ∂xui|x=0,1 = 0, ui(x, 0) = φi(x),

and {
∂tu4(x, t) = D4∂

2
xxu4(x, t)− U∂xu4(x, t), t > 0, x ∈ (0, 1),

D4∂xu4 − Uu4|x=0 = ∂xu4|x=1 = 0, u4(x, 0) = φ4(x).

It follows that each Ti is compact (see e.g. pg. 121 [21]). Moreover, by Corollary
7.2.3, pg. 124 [21], because X+

i = C([0, 1],R+), each Ti(t) is strongly positive (see
Definition 3.2).
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We now let

F1 , b− β1SI − β2S
(

B

B +K

)
− dS + σR, (10a)

F2 , β1SI + β2S

(
B

B +K

)
− I(d+ γ), (10b)

F3 , γI −R(d+ σ), (10c)

F4 , ξI + gB

(
1− B

KB

)
− δB, (10d)

and F , (F1, F2, F3, F4). Let T (t) : X 7→ X be defined by T (t) ,
∏4
i=1 Ti(t) so

that it is a semigroup of operator on X generated by A ,
∏4
i=1Ai with domain

D(A) ,
∏4
i=1D(Ai) and hence we can write (1) as

∂tu = Au+ F (u), u(0) = u0 = φ.

We recall some relevant definitions

Definition 3.1. (pg. 2, 3, 11 [38]) Let (Y, d) be any metric space and f : Y 7→
Y a continuous map. A bounded set A is said to attract a bounded set B ⊂
Y if limn→∞ supx∈B d(fn(x), A) = 0. A subset A ⊂ Y is an attractor for f if
A is nonempty, compact and invariant (f(A) = A), and A attracts some open
neighborhood of itself. A global attractor for f is an attractor that attracts every
point in Y . Moreover, f is said to be point dissipative if there exists a bounded
set B0 in Y such that B0 attracts each point in Y . Finally, a nonempty invariant
subset M of Y is isolated for f : Y 7→ Y if it is the maximal invariant set in some
neighborhood of itself.

Definition 3.2. (pg. 38, 40, 46, [38]) Let E be an ordered Banach space with
positive cone P such that int(P ) 6= ∅. For x, y ∈ E, we write x ≥ y if x−y ∈ P, x > y
if x− y ∈ P \ {0}, and x� y if x− y ∈ int(P ).

A linear operator L on E is said to be positive if L(P ) ⊂ P , strongly positive
if L(P \ {0}) ⊂ int(P ). For any subset U of E, f : U 7→ U , a continuous map, f
is said to be monotone if x ≥ y implies f(x) ≥ f(y), strictly monotone if x > y
implies f(x) > f(y), and strongly monotone if x > y implies f(x)� f(y).

Let U ⊂ P be nonempty, closed, and order convex. Then a continuous map
f : U 7→ U is said to be subhomogeneous if f(λx) ≥ λf(x) for any x ∈ U and
λ ∈ [0, 1], strictly subhomogeneous if f(λx) > λf(x) for any x ∈ U with x � 0
and λ ∈ (0, 1), and strongly subhomogeneous if f(λx)� λf(x) for any x ∈ U with
x� 0 and λ ∈ (0, 1).

Definition 3.3. (pg. 56, 129, [21]) An n × n matrix M = (Mij) is irreducible if
∀ I ( N = {1, . . . , n}, I 6= ∅, there exists i ∈ I and j ∈ J = N \ I such that
Mij 6= 0. Moreover, F : [0, 1]× Λ 7→ Rn,Λ any nonempty, closed, convex subset of

Rn, is cooperative if ∂Fi

∂uj
(x, u) ≥ 0, ∀ (x, u) ∈ [0, 1]× Λ, i 6= j.

Lemma 3.4. (Theorem 7.3.1, Corollary 7.3.2, [21]) Suppose that F : [0, 1]×R4
+ 7→

R4 has the property that

Fi(x, u) ≥ 0 ∀ x ∈ [0, 1], u ∈ R4
+ and ui = 0.
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Then ∀ ψ ∈ X+,
∂tui(x, t) = Di∂

2
xxui(x, t) + Fi(x, u(x, t)), t > 0, x ∈ (0, 1),

αi(x)ui(x, t) + δi∂xui(x, t) = 0, t > 0, x = 0, 1,

ui(x, 0) = ψi(x), x ∈ (0, 1),

has a unique noncontinuable mild solution u(x, t, ψ) ∈ X+ defined on [0, σ) where
σ = σ(ψ) ≤ ∞ such that if σ < ∞, then ‖u(t)‖C([0,1]) → ∞ as t → σ from below.
Moreover,

1. u is continuously differentiable in time on (0, σ),
2. it is in fact a classical solution,
3. if σ(ψ) = +∞ ∀ ψ ∈ X+, then Ψt(ψ) = u(t, ψ) is a semiflow on X+,
4. if Z ⊂ X+ is closed and bounded, t0 > 0 and ∪t∈[0,t0]Ψt(Z) is bounded, then

Ψt0(Z) has a compact closure in X+.

Remark 2. This lemma remains valid even if the Laplacian is replaced by a general
second order differentiation operator; in fact, all results from Chapter 7, [21] remain
valid for a general second order differentiation operator (see pg. 121, [21]). In
relevance we also refer readers to Theorem 1.1, [15], Corollary 8.1.3 [36] for similar
general well-posedness results.

The following result was obtained in [37]:

Lemma 3.5. (Theorems 2.1, 2.2, [37]) ∀ φ ∈ X+ the system (1) subjected to (2)
and (3) admits a unique nonnegative mild solution on the interval of existence [0, σ)
where σ = σ(φ). If σ < ∞, then ‖u(t)‖C([0,1]) becomes unbounded as t approaches
σ from below.

Moreover, if D1 = D2 = D3, then σ = +∞. Therefore, Φt(φ) = u(t, φ) is a
semiflow on X+.

Remark 3. In the statement of Theorems 2.1, 2.2 of [37], we required the initial
regularity to be in X+ ∩H1([0, 1]) where H1([0, 1]) = {f : f, ∂xf ∈ L2([0, 1])} and
obtained higher regularity beyond C([0, 1],R4); here we point out that to show the
global existence of the solution u(t) ∈ X+ ∀ t ≥ 0, it suffices that the initial data is
in X+. For completeness, in the Appendix we describe the estimate more carefully
than that of Proposition 1 in [37] that is needed to verify this claim.

Lemma 3.6. (Theorem 2.3.2, [38]) Let E be an ordered Banach space with positive
cone P such that int(P ) 6= ∅, U ⊂ P be nonempty, closed and order convex set.
Suppose f : U 7→ U is strongly monotone, strictly subhomogeneous and admits a
nonempty compact invariant set K ⊂ int(P ). Then f has a fixed point e� 0 such
that every nonempty compact invariant set of f in int(P ) consists of e.

Lemma 3.7. (Theorem 3.4.8, [10]) If there exists t1 ≥ 0 such that the Cr-semigroup
T (t) : Y 7→ Y, t ≥ 0, Y any metric space, is completely continuous for t > t1 and
point dissipative, then there exists a global attractor A. If Y is a Banach space,
then A is connected and if t1 = 0, then there is an equilibrium point of T (t).

Lemma 3.8. (Lemma 3, [22]) Let Y be a metric space, Ψ a semiflow on Y , Y0 ⊂ Y
an open set, ∂Y0 = Y \ Y0, M∂ = {y ∈ ∂Y0 : Ψt(y) ∈ ∂Y0 ∀ t ≥ 0} and q be a
generalized distance function for semiflow Ψ. Assume that

1. Ψ has a global attractor A,
2. there exists a finite sequence K = {Ki}ni=1 of pairwise disjoint, compact and

isolated invariant sets in ∂Y0 with the following properties
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• ∪y∈M∂
ω(y) ⊂ ∪ni=1Ki,

• no subset of K forms a cycle in ∂Y0,
• Ki is isolated in Y ,
• W s(Ki) ∩ q−1(0,∞) = ∅ ∀ i = 1, . . . , n.

Then there exists δ > 0 such that for any compact chain transitive set L that satisfies
L 6⊂ Ki ∀ i = 1, . . . , n, miny∈L q(y) > δ holds.

Lemma 3.9. (pg. 3, [38]) Suppose the Kuratowski’s measure of non-compactness
for any bounded set B of Y , any metric space, is denoted by

α(B) = inf{r : B has a finite cover of diameter r}.
Firstly, α(B) = 0 if and only if B is compact.

Moreover, a continuous mapping f : Y 7→ Y, Y any metric space, is α-condensing
(α-contraction of order 0 ≤ k < 1) if f takes bounded sets to bounded sets and
α(f(B)) < α(B) (α(f(B)) ≤ kα(B)) for any nonempty closed bounded set B ⊂ Y
such that α(B) > 0. Moreover, f is asymptotically smooth if for any nonempty
closed bounded set B ⊂ Y for which f(B) ⊂ B, there exists a compact set J ⊂ B
such that J attracts B.

It is well-known that a compact map is an α-contraction of order 0, and an
α-contraction or order k is α-condensing. Moreover, by Lemma 2.3.5, [10], any
α-condensing maps are asymptotically smooth.

Lemma 3.10. (Theorem 3.7, [14]) Let (M,d) be a complete metric space, and
ρ : M → [0,∞) a continuous function such that M0 = {x ∈ M : ρ(x) > 0} is
nonempty and convex. Suppose that T : M 7→ M is continuous, asymptotically
smooth, ρ-uniformly persistent, T has a global attractor A and satisfies T (M0) ⊂
M0. Then T : (M0, d) 7→ (M0, d) has a global attractor A0.

Remark 4. (Remark 3.10, [14]) Let (M,d) be a complete metric space. A family of
mappings Ψt : M 7→M, t ≥ 0, is called a continuous-time semiflow if (x, t) 7→ Ψt(x)
is continuous, Ψ0 = Id and Ψt ◦Ψs = Ψt+s for t, s ≥ 0. Lemma 3.10 is valid even if
replaced by a continuous-time semiflow Ψt on M such that Ψt(M0) ⊂M0 ∀ t ≥ 0.

Lemma 3.11. (Theorem 4.7, [14]) Let M be a closed convex subset of a Banach
space (X, ‖·‖), ρ : M → [0,∞) a continuous function such that M0 = {x ∈ M :
ρ(x) > 0}, where M0 is nonempty and convex, and Ψt a continuous-time semiflow
on M such that Ψt(M0) ⊂M0 ∀ t ≥ 0. If either Ψt is α-condensing ∀ t > 0 or Ψt

is convex α-contracting for t > 0, and Ψt : M0 7→ M0 has a global attractor A0,
then Ψt has an equilibrium a0 ∈ A0.

4. Key proposition. Many authors found Lemma 1 of [13] to be very useful in
various proofs (see e.g. Lemma 3.2, [28]). The key to the proof of our claim is the
following extension of Lemma 1 of [13] to consider the case with convection:

Proposition 1. Consider in a spatial domain with x ∈ [0, 1], the following scalar
reaction-convection-diffusion equation{

∂tw(x, t) = D∂2xxw(x, t)− U∂xw(x, t) + g(x)− λw(x, t),

D∂xw(x, t)− Uw(x, t)|x=0 = ∂xw(x, t)|x=1 = 0, w(x, 0) = ψ(x),
(11)

where D > 0, λ > 0, U ≥ 0, and g(x) > 0 is a continuous function. Then
∀ψ ∈ C([0, 1],R+), there exists a unique positive steady state w∗ which is glob-
ally attractive in C([0, 1],R). Moreover, in the case U = 0 and g(x) ≡ g, it holds
that w∗ = g

λ .
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Proof. The case U = 0 is treated in Lemma 1 of [13]; we assume U > 0 here. By
continuity we know that there exists

0 < min
x∈[0,1]

g(x) ≤ g(x) ≤ max
x∈[0,1]

g(x) , g ∀ x ∈ [0, 1].

We define F (x,w) , g(x) − λw(x, t). It is immediate that (e.g. by Lemma 3.4
and Remark 2) ∀ ψ ∈ C([0, 1],R+), there exists a unique solution w = w(x, t, ψ) ∈
C([0, 1],R+) on some time interval [0, σ), σ = σ(ψ).

We fix ψ ∈ C([0, 1],R+) so that by continuity there exists maxx∈[0,1] ψ(x). Now

if v ≡ M for M sufficiently large such that M > max{maxx∈[0,1] ψ(x), gλ}, then by
Theorem 7.3.4 of [21] and the blow up criterion from Lemma 3.4 and Remark 2, we
immediately deduce the existence of a unique solution on [0,∞).

Hence, there exists the solution semiflow Pt such that Pt(ψ) = w(t, ψ), ψ ∈
C([0, 1],R+). It follows that

ω(ψ) ⊂ {ϕ :
minx∈[0,1] g(x)

λ
≤ ϕ ≤

maxx∈[0,1] g(x)

λ
}

by comparison principle (e.g. Theorem 7.3.4 [21]); we emphasize here again that as
stated on pg. 121, [21], Theorem 7.3.4 [21] is applicable to the general second-order
differentiation operator such as D∂2xx − U∂x. By comparison principle again (e.g.
Corollary 7.3.5, Theorem 7.4.1, [21]), it also follows that

Pt(ψ1)� Pt(ψ2) ∀ t > 0

if ψ1 > ψ2; this implies that Pt is strongly monotone (see Definition 3.2). More-
over, F is strictly subhomogeneous (see Definition 3.2) in a sense that F (x, αw) >
αF (x,w) ∀ α ∈ (0, 1) as g(x) > 0. We now follow the idea from pg. 348 [9] to

complete the proof. Let L(t) , w(t, αψ)− αw(t, ψ) so that

∂tL = D∂2xxL− U∂xL+ (1− α)g(x)− λL,
L(0) = 0, D∂xL− UL|x=0 = ∂xL|x=1 = 0.

Let Ψ(t, s), t ≥ s ≥ 0 be the evolution operator of{
∂tN = D∂2xxN − U∂xN − λN,
D∂xN − UN |x=0 = ∂xN |x=1 = 0.

(12)

Then Ψ(t, 0)(0) = 0. Thus, by Theorem 7.4.1 [21], which is applicable to the
general second-order differentiation operator such as D∂2xx−U∂x, we see that ∀ ψ >
0,Ψ(t, s)ψ � 0. Hence by Comparison Principle as g(x)(1 − α) ≥ 0, we obtain
∀ ψ > 0, L(x, t, ψ)� 0. Therefore, ∀ ψ > 0, w(t, αψ) > αw(t, ψ); i.e. Pt is strictly
subhomogeneous (see Definition 3.2).

By Lemma 3.6 we now conclude that Pt has a fixed point w∗(x) � 0 such that
ω(ψ) = w∗ ∈ C([0, 1],R+) ∀ ψ ∈ C([0, 1],R+).

5. Proof of Theorem 2.1. Firstly, by Lemma 3.5, we know that given φ ∈ X+,
there exists a unique global nonnegative solution to the system (1) subjected to (2),
(3).

Now, from the proof of Theorem 2.3 (1) [37], we know that if we linearize (1)
about the DFE (S, I,R,B) = (m∗, 0, 0, 0), we obtain
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∂tS = D∂2xxS −m∗

(
β1I + β2

K B
)
− dS + σR,

∂tI = D∂2xxI +m∗
(
β1I + β2

K B
)
− I(d+ γ),

∂tR = D∂2xxR+ γI −R(d+ σ),

∂tB = D4∂
2
xxB − U∂xB + ξI + gB − δB,

(13)

so that substituting (S, I,R,B) = (eλtψ1(x), eλtψ2(x), eλtψ3(x), eλtψ4(x)) in (13)
gives us the eigenvalue problem of

λψ1 = D∂2xxψ1 −m∗
(
β1ψ2 + β2

K ψ4

)
− dψ1 + σψ3,

λψ2 = D∂2xxψ2 +m∗
(
β1ψ2 + β2

K ψ4

)
− ψ2(d+ γ),

λψ3 = D∂2xxψ3 + γψ2 − ψ3(d+ σ),

λψ4 = D4∂
2
xxψ4 − U∂xψ4 + ξψ2 + gψ4 − δψ4.

(14)

We define

Θ̃(ψ1, ψ2, ψ3, ψ4) ,


D∂2xxψ1 −m∗

(
β1ψ2 + β2

K ψ4

)
− dψ1 + σψ3

D∂2xxψ2 +m∗
(
β1ψ2 + β2

K ψ4

)
− ψ2(d+ γ)

D∂2xxψ3 + γψ2 − ψ3(d+ σ)
D4∂

2
xxψ4 − U∂xψ4 + ξψ2 + gψ4 − δψ4

 . (15)

It is shown in the proof of Theorem 2.3 (1) [37] that defining

Θ

(
ψ2

ψ4

)
,

((
D∂2xx − (d+ γ) 0

0 D4∂
2
xx − U∂x − δ

)
+

(
m∗β1 m∗ β2

K
ξ g

))(
ψ2

ψ4

)
=(Θ2 + Θ1)

(
ψ2

ψ4

)
, (16)

we have the spectral bound of Θ2, s(Θ2), to satisfy s(Θ2) < 0. Thus, by Theorem

3.5 [24], s(Θ), the spectral bound of Θ, and hence s(Θ̃), due to the independence

of Θ from the first and third equations of Θ̃(ψ1, ψ2, ψ3, ψ4) in (15) , has the same
sign as

r(−Θ1Θ−12 )− 1 = R0 − 1.

That is, R0 − 1 and the principal eigenvalue of Θ̃, λ = λ(m∗), have same signs.
Now by hypothesis, R0 < 1 and hence R0 − 1 < 0 so that λ(m∗) < 0. This implies

lim
ε→0

λ(m∗ + ε) = λ(m∗) < 0

and therefore, there exists ε0 > 0 such that λ(m∗ + ε0) < 0. Let us fix this ε0 > 0.

By [37] (see (14a), (14b), (14c) of [37]), we know that defining V , S + I + R,
we obtain

∂tV = D∂2xxV + b− dV, ∂xV |x=0,1 = 0, V (x, 0) = V0(x) (17)

where V0(x) , φ1(x) + φ2(x) + φ3(x), D > 0, b > 0, d > 0. By Proposition 1
with U = 0, g(x) ≡ b, λ = d, we see that (17) admits a unique positive steady
state m∗ = b

d which is globally attractive in C([0, 1],R+). Therefore, due to the
non-negativity of S, I,R, for the fixed ε0 > 0, there exists t0 = t0(φ) such that
∀ t ≥ t0, x ∈ [0, 1], S(t, x) ≤ m∗ + ε0. Thus, ∀ t ≥ t0, x ∈ [0, 1],

∂tI ≤ D∂2xxI + β1(m∗ + ε0)I +
β2B

K
(m∗ + ε0)− I(d+ γ) (18)
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by (1) as B ≥ 0 and

∂tB ≤ D4∂
2
xxB − U∂xB + ξI +B(−δ) + gB (19)

by (1) as B2 ≥ 0, g > 0,KB > 0. As we will see, it was crucial above how we take
these upper bounds carefully. Thus, we now consider for x ∈ [0, 1], t ≥ t0,{

∂tV2 = D∂2xxV2 + β1(m∗ + ε0)V2 + β2V4

K (m∗ + ε0)− V2(d+ γ),

∂tV4 = D4∂
2
xxV4 − U∂xV4 + ξV2 + V4(−δ) + gV4,

(20)

for which its corresponding eigenvalue problem obtained by substituting (V2, V4) =
(eλtψ2(x), eλtψ4(x)) in (20) is{

λψ2 = D∂2xxψ2 + β1(m∗ + ε0)ψ2 + β2ψ4

K (m∗ + ε0)− ψ2(d+ γ),

λψ4 = D4∂
2
xxψ4 − U∂xψ4 + ξψ2 + ψ4(−δ) + gψ4.

(21)

We may write this right hand side as(
D∂2xxψ2

D4∂
2
xxψ4 − U∂xψ4

)
+

(
β1(m∗ + ε0)− (d+ γ) β2

K (m∗ + ε0)
ξ g − δ

)(
ψ2

ψ4

)
(22)

,

(
D∂2xxψ2

D4∂
2
xxψ4 − U∂xψ4

)
+M(x)

(
ψ2

ψ4

)
so that Mij ≥ 0 ∀ i 6= j as ξ, β2

K (m∗ + ε0) > 0. Moreover, it is also clear that M
is irreducible as M12,M21 > 0 (see Definition 3.3). Therefore, by Theorem 7.6.1
[21], the eigenvalue problem of (21) has a real eigenvalue λ and its corresponding
positive eigenfunction ψ0.

Now we recall that λ(m∗) is the principal eigenvalue of (15) and make a key
observation that the second and fourth equations are independent of the first and
third equations and therefore, λ(m∗) must also be the eigenvalue of(

D∂2xxψ2 +m∗
(
β1ψ2 + β2

K ψ4

)
− ψ2(d+ γ)

D4∂
2
xxψ4 − U∂xψ4 + ξψ2 + gψ4 − δψ4.

)
(23)

=

(
D∂2xxψ2

D4∂
2
xxψ4 − U∂xψ4

)
+

(
m∗β1 − (d+ γ) m∗ β2

K
ξ g − δ

)(
ψ2

ψ4

)
.

Moreover, we observe that replacing m∗ with m∗+ε0 gives us the eigenvalue problem
(21). Hence, λ = λ(m∗ + ε0) < 0 is the principal eigenvalue of (21) which therefore
has a solution of

eλ(m
∗+ε0)(t−t0)ψ0(x), t ≥ t0.

Now we find η > 0 sufficiently large so that

(I(x, t0), B(x, t0)) ≤ ηψ0(x)

which is possible as ψ0 is positive. Considering (9), we may define

F+
2 , β1(m∗ + ε0)I +

β2B

K
(m∗ + ε0)− I(d+ γ), (24a)

F+
4 , ξI +B(−δ) + gB, (24b)

so that
∂F+

2

∂B
=
β2
K

(m∗ + ε0) ≥ 0,
∂F+

4

∂I
= ξ ≥ 0,
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and hence

(
F+
2

F+
4

)
is cooperative (see Definition 3.3). By comparison principle, or

specifically Theorem 7.3.4 [21], due to (18), (19), (24), we obtain ∀ t ≥ t0, x ∈ [0, 1],

(I(x, t), B(x, t)) ≤ ηeλ(m
∗+ε0)(t−t0)ψ0(x)

where ηeλ(m
∗+ε0)(t−t0)ψ0(x)→ 0 as t→∞ because λ(m∗ + ε0) < 0.

Thus, the equation for R, by (1), is asymptotic to

∂tV3 = D∂2xxV3 − V3(d+ σ)

and hence by the theory of asymptotically autonomous semiflows (see Corollary
4.3 [23]), we have limt→∞R(x, t) = 0. As we noted already, (17) admits a unique
positive steady state m∗ which is globally attractive, and we just showed that ∀ x ∈
[0, 1], limt→∞ I(x, t) = limt→∞R(x, t) = 0, and therefore we obtain limt→∞ S(x, t) =
m∗. This completes the proof of Theorem 2.1.

6. Proof of Theorem 2.2. We need the following proposition:

Proposition 2. Let u(x, t, φ) be the solution of the system (1) with D = D1 = D2 =
D3, subjected to (2), (3) such that u(x, 0, φ) = φ ∈ X+. If there exists some tI0 ≥ 0
such that I(·, tI0) 6≡ 0, then I(x, t) > 0 ∀ t > tI0, x ∈ [0, 1]. Similarly, if there exists
some tR0 ≥ 0 such that R(·, tR0 ) 6≡ 0, then R(x, t) > 0 ∀ t > tR0 , x ∈ [0, 1]. Finally, if
there exists some tB0 ≥ 0 such that B(·, tB0 ) 6≡ 0, then B(x, t) > 0 ∀ t > tB0 , x ∈ [0, 1].

Moreover, for any φ ∈ X+, it always holds that S(x, t) > 0 ∀ x ∈ [0, 1], t > 0 and

lim inf
t→∞

S(·, t, φ) ≥ b

β12m∗ + β2 + d
.

Proof. We observe that by (1),

∂tI ≥ D∂2xxI − I(d+ γ). (25)

∂tR ≥ D∂2xxR−R(d+ σ). (26)

Thus, we consider{
∂tV2 = D∂2xxV2 − V2(d+ γ) , D∂2xxV2 + F̃2,

∂xV2(x, t)|x=0,1 = 0,
(27)

{
∂tV3 = D∂2xxV3 − V3(d+ σ) , D∂2xxV3 + F̃3,

∂xV3(x, t)|x=0,1 = 0,
(28)

such that V2(·, tI0) 6≡ 0, I(·, tI0) ≥ V2(·, tI0), and V3(·, tR0 ) 6≡ 0, R(·, tR0 ) ≥ V3(·, tR0 )
respectively. By Lemma 3.4, the solutions to (27), (28) exist locally in time. For
both systems (27), (28), we may repeat the argument in the proof of Proposition 1
for the system (11) at U = 0, g(x) ≡ 0, λ = d+ γ, λ = d+ σ respectively to obtain
the sup-norm bounds of both V2, V3; therefore, these solutions exist globally in time
by the blowup criterion from Lemma 3.4.

Now since x ∈ [0, 1], a one-dimensional space, we may denote

LV2 , −D∂2xxV2 + (d+ γ)V2

so that
∂tV2 + LV2 = 0 in [0, 1]× (0, T ], ∀ T > 0

by (27). Therefore, if V2(x∗, t∗) = 0 for some (x∗, t∗) ∈ (0, 1) × (tI0, T ], then it
has a nonpositive minimum in [0, 1] × [tI0, T ] and therefore, V2 is a constant on
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(0, 1)× (0, t∗] by Maximum Principle (see e.g. Theorem 7.1.12, pg. 367 [8]). Hence
as V2(x∗, t∗) = 0 for x∗ ∈ (0, 1), we must have V2(·, ·) ≡ 0 on (0, 1) × (0, t∗]. Since
t∗ ∈ (tI0, T ], this implies V2(·, tI0) ≡ 0 on (0, 1), and hence by continuity in x, on
[0, 1]. This is a contradiction to V2(·, tI0) 6≡ 0.

Therefore, we must have V2(x, t) > 0 ∀ (x, t) ∈ (0, 1)×(tI0, T ] and hence V2(x, t) >
0 ∀ t > tI0, x ∈ (0, 1) due to the arbitrariness of T > 0. By Comparison Principle
(e.g. Theorem 7.3.4 [21]), we conclude that due to (25),

I(·, t) ≥ V2(·, t) > 0 ∀ t > tI0, x ∈ (0, 1).

Making use of the boundary values in (3), we conclude that I(·, t) > 0 ∀ t > tI0, x ∈
[0, 1].

The proof that R(·, t) > 0 ∀ t > tR0 , x ∈ (0, 1) is done very similarly. We may
denote

LV3 , −D∂2xxV3 + (d+ σ)V3

so that
∂tV3 + LV3 = 0 in [0, 1]× (0, T ] ∀ T > 0

by (28). An identical argument as in the case of V2 using Maximum Principle (e.g.
Theorem 7.1.12, pg. 367 [8]) deduces that V3(x, t) > 0 ∀ (x, t) ∈ (0, 1) × (tR0 , T ]
and hence V3(x, t) > 0 ∀ t > tR0 , x ∈ (0, 1) due to the arbitrariness of T > 0. By
Comparison Principle (e.g. Theorem 7.3.4 [21]), we conclude that due to (26)

R(·, t) ≥ V3(·, t) > 0 ∀ t > tR0 , x ∈ (0, 1).

Relying on the boundary values in (3) allows us to conclude that R(·, t) > 0 ∀ t >
tR0 , x ∈ [0, 1].

Finally, we fix tB0 such that B(·, tB0 ) 6≡ 0 on [0, 1] and then t > tB0 arbitrary.
We know B exists globally in time due to Lemma 3.5 and thus fix T > tB0 so
that t ∈ [0, T ]. Then by continuity of B in (x, t) ∈ [0, 1] × [0, T ], there exists

M , max(x,t)∈[0,1]×[0,T ]B(x, t).
Now ∀ (x, t) ∈ [0, 1]× [0, T ],

∂tB ≥ D4∂
2
xxB − U∂xB + (g − δ)B − gMB

KB
(29)

by (1). Thus, we consider{
∂tV4 = D4∂

2
xxV4 − U∂xV4 + (g − δ − gM

KB
)V4 , D4∂

2
xxV4 − U∂xV4 + F̃4,

D4∂xV4(x, t)− UV4(x, t)|x=0 = ∂xV4(x, t)|x=1 = 0,
(30)

such that V4(·, tB0 ) 6≡ 0, B4(·, tB0 ) ≥ V4(·, tB0 ).
It follows that the solution V4 exists locally in time by Lemma 3.4, Remark 2.

Again, repeating the argument in the proof of Proposition 1 for the system (11) at

U = U, g(x) ≡ 0, λ = gM
KB

+ δ − g > 0 due to the hypothesis that g < δ leads to the
sup-norm bound so that the solution exists globally in time by the blowup criterion
of Lemma 3.4. Now we may denote

LV4 , −D4∂
2
xxV4 + U∂xV4 +

(
gM

KB
+ δ − g

)
V4

where gM
KB

+ δ − g ≥ δ − g > 0 by the hypothesis so that

∂tV4 + LV4 = 0 in [0, 1]× (0, T ].

Therefore, if V4(x∗, t∗) = 0 for some (x∗, t∗) ∈ (0, 1) × (tB0 , T ], then it has a non-
positive minimum in [0, 1]× [tB0 , T ] and hence V4 is a constant on (0, 1)× (0, t∗] by
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Maximum Principle (e.g. Theorem 7.1.12, pg. 367, [8]). Hence, as V4(x∗, t∗) = 0
for x∗ ∈ (0, 1), we must have V4(·, ·) ≡ 0 on (0, 1) × (0, t∗]. Since t∗ ∈ (tB0 , T ], this
implies that V4(·, tB0 ) ≡ 0 on (0, 1) and hence by continuity in x, on [0, 1]. But this
contradicts that V4(·, tB0 ) 6≡ 0.

Therefore, we must have V4(x, t) > 0 ∀ (x, t) ∈ (0, 1) × (tB0 , T ]. By Comparison
Principle (e.g. Theorem 7.3.4 [21]), we conclude that due to (29)

B(·, t) ≥ V4(·, t) > 0 ∀ t ∈ (tB0 , T ], x ∈ (0, 1).

We conclude that by arbitrariness of T > t0 and arbitrariness of t ∈ [tB0 , T ], this
inequality holds for all t > tB0 . Making use of the boundary values in (3) allows us
to conclude that B(·, t) > 0 ∀ t > tB0 , x ∈ [0, 1].

Finally, from the proof of Theorem 2.1, specifically due to (17) and an application
of Proposition 1, we know that there exists t1 = t1(φ) such that ∀ x ∈ [0, 1], t ≥ t1,
I(x, t, φ) ≤ 2m∗. Thus, from (1) ∀ x ∈ [0, 1], t ≥ t1,

∂tS ≥ D∂2xxS + b− S(β12m∗ + β2 + d). (31)

Hence, we consider{
∂tV1 = D∂2xxV1 + b− V1(β12m∗ + β2 + d) , D∂2xxV1 + F̃1,

∂xV1(x, t)|x=0,1 = 0.
(32)

Firstly, by Lemma 3.4, the existence of the unique nonnegative local solution follows.
Again, repeating the argument in the proof of Proposition 1 for the system (11) at
U = 0, g(x) ≡ 0, λ = β12m∗+β2 +d leads to the sup-norm bound so that the global
existence of the solution follows due to the blowup criterion of Lemma 3.4. Now we
may denote by

LV1 , −D∂2xxV1 + (β12m∗ + β2 + d)V1

so that ∂tV1 + LV1 = b ≥ 0. Therefore, if V1(x∗, t∗) = 0 for some (x∗, t∗) ∈
(0, 1)×(0, T ] for any T > 0, then V1 attains a nonpositive minimum over [0, 1]×[0, T ]
at (x∗, t∗) ∈ (0, 1) × (0, T ], then by Maximum Principle (e.g. Theorem 7.1.12, pg.
367, [8]), V1 ≡ c on (0, 1) × (0, t∗]. Since V1(x∗, t∗) = 0, this implies V1 ≡ 0 on
(0, 1)× (0, t∗]. But by (32), we see that this implies 0 = b which is a contradiction
because b > 0. Therefore, we must have V1(x, t, φ) > 0 ∀ x ∈ [0, 1], t ∈ [0, T ] and
hence by the arbitrariness of T > 0, ∀ t > 0. By (31) and Comparison Principle
(e.g. Theorem 7.3.4 [21]), we conclude that ∀ t > 0, x ∈ [0, 1],

S(x, t, φ) ≥ V1(x, t, φ) > 0.

Finally, since (32) has a unique positive steady state of b
β12m∗+β2+d

by Proposition

1 with U = 0, g(x) ≡ b, λ = β12m∗ + β2 + d, we obtain

lim inf
t→∞

S(·, t, φ) ≥ b

β12m∗ + β2 + d
.

We also need the following proposition:

Proposition 3. Suppose D = D1 = D2 = D3, φ ∈ X+ and g < δ. Then the
system (1) subjected to (2), (3) admits a unique nonnegative solution u(x, t, φ) on
[0, 1] × [0,∞), and its solution semiflow Φt : X+ 7→ X+ has a global compact
attractor A.
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Proof. Firstly, by Lemma 3.5, the unique nonnegative solution u(t, φ) exists on
[0,∞). As already used in the proof of Theorem 2.1, we know that (17) admits a
unique positive steady state m∗ = b

d . This implies that, as S, I,R ≥ 0, there exists
t1 > 0 such that ∀ t ≥ t1, S(t), I(t), R(t) ≤ 2m∗. Therefore, ∀ t ≥ t1,

∂tB ≤ D4∂
2
xxB − U∂xB + ξ2m∗ + (g − δ)B

by (1). Thus, by Proposition 1 with U > 0, g(x) = ξ2m∗ + x, λ = δ − g, we see

that there exists t2 = t2(φ) > 0 large so that B(t, φ) ≤ ξ4m∗+1
δ−g ; here we used the

hypothesis that g < δ. Hence, the solution semiflow Φt is point dissipative (see
Definition 3.1).

As noted in the Preliminaries section, T is compact. From the definitions of
(10), it is clear that F = (F1, F2, F3, F4) is continuously differentiable and therefore
locally Lipschitz in C([0, T ], X+). Moreover, our diffusion operators including the
convection operator T (t) is analytic (see the Preliminaries Section) and thus strongly
continuous. It follows that the solution semiflow Φt : X+ 7→ X+ is compact ∀ t > 0.
Therefore, by Lemma 3.7, we may conclude that Φt has a global compact attractor.

Now we let

W0 , {ψ = (ψ1, ψ2, ψ3, ψ4) ∈ X+ : ψ2(·) 6≡ 0 or ψ4(·) 6≡ 0}
and observe that W0 ⊂ X+ is an open set. Moreover, we define

∂W0 ,X+ \W0

={ψ = (ψ1, ψ2, ψ3, ψ4) ∈ X+ : ψ2(·) ≡ 0 and ψ4(·) ≡ 0}.

By Proposition 2, it follows that Φt(W0) ⊂ W0 ∀ t ≥ 0 because if ψ ∈ W0 is such
that ψ2(·) 6≡ 0, then by Proposition 2, I(x, t, ψ) > 0 ∀ x ∈ [0, 1], t > 0 whereas if
ψ ∈ W0 is such that ψ2 ≡ 0, then by the definition of W0 we must have ψ4(·) 6≡ 0
so that by Proposition 2, B(x, t, ψ) > 0 ∀ x ∈ [0, 1], t > 0.

We now define

M∂ , {ψ ∈ ∂W0 : Φt(ψ) ∈ ∂W0 ∀ t ≥ 0}

and let ω(φ) be the ω-limit set of the orbit γ+(φ) , {Φt(φ)}t≥0.

Proposition 4. Suppose D = D1 = D2 = D3 and g < δ. For any φ ∈ X+, let
u(x, t, φ) be the unique nonnegative solution to the system (1) subjected to (2), (3)
such that u(x, 0, φ) = φ. Then ∀ ψ ∈M∂ , ω(ψ) = {(m∗, 0, 0, 0)}.

Proof. We fix ψ ∈ M∂ so that by definition of M∂ , we have Φt(ψ) ∈ ∂W0 ∀ t ≥ 0;
i.e.

I(·, t) ≡ 0 and B(·, t) ≡ 0 on [0, 1], ∀ t ≥ 0.

Then S,R-equations in (1) reduce to

∂tS =D∂2xxS + b− dS + σR,

∂tR =D∂2xxR−R(d+ σ),

which leads to ∀ x ∈ [0, 1],

lim
t→∞

R(x, t, ψ) = 0.

Hence, the S-equation in (1) is asymptotic to

∂tV1 = D∂2xxV1 + b− dV1
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and therefore by Proposition 1 with U = 0, g(x) ≡ b, λ = d, we obtain

lim
t→∞

S(x, t, ψ) =
b

d
= m∗ ∀ x ∈ [0, 1].

Next, we show that (m∗, 0, 0, 0) is a weak repeller for W0:

Proposition 5. Suppose D = D1 = D2 = D3, φ ∈W0 and g < δ. Let u(x, t, φ) be
the unique global nonnegative solution of the system (1) subjected to (2), (3) such
that u(x, 0, φ) = φ(x) and Φt(φ) = u(t, φ) be its solution semiflow. If R0 > 1, then
there exists δ0 > 0 such that

lim sup
t→∞

‖Φt(φ)− (m∗, 0, 0, 0)‖C([0,1]) ≥ δ0. (33)

Proof. By hypothesis R0 > 1 so that R0 − 1 > 0 and as discussed in the proof of
Theorem 2.1, we have λ(m∗) > 0 where λ(m∗) is the principal eigenvalue of Θ̃ in
(15). To reach a contradiction, suppose that there exists some ψ0 ∈ W0 such that
∀ δ0 > 0 and hence in particular for δ0 ∈ (0,m∗),

lim sup
t→∞

‖Φt(ψ0)− (m∗, 0, 0, 0)‖C([0,1]) < δ0. (34)

This implies that there exists t1 > 0 sufficiently large such that in particular

m∗ − δ0 < S(x, t), B(x, t) < δ0 ∀ t ≥ t1, x ∈ [0, 1],

as Φt(ψ0) = (S, I,R,B)(t). Thus, we see that due to (1),

∂tI ≥D∂2xxI + β1(m∗ − δ0)I + (m∗ − δ0)
β2

(δ0 +K)
B − I(d+ γ), (35)

∂tB ≥D4∂
2
xxB − U∂xB + ξI + gB

(
1− δ0

KB

)
− δB (36)

∀ t ≥ t1, x ∈ [0, 1]. We thus consider for t ≥ t1, x ∈ [0, 1],{
∂tV2 = D∂2xxV2 + β1(m∗ − δ0)V2 + (m∗ − δ0) β2

(δ0+K)V4 − V2(d+ γ),

∂tV4 = D4∂
2
xxV4 − U∂xV4 + ξV2 + gV4

(
1− δ0

KB

)
− δV4.

(37)

We may write the right hand side as(
D∂2xxV2

D4∂
2
xxV4 − U∂xV4

)
+M

(
V2
V4

)
(38)

where

M ,

(
β1(m∗ − δ0)− (d+ γ) (m∗ − δ0) β2

(δ0+K)

ξ g(1− δ0
KB

)− δ

)
and therefore, Mij ≥ 0 ∀ i 6= j as ξ, (m∗ − δ0) β2

(δ0+K) > 0 because δ0 < m∗ by

assumption. This also implies that it is irreducible as in fact Mij > 0 ∀ i 6= j (see
Definition 3.3). Therefore, by Theorem 7.6.1 [21], we may find a real eigenvalue
λ(m∗, δ0) and its corresponding positive eigenfunction φ0 so that this system has a
solution

(V2, V4)(x, t) = eλ(m
∗,δ0)(t−t1)φ0(x)

for x ∈ [0, 1], t ≥ t1.
Now by assumption, ψ0 ∈W0 and hence ψ2(·) 6≡ 0 or ψ4(·) 6≡ 0. If ψ2(·) 6≡ 0, then

by Proposition 2, we know that I(x, t, ψ0) > 0 ∀ x ∈ [0, 1], t > 0. If for any t0 > 0,
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B(·, t0) ≡ 0 ∀ x ∈ [0, 1], then by (1), 0 = ξI(x, t0) which is a contradiction because
ξ > 0. Therefore, B(·, t0) 6≡ 0 and it follows that by Proposition 2, B(x, t, ψ0) >
0 ∀x ∈ [0, 1], t > t0 and hence ∀ t > 0 by arbitrariness of t0 > 0.

On the other hand, if ψ4(·) 6≡ 0, then by Proposition 2, we know that B(x, t, ψ0)
> 0 ∀ x ∈ [0, 1], t > 0. Now if for any t0 > 0, I(·, t0) ≡ 0 ∀ x ∈ [0, 1], then

by (1), 0 = β2S(x, t0)
(

B(x,t0)
B(x,t0)+K

)
which is a contradiction because β2 > 0 and

S(x, t) > 0 ∀x ∈ [0, 1], t > 0 by Proposition 2 as ψ0 ∈ W0 ⊂ X+. Therefore,
I(·, t0) 6≡ 0 and it follows that by Proposition 2, I(x, t, ψ0) > 0 ∀x ∈ [0, 1], t > t0
and hence ∀ t > 0 by arbitrariness of t0 > 0. Thus, we conclude that ∀ ψ0 ∈ W0,
I(x, t, ψ0) > 0, B(x, t, ψ0) > 0 ∀ x ∈ [0, 1], t > 0 and hence in particular ∀ t ≥ t1.

Hence, we may obtain

(I(x, t1, ψ0), B(x, t1, ψ0)) ≥ ηφ0(x) (39)

for η > 0 sufficiently small. Therefore, by Comparison Principle, specifically Theo-
rem 7.3.4 [21] with (9),

F−2 , β1(m∗ − δ0)I + (m∗ − δ0)
β2

(δ0 +K)
B − I(d+ γ),

F−4 , ξI + gB

(
1− δ0

KB

)
− δB,

so that
∂F−2
∂B

= (m∗ − δ0)
β2

(δ0 +K)
≥ 0,

∂F−4
∂I

= ξ > 0,

we obtain for t ≥ t1, x ∈ [0, 1],

(I(x, t, ψ0), B(x, t, ψ0)) ≥ (V2(x, t, ηφ0), V4(x, t, ηφ0)) = ηeλ(m
∗,δ0)(t−t1)φ0(x)

due to linearity of (37). Now λ(m∗) > 0 and in comparison of the second and
fourth equations of (15) and (37), we see that limδ0→0 λ(m∗, δ0) = λ(m∗) > 0 so
that taking δ0 ∈ (0,m∗) even smaller if necessary, we have λ(m∗, δ0) > 0.

Thus, we see that ηeλ(m
∗,δ0)(t−t1)φ0(x) → ∞ as t → ∞ because φ0(x) � 0 and

η > 0. This implies (I,B)(x, t, ψ0) and hence (S, I,R,B)(x, t, ψ0) is unbounded,
contradicting

lim sup
t→∞

(‖S(t)−m∗‖C([0,1]) + ‖I(t)‖C([0,1]) + ‖R(t)‖C([0,1]) + ‖B(t)‖C([0,1])) < δ0

by (6) and (34). Therefore, we have shown that for δ0 ∈ (0,m∗) sufficiently small,
(33) holds.

Now we define a function p : X+ 7→ R+ by

p(ψ) , min{ min
x∈[0,1]

ψ2(x), min
x∈[0,1]

ψ4(x)}

It immediately follows that p−1((0,∞)) ⊂W0.
Now suppose p(ψ) = 0 and ψ ∈W0. The hypothesis that ψ ∈W0 implies that

ψ2(·) 6≡ 0 or ψ4(·) 6≡ 0.

This deduces that by the argument in the proof of Proposition 5, I(x, t, ψ) > 0 and
B(x, t, ψ) > 0 ∀ t > 0, x ∈ [0, 1]. Thus, in this case we deduce that

min{ min
x∈[0,1]

I(x, t, ψ), min
x∈[0,1]

B(x, t, ψ)} > 0 ∀ t > 0

which implies that p(Φt(ψ)) > 0 ∀ t > 0.
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Next, suppose p(ψ) > 0 so that ψ2(·) 6≡ 0 and ψ4(·) 6≡ 0. Thus, by Proposition
2, this implies p(Φt(ψ)) > 0 ∀ t > 0. Hence, we have shown that p is a generalized
distance function for the semiflow Φt : X+ 7→ X+.

We already showed that any forward orbit of Φt in M∂ converges to (m∗, 0, 0, 0)
due to Proposition 4. Thus, as Φt((m

∗, 0, 0, 0)) = (m∗, 0, 0, 0), {(m∗, 0, 0, 0)} is a
nonempty invariant set that is also a maximal invariant set in some neighborhood
of itself and hence by Definition 3.1, it is also isolated. Thus, if we denote the stable
set of (m∗, 0, 0, 0) by W s((m∗, 0, 0, 0)), we see that W s((m∗, 0, 0, 0)) ∩W0 = ∅ as
W0 = {ψ ∈ X+ : ψ2(·) 6≡ 0 or ψ4(·) 6≡ 0}. Therefore, making use of Propositions 3
and 4, we may apply Lemma 3.8 to conclude that there exists η > 0 that satisfies

min
ψ∈ω(φ)

p(ψ) > η ∀ φ ∈W0;

hence, ∀ i = 2, 4, and ∀ x ∈ [0, 1],

lim inf
t→∞

ui(x, t, φ) ≥ η ∀ φ ∈W0

by (4). By taking η even smaller if necessary to satisfy η ∈ (0, b
β12m∗+β2+d

), we

obtain (9) using Proposition 2.
Finally, we know as shown in the proof of Proposition 3, that Φt is compact so

that it is asymptotically smooth by Lemma 3.9. Moreover, as we already showed
that Φt(W0) ⊂W0, by Proposition 5, we see that Φt is ρ-uniformly persistent. We
also know due to Proposition 3 that Φt : X+ 7→ X+ has a global attractor A. Thus,
by Lemma 3.10, Remark 4, Φt : W0 7→W0 has a global attractor A0.

This implies that because we already showed that Φt(W0) ⊂ W0 ∀ t ≥ 0, Φt is
compact so that it is α-condensing by Lemma 3.9, due to Lemma 3.11, we see that
Φt has an equilibrium a0 ∈ A0. By Proposition 2, it is clear that a0 is a positive
steady state. This completes the proof of Theorem 2.2.

7. Conclusion. In this article, we have studied a general reaction-diffusion-conv-
ection cholera model, which formulates bacterial and human diffusion, bacterial
convection, intrinsic pathogen growth and direct/indirect transmission routes. This
general formation of the PDE model allows us to give a thorough investigations
on the interactions between the spatial movement of human and bacteria, intrinsic
pathogen dynamics and multiple transmission pathways and their contribution of
the spatial pattern of cholera epidemics.

The main purpose of this work is to investigate the global dynamics of this PDE
model (1). To achieve this goal, we have established the threshold results of global
dynamics of (1) using the basic reproduction number R0. Our analysis shows that
if R0 > 1, the disease will persist uniformly; whereas if R0 < 1, the disease will
die out and the DFE is globally attractive when the diffusion rate of susceptible,
infectious and recovered human hosts are identical. These results shed light into
the complex interactions of cholera epidemics in terms of model parameters, and
their impact on extinction and persistence of the disease. In turn, these findings
may suggest efficient implications for the prevention and control of the disease.

Besides, we would like to mention that there are a number of interesting directions
at this point, that haven’t been considered in the present work. One direction is
to study seasonal and climatic changes. It is well known that these factors can
cause fluctuation of disease contact rates, human activity level, pathogen growth
and death rates, etc., which in turn have strong impact on disease dynamics. The
other direction is to model spatial heterogeneity. For instance, taking the diffusion



SIRS-B EPIDEMIC PDE MODEL 577

and convection coefficients and other model parameters to be space dependent in
2 dimensional spatial domain (instead of constant values in 1 dimensional region)
will better reflect the details of spatial variation. These would make for interesting
topics in future investigations.

Appendix.

7.1. Proof of Lemma 3.5. In this section, we prove Lemma 3.5 for completeness.
The local existence of unique nonnegative mild solution on [0, σ), σ = σ(φ), as well
as the blow up criterion that if σ = σ(φ) < ∞, then the sup norm of the solution
becomes unbounded as t approaches σ from below is shown in the Theorem 2.1
[37]. To show that σ = ∞, we assume that σ < ∞, fix such σ and show the
uniform bound which contradicts the blow up criterion. Specifically we show that
by performing energy estimates more carefully, keeping track of the dependence on
each constant, we may extend Proposition 1 of [37] to the case p =∞. For brevity,
we write Lp to imply Lp([0, 1]) below for p ∈ [1,∞].

Proposition 6. If u(x, t, φ) = (S, I,R,B)(x, t, φ) solves (1) subjected to (2), (3)
in [0, σ), then

sup
t∈[0,σ)

‖u(t)‖L∞ ≤ 3(‖φ1‖L∞ + ‖φ2‖L∞ + ‖φ3‖L∞ + bσ)(1 + eσgξσ) + ‖φ4‖L∞eσg

Proof. From (1), we know from the proof of Proposition 1 [37] that defining V ,
S + I +R, we obtain (17). For p ∈ [2,∞), it is shown in the proof of Proposition 1
of [37] that

sup
t∈[0,σ)

‖V (t)‖Lp ≤ ‖V0‖Lp + bσ.

Now as S, I,R ≥ 0,

‖V ‖pLp ≥‖S‖pLp + ‖I‖pLp + ‖R‖pLp ,

3(‖S‖pLp + ‖I‖pLp + ‖R‖pLp)
1
p ≥‖S‖Lp + ‖I‖Lp + ‖R‖Lp

and hence together, this implies that ∀ p ∈ [2,∞)

sup
t∈[0,σ)

(‖S‖Lp + ‖I‖Lp + ‖R‖Lp)(t) ≤ 3 sup
t∈[0,σ)

‖V (t)‖Lp ≤ 3(‖V0‖Lp + bσ).

Taking p→∞ on the right hand side first and then the left hand side shows that

sup
t∈[0,σ)

(‖S‖L∞ + ‖I‖L∞ + ‖R‖L∞)(t) ≤ 3(‖φ1‖L∞ + ‖φ2‖L∞ + ‖φ3‖L∞ + bσ) (40)

due to Minkowski’s inequalities and (2). Next, a similar procedure shows that, as
described in complete in detail in the proof of Proposition 1 of [37], we obtain

∂t‖B‖Lp ≤
(

U2

4D4(p− 1)
+ g

)
‖B‖Lp + ξ‖I‖Lp .

Thus, Gronwall’s inequality type argument shows that via Hölder’s inequality,

‖B(t)‖Lp ≤ ‖φ4‖L∞e
t
(

U2

4D4(p−1)
+g

)
+ ξ

∫ t

0

‖I(s)‖L∞e
(t−s)

(
U2

4D4(p−1)
+g

)
ds

Now taking p → ∞ on the left hand side and then on the right hand side gives
∀ t ∈ [0, σ)

‖B(t)‖L∞ ≤ ‖φ4‖L∞eσg + ξ3(‖φ1‖L∞ + ‖φ2‖L∞ + ‖φ3‖L∞ + bσ)eσgσ
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where we used (40). Taking sup over t ∈ [0, σ) on the left hand side completes the
proof.

By continuity in space of the local solution in [0, σ), the proof of Lemma 3.5 is
complete.
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