Research article Special Issues

A stage-structured SEIR model with time-dependent delays in an almost periodic environment

  • Received: 01 September 2020 Accepted: 22 October 2020 Published: 06 November 2020
  • In this paper, we propose and investigate an almost periodic SEIR model with stage structure and latency, in which time-dependent maturation and incubation periods are incorporated. Two threshold parameters for the persistence and extinction of population and disease are introduced: the basic reproduction ratio $\hat{R}_{0}$ for population and the basic reproduction ratio $R_{0}$ for disease. If $\hat{R}_{0}<1$, the population extinction state is globally attractive. In the case where $\hat{R}_{0}>1$, it is shown that the disease tends to die out if $R_{0}<1$, while remains persistent if $R_{0}>1$. By virtue of numerical simulations, we verify the analytic results and investigate the effects of the fluctuations of maturation and incubation periods on disease transmission.

    Citation: Lizhong Qiang, Ren-Hu Wang, Ruofan An, Zhi-Cheng Wang. A stage-structured SEIR model with time-dependent delays in an almost periodic environment[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7732-7750. doi: 10.3934/mbe.2020393

    Related Papers:

  • In this paper, we propose and investigate an almost periodic SEIR model with stage structure and latency, in which time-dependent maturation and incubation periods are incorporated. Two threshold parameters for the persistence and extinction of population and disease are introduced: the basic reproduction ratio $\hat{R}_{0}$ for population and the basic reproduction ratio $R_{0}$ for disease. If $\hat{R}_{0}<1$, the population extinction state is globally attractive. In the case where $\hat{R}_{0}>1$, it is shown that the disease tends to die out if $R_{0}<1$, while remains persistent if $R_{0}>1$. By virtue of numerical simulations, we verify the analytic results and investigate the effects of the fluctuations of maturation and incubation periods on disease transmission.


    加载中


    [1] W. O. Kermack, A. G. Mckendrich, A contribution to the mathematical theory of epidemic, Proc. Royal Soc., 115 (1927), 700-721.
    [2] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, 2nd edition, Springer, New York, 2012.
    [3] R. Anderson, R. May, Population biology of infectious diseases I, Nature, 280 (1979), 361-367 doi: 10.1038/280361a0
    [4] R. Anderson, R. May, Infectious diseases of humans: Dynamics and control Oxford University Press, Oxford, 1991.
    [5] K. Cooke, P. van den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352. doi: 10.1007/s002850050194
    [6] M. W. Service, Mosquito ecology, Field sampling methods, 2nd edition, Elsevier, London, 1993.
    [7] W. G. Aiello, H. I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-153. doi: 10.1016/0025-5564(90)90019-U
    [8] C. Castillo-Chavez, Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135-154. doi: 10.1016/S0025-5564(98)10016-0
    [9] J. Horita, Y. Iwasa, Y. Tachiki, Evolutionary bistability of life history decision in male masu salmon, J. Theor. Biol., 448 (2018), 104-111. doi: 10.1016/j.jtbi.2018.04.008
    [10] K. L. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.
    [11] J. Li, X. Zou, Generalization of the Kermack-McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118. doi: 10.1051/mmnp/20094205
    [12] J. Li, X. Zou, Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686. doi: 10.1007/s00285-009-0280-9
    [13] X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differ. Equat., 29 (2017), 67-82. doi: 10.1007/s10884-015-9425-2
    [14] X. Liang, L. Zhang, X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease), J. Dynam. Differ. Equat., 31 (2019), 1247-1278. doi: 10.1007/s10884-017-9601-7
    [15] X. Wang, X.-Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77 (2017), 181-201. doi: 10.1137/15M1046277
    [16] L. Zhang, Z.-C. Wang, X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differ. Equat., 258 (2015), 3011-3036. doi: 10.1016/j.jde.2014.12.032
    [17] L. Zhang, Z.-C. Wang, A time-periodic reaction-diffusion epidemic model with infection period, Z. Angew. Math. Phys., 67 (2016), 117.
    [18] P. H. Bezandry, T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, 2011.
    [19] T. Diagana, S. Elaydi, A.-Z. Yakubu, Population models in almost periodic environments. J. Differ. Equ. Appl., 13 (2007), 239-260.
    [20] L. Qiang, B.-G. Wang, X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental models with time delay, J. Differ. Equat., 269 (2020), 4440-4476. doi: 10.1016/j.jde.2020.03.027
    [21] B.-G. Wang, W.-T. Li, L. Zhang, An almost periodic epidemic model with age structure in a patchy environment, Discret. Contin. Dyn. Syst. Ser. B, 21 (2016), 291-311.
    [22] D. Pauly, R. S. V. Pullin, Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size, Eviron. Biol. Fishes, 22, (1988), 261-271.
    [23] S. Tsoukali, A. W. Visser, B. R. MacKenzie, Functional responses of North Atlantic fish eggs to increasing temperature, Mar. Ecol. Prog. Ser. 555 (2016), 151-165.
    [24] W. J. Groberg Jr, R. H. McCoy, K. S. Pilcher, J. L. Fryer, Relation of water temperature to infections of Coho Salmon (Oncorhynchus kisutch), Chinook Salmon (O. tshawytscha) and Steelhead Trout (Salmo gairdneri) with Aeromonas salmonicida and A. hydrophila, J. Fish Res. Board Can., 35 (1978), 1-7.
    [25] R. Omori, B. Adams, Disrupting seasonality to control disease outbreaks: the case of koi herpes virus. J. Theor. Biol. 271 (2011), 159-165.
    [26] F. Li, X.-Q. Zhao, Dynamics of a periodic bluetongue model with a temperature-dependent incubation period, SIAM J. Appl. Math., 79 (2019), 2479-2505. doi: 10.1137/18M1218364
    [27] Y. Lou, X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603. doi: 10.1007/s00332-016-9344-3
    [28] X. Wu, F. M. G. Magpantay, J. Wu, X. Zou, Stage-structured population systems with temporally periodic delay, Math. Methods Appl. Sci., 38 (2015), 3464-3481. doi: 10.1002/mma.3424
    [29] F. Li, X.-Q. Zhao, A periodic SEIRS epidemic model with a time-dependent latent period, J. Math. Biol., 78 (2019), 1553-1579. doi: 10.1007/s00285-018-1319-6
    [30] C. Corduneanu, Almost periodic functions, Chelsea Publishing Company, New York, 1989.
    [31] A. M. Fink, Almost periodic differential equations, Springer-Verlag, Berlin Heidelberg New York, 1974.
    [32] L. Qiang, B.-G. Wang, X.-Q. Zhao, A stage-structured population model with time-dependent delay in an almost periodic environment, J. Dynam. Differ. Equat., https: //doi.org/10.1007/s10884-020-09827-6.
    [33] J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Springer, New York, 1993.
    [34] H. L. Smith, Monotone dynamics systems: An introduction to the theory of competitive and cooperative systems, Amer. Math. Soc., Providence, RI, 1995.
    [35] G. Sell, Topological dynamics and ordinary differential equations, Van Nostrand Reinhold, London, 1971.
    [36] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988.
    [37] X.-Q. Zhao, Dynamical systems in population biology, 2nd edition, Springer-Verlag, New York, 2017.
    [38] P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3302) PDF downloads(151) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog