Citation: Hai-Feng Huo, Qian Yang, Hong Xiang. Dynamics of an edge-based SEIR model for sexually transmitted diseases[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
[1] | National Library of Medicine, Sexually Transmitted Diseases, 2019. Available from: https://medlineplus.gov/sexuallytransmitteddiseases.html. |
[2] | M. J. Keeling and P. Rohani, Modeling infectious diseases in humans and animals, Clin. Infect. Dis., 2008. |
[3] | P. Manfredi and A. D'Onofrio, Modeling the interplay between human behavior and the spread of infectious diseases, Springer, 2013. |
[4] | L. Zhao, L. Zhang and H. F. Huo, Traveling wave solutions of a diffusive seir epidemic model with nonlinear incidence rate, Taiwan J. Math., 23 (2019), 951-980. |
[5] | H. F. Huo, P. Yang and H. Xiang, Dynamics for an sirs epidemic model with infection age and relapse on a scale-free network, J. Franklin I., 356 (2019), 7411-7443. |
[6] | H. Xiang, M. X. Zou and H. F. Huo, Modeling the effects of health education and early therapy on tuberculosis transmission dynamics, Int. J. Nonlin. Sci. Num., 20 (2019), 243-255. |
[7] | Z. P. Ma, Spatiotemporal dynamics of a diffusive leslie-gower prey-predator model with strong alee effect, Nonlinear Anal-Real., 50 (2019), 651-674. |
[8] | Q. Shi and S. Wang, Klein-gordon-zakharov system in energy space: Blow-up profile and subsonic limit, Math. Method Appl. Sci., 42 (2019), 3211-3221. |
[9] | Y. L. Cai, J. Jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210-226. |
[10] | Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vectordisease model, Commun. Pur. Appl. Anal., 17 (2018), 1899-1920. |
[11] | L. Zhang and Y. F. Xing, Extremal solutions for nonlinear first-order impulsive integro-differential dynamic equations, Math. Notes, 105 (2019), 124-132. |
[12] | X. Y. Meng, N. N. Qin and H. F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dynam., 12 (2018), 342-374. |
[13] | X. Y. Meng and Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcat. Chaos, 28 (2018), 1850042. |
[14] | X. B. Zhang, Q. H. Shi, S. H. Ma, et al., Dynamic behavior of a stochastic SIQS epidemic model with levy jumps, Nonlinear Dyn., 93 (2018), 1481-1493. |
[15] | X. Bao, W. T. Li and Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pur. Appl. Anal., 19 (2020), 253-277. |
[16] | X. Bao and W. T. Li, Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats, Nomlinear Anal-Real., 51 (2020), 102975. |
[17] | S. Huang and Q. Tian, Marcinkiewicz estimates for solution to fractional elliptic laplacian equation, Comput. Math. Appl., 78 (2019), 1732-1738. |
[18] | H. F. Huo, S. L. Jing, X. Y. Wang, et al., Modelling and analysis of an alcoholism model with treatment and effect of twitter, Math. Biosci. Eng., 16 (2019), 3595-3622. |
[19] | Y. D. Zhang, H. F. Huo and H. Xiang, Dynamics of tuberculosis with fast and slow progression and media coverage, Math. Biosci. Eng., 16 (2019), 1150-1170. |
[20] | Z. K. Guo, H. F. Huo and H. Xiang, Global dynamics of an age-structured malaria model with prevention, Math. Biosci. Eng., 16 (2019), 1625-1653. |
[21] | A. L. Barábasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. |
[22] | S. Moghadas, Two core group models for sexual transmission of disease, Ecol. Model., 148 (2002), 15-26. |
[23] | J. Gómez-Gardeñes, V. Latora, Y. Moreno, et al., Spreading of sexually transmitted diseases in heterosexual populations, P. Natl. Acad. Sci. USA, 105 (2008), 1399-1404. |
[24] | Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B., 26 (2001), 521-529. |
[25] | J. Lindquist, J. Ma, P. V. D. Driessche, et al., Effective degree network disease models, J. Math. Biol., 62 (2011), 143-164. |
[26] | H. F. Huo, F. F. Cui and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Physica. A., 496 (2018), 249-262. |
[27] | H. F. Huo, H. N. Xue and H. Xiang, Dynamics of an alcoholism model on complex networks with community structure and voluntary drinking, Physica. A., 505 (2018), 880-890. |
[28] | H. Xiang, Y. Y. Wang and H. F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput., 8 (2018), 1535-1554. |
[29] | J. C. Miller, A. C. Slim and E. M. Volz, Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface, 9 (2012), 890-906. |
[30] | J. C. Miller and E. M. Volz, Incorporating disease and population structure into models of SIR disease in contact networks, PLOS ONE, 8 (2013), e69162. |
[31] | J. C. Miller, Model hierarchies in edge-based compartmental modeling for infectious disease spread, J. Math. Biol., 67 (2013), 869-899. |
[32] | J. C. Miller, Epidemics on networks with large initial conditions or changing structure, PLOS ONE, 9 (2014), e101421. |
[33] | S. Yan, Y. Zhang, J. Ma, et al., An edge-based SIR model for sexually transmitted diseases on the contact network, J. Theor. Biol., 439 (2018), 216-225. |
[34] | M. E. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64 (2001), 026118. |
[35] | M. Molloy and B. Reed, A Critical Point for Random Graphs with a Given Degree Sequence, Random. Struct. Algor., 6 (2010), 161-180. |
[36] | J. C. Miller, A note on the derivation of epidemic final sizes, B. Math. Biol., 74 (2012), 2125-2141. |
[37] | P. V. D. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[38] | M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E., 66 (2002), 016128. |