Artificial intelligence (AI) applications on rheumatoid arthritis (RA) are becoming increasingly popular. In this bibliometric study, we aimed to analyze the characteristics of publications relevant to the research of AI in RA, thereby developing a thorough overview of this research topic. Web of Science was used to retrieve publications on the application of AI in RA from 2003 to 2022. Bibliometric analysis and visualization were performed using Microsoft Excel (2019), R software (4.2.2) and VOSviewer (1.6.18). The overall distribution of yearly outputs, leading countries, top institutions and authors, active journals, co-cited references and keywords were analyzed. A total of 859 relevant articles were identified in the Web of Science with an increasing trend. USA and China were the leading countries in this field, accounting for 71.59% of publications in total. Harvard University was the most influential institution. Arthritis Research & Therapy was the most active journal. Primary topics in this field focused on estimating the risk of developing RA, diagnosing RA using sensor, clinical, imaging and omics data, identifying the phenotype of RA patients using electronic health records, predicting treatment response, tracking the progression of the disease and predicting prognosis and developing new drugs. Machine learning and deep learning algorithms were the recent research hotspots and trends in this field. AI has potential applications in various fields of RA, including the risk assessment, screening, early diagnosis, monitoring, prognosis determination, achieving optimal therapeutic outcomes and new drug development for RA patients. Incorporating machine learning and deep learning algorithms into real-world clinical practice will be a future research hotspot and trend for AI in RA. Extensive collaboration to improve model maturity and robustness will be a critical step in the advancement of AI in healthcare.
Citation: Di Zhang, Bing Fan, Liu Lv, Da Li, Huijun Yang, Ping Jiang, Fangmei Jin. Research hotspots and trends of artificial intelligence in rheumatoid arthritis: A bibliometric and visualized study[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20405-20421. doi: 10.3934/mbe.2023902
Artificial intelligence (AI) applications on rheumatoid arthritis (RA) are becoming increasingly popular. In this bibliometric study, we aimed to analyze the characteristics of publications relevant to the research of AI in RA, thereby developing a thorough overview of this research topic. Web of Science was used to retrieve publications on the application of AI in RA from 2003 to 2022. Bibliometric analysis and visualization were performed using Microsoft Excel (2019), R software (4.2.2) and VOSviewer (1.6.18). The overall distribution of yearly outputs, leading countries, top institutions and authors, active journals, co-cited references and keywords were analyzed. A total of 859 relevant articles were identified in the Web of Science with an increasing trend. USA and China were the leading countries in this field, accounting for 71.59% of publications in total. Harvard University was the most influential institution. Arthritis Research & Therapy was the most active journal. Primary topics in this field focused on estimating the risk of developing RA, diagnosing RA using sensor, clinical, imaging and omics data, identifying the phenotype of RA patients using electronic health records, predicting treatment response, tracking the progression of the disease and predicting prognosis and developing new drugs. Machine learning and deep learning algorithms were the recent research hotspots and trends in this field. AI has potential applications in various fields of RA, including the risk assessment, screening, early diagnosis, monitoring, prognosis determination, achieving optimal therapeutic outcomes and new drug development for RA patients. Incorporating machine learning and deep learning algorithms into real-world clinical practice will be a future research hotspot and trend for AI in RA. Extensive collaboration to improve model maturity and robustness will be a critical step in the advancement of AI in healthcare.
[1] | A. N. Ramesh, C. Kambhampati, J. R. Monson, P. J. Drew, Artificial intelligence in medicine, Ann. R. Coll. Surg. Engl., 86 (2004), 334-338. https://doi.org/10.1308/147870804290 doi: 10.1308/147870804290 |
[2] | H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imaging., 35 (2016), 1285-1298. https://doi.org/10.1109/TMI.2016.2528162 doi: 10.1109/TMI.2016.2528162 |
[3] | Y. Mintz, R. Brodie, Introduction to artificial intelligence in medicine, Minim. Invasive Ther. Allied. Technol., 28 (2019), 73-81. https://doi.org/10.1080/13645706.2019.1575882 doi: 10.1080/13645706.2019.1575882 |
[4] | K. Benke, G. Benke, Artificial intelligence and big data in public health, Int. J. Environ. Res. Public Health, 15 (2018), 2796. https://doi.org/10.3390/ijerph15122796 doi: 10.3390/ijerph15122796 |
[5] | A. Hosny, C. Parmar, J. Quackenbush, L. Schwartz, H. Aerts, Artificial intelligence in radiology, Nat. Rev. Cancer, 18 (2018), 500–510. https://doi.org/10.1038/s41568-018-0016-5 doi: 10.1038/s41568-018-0016-5 |
[6] | J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, et al., Applications of machine learning in drug discovery and development, Nat. Rev. Drug. Discov., 18 (2019), 463–477. https://doi.org/10.1038/s41573-019-0024-5 doi: 10.1038/s41573-019-0024-5 |
[7] | G. S. Cooper, B. C. Stroehla, The epidemiology of autoimmune diseases, Autoimmun. Rev., 2 (2003), 119–125. https://doi.org/10.1016/S1568-9972(03)00006-5 doi: 10.1016/S1568-9972(03)00006-5 |
[8] | J. Huang, F. Wang, X. Tang, Uncovering the shared molecule and mechanism between ulcerative colitis and atherosclerosis: An integrative genomic analysis, Front. Immunol., 14 (2023), 1219457. https://doi.org/10.3389/fimmu.2023.1219457 doi: 10.3389/fimmu.2023.1219457 |
[9] | J. Huang, J. Zhang, F. Wang, B. Zhang, X. Tang, Revealing immune infiltrate characteristics and potential diagnostic value of immune-related genes in ulcerative colitis: An integrative genomic analysis, Front. Public. Health., 10 (2022), 1003002. https://doi.org/10.3389/fpubh.2022.1003002 doi: 10.3389/fpubh.2022.1003002 |
[10] | D. van der Woude, A. H. M. van der Helm-van Mil, Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis, Best. Pract. Res. Clin. Rheumatol., 32 (2018), 174–187. https://doi.org/10.1016/j.berh.2018.10.005 doi: 10.1016/j.berh.2018.10.005 |
[11] | J. Bullock, S. Rizvi, A. Saleh, S. Ahmed, D. Do, R. Ansari, et al., Rheumatoid arthritis: A brief overview of the treatment, Med. Princ. Pract., 27 (2018), 501–507. https://doi.org/10.1159/000493390 doi: 10.1159/000493390 |
[12] | S. Momtazmanesh, A. Nowroozi, N. Rezaei, Artificial intelligence in rheumatoid arthritis: Current status and future perspectives: A state-of-the-art review, Rheumatol. Ther., 9 (2022), 1249-1304. https://doi.org/10.1007/s40744-022-00475-4 doi: 10.1007/s40744-022-00475-4 |
[13] | B. Bhinder, C. Gilvary, N. S. Madhukar, O. Elemento, Artificial intelligence in cancer research and precision medicine, Cancer Discov., 11 (2021), 900-915. https://doi.org/10.1158/2159-8290.CD-21-0090 doi: 10.1158/2159-8290.CD-21-0090 |
[14] | L. Ji, Q. Zhou, J. Huang, D. Lu, Macrophages in ulcerative colitis: A perspective from bibliometric and visual analysis, Heliyon, 9 (2023), e20195. https://doi.org/10.1016/j.heliyon.2023.e20195 doi: 10.1016/j.heliyon.2023.e20195 |
[15] | J. Yuan, T. Feng, Y. Guo, K. Luo, Q. Wu, S. Yu, et al., Global scientific trends update on macrophage polarization in rheumatoid arthritis: A bibliometric and visualized analysis from 2000 to 2022, Heliyon, 9 (2023), e19761. https://doi.org/10.1016/j.heliyon.2023.e19761 doi: 10.1016/j.heliyon.2023.e19761 |
[16] | Y. Xu, Z. Zhang, J. He, Z. Chen, Immune effects of macrophages in rheumatoid arthritis: A bibliometric analysis from 2000 to 2021, Front. Immunol., 13 (2022), 903771. https://doi.org/10.3389/fimmu.2022.903771 doi: 10.3389/fimmu.2022.903771 |
[17] | Y. Chang, Q. Ou, X. Zhou, K. Nie, J. Liu, S. Zhang, Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: A bibliometric analysis from 1985 to 2023, Front. Immunol., 14 (2023), 1205445. https://doi.org/10.3389/fimmu.2023.1205445 doi: 10.3389/fimmu.2023.1205445 |
[18] | J. Liu, J. Gao, Q. Niu, F. Wu, Z. Wu, L. Zhang, Bibliometric and visualization analysis of mesenchymal stem cells and rheumatoid arthritis (from 2012 to 2021), Front. Immunol., 13 (2022), 1001598. https://doi.org/10.3389/fimmu.2022.1001598 doi: 10.3389/fimmu.2022.1001598 |
[19] | R. Huang, M. Jin, Y. Liu, Y. Lu, M. Zhang, P. Yan, et al., Global trends in research of fibroblasts associated with rheumatoid diseases in the 21st century: A bibliometric analysis, Front. Immunol., 14 (2023), 1098977. https://doi.org/10.3389/fimmu.2023.1098977 doi: 10.3389/fimmu.2023.1098977 |
[20] | Y. Dong, J. Yao, Q. Deng, X. Li, Y. He, X. Ren, et al., Relationship between gut microbiota and rheumatoid arthritis: A bibliometric analysis, Front. Immunol., 14 (2023), 1131933. https://doi.org/10.3389/fimmu.2023.1131933 doi: 10.3389/fimmu.2023.1131933 |
[21] | A. F. Radu, S. G. Bungau, P. A. Negru, M. F. Marcu, F. L. Andronie-Cioara, In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy, Biomed. Pharmacother., 154 (2022), 113614. https://doi.org/10.1016/j.biopha.2022.113614 doi: 10.1016/j.biopha.2022.113614 |
[22] | E. Santos, C. Duarte, A. Marques, D. Cardoso, J. Apóstolo, J. da Silva, et al., Effectiveness of non-pharmacological and non-surgical interventions for rheumatoid arthritis: An umbrella review, JBI. Database Syst. Rev. Implement. Rep., 17 (2019), 1494-1531. https://doi.org/10.11124/JBISRIR-D-18-00020 doi: 10.11124/JBISRIR-D-18-00020 |
[23] | X. Sun, H. Yin, Y. Zhu, L. Li, J. Shen, K. Hu, Bibliometric and visualized analysis of nonpharmaceutical TCM therapies for rheumatoid arthritis over the last 20 years using VOSviewer and CiteSpace software, Medicine, 102 (2023), e35305. https://doi.org/10.1097/MD.0000000000035305 doi: 10.1097/MD.0000000000035305 |
[24] | H. Wu, K. Cheng, Q. Guo, W. Yang, L. Tong, Y. Wang, et al., Mapping knowledge structure and themes trends of osteoporosis in rheumatoid arthritis: A bibliometric analysis, Front. Med., 8 (2021), 787228. https://doi.org/10.3389/fmed.2021.787228 doi: 10.3389/fmed.2021.787228 |
[25] | Y. Zhang, T. Zhao, T. Wu, W. Huang, T. Wu, Y. Shi, et al., Bibliometric analysis of the scientific literature on rheumatoid arthritis-associated interstitial lung disease, Biomed. Res. Int., 2021 (2021), 7899929. https://doi.org/10.1155/2021/7899929 doi: 10.1155/2021/7899929 |
[26] | B. Niu, S. Hong, J. Yuan, S. Peng, Z. Wang, X. Zhang, Global trends in sediment-related research in earth science during 1992–2011: A bibliometric analysis, Scientometrics, 98 (2014), 511–529. https://doi.org/10.1007/s11192-013-1065-x doi: 10.1007/s11192-013-1065-x |
[27] | J. Zhu, W. Liu, A tale of two databases: The use of web of science and scopus in academic papers, Scientometrics, 123 (2020), 321–335. https://doi.org/10.1007/s11192-020-03387-8 doi: 10.1007/s11192-020-03387-8 |
[28] | W. Liu, X. Li, M. Wang, L. Liu L, Research trend and dynamical development of focusing on the global critical metals: a bibliometric analysis during 1991–2020, Environ. Sci. Pollut. Res., 29 (2022), 26688–26705. https://doi.org/10.1007/s11356-021-17816-5 doi: 10.1007/s11356-021-17816-5 |
[29] | M. Falagas, E. Pitsouni, G. Malietzis, G. Pappas, Comparison of pubmed, scopus, web of science, and google scholar: Strengths and weaknesses, FASEB J., 22 (2008), 338-342. https://doi.org/10.1096/fj.07-9492LSF doi: 10.1096/fj.07-9492LSF |
[30] | F. Motta, P. Morandini, F. Maffia, M. Vecellio, A. Tonutti, M. De Santis, et al., Connecting the use of innovative treatments and glucocorticoids with the multidisciplinary evaluation through rule-based natural-language processing: A real-world study on patients with rheumatoid arthritis, psoriatic arthritis, and psoriasis, Front. Med., 10 (2023), 1179240. https://doi.org/10.3389/fmed.2023.1179240 doi: 10.3389/fmed.2023.1179240 |
[31] | R. Tang, S. Zhang, C. Ding, M. Zhu, Y. Gao, Artificial intelligence in intensive care medicine: Bibliometric analysis, J. Med. Int. Res., 24 (2022), e42185. https://doi.org/10.2196/42185 doi: 10.2196/42185 |
[32] | E. Karger, M. Kureljusic, Artificial intelligence for cancer detection-a bibliometric analysis and avenues for future research, Curr. Oncol., 30 (2023), 1626-1647. https://doi.org/10.3390/curroncol30020125 doi: 10.3390/curroncol30020125 |
[33] | V. El-Hajj, M. Gharios, E. Edström, A. Elmi-Terander, Artificial intelligence in neurosurgery: A bibliometric analysis, World Neurosurg., 171 (2023), 152-158. https://doi.org/10.1016/j.wneu.2022.12.087 doi: 10.1016/j.wneu.2022.12.087 |
[34] | M. Kiraz, A holistic investigation of global outputs of COVID-19 publications in neurology and neurosurgery, Eur. J. Med. Invest., 4 (2020), 506–512. https://doi.org/10.14744/ejmi.2020.36601 doi: 10.14744/ejmi.2020.36601 |
[35] | H. Wu, K. Cheng, Q. Guo, W. Yang, L. Tong, Y. Wang Y, et al., Mapping knowledge structure and themes trends of osteoporosis in rheumatoid arthritis: A bibliometric analysis, Front. Med., 8 (2021), 787228. https://doi.org/10.3389/fmed.2021.787228 doi: 10.3389/fmed.2021.787228 |
[36] | Statista Research Department, Health Expenditures in the U.S. – Statistics & Facts, Available from: https://www.statista.com/topics/6701/health-expenditures-in-the-us/#topicHeader: wrapper. |
[37] | H. Wu, Y. Li, L. Tong, Y. Wang, Z. Sun, Worldwide research tendency and hotspots on hip fracture: A 20-year bibliometric analysis, Arch. Osteop., 16 (2021). https://doi.org/10.1007/s11657-020-00865-7 |
[38] | Y. Zhao, X. Zhang, Z. Song, D. Wei, H. Wang, W. Chen, et al., Bibliometric analysis of ATAC-SEQ and its use in cancer biology via nucleic acid detection, Front. Med., 2020 (2020), 584728. https://doi.org/10.3389/fmed.2020.584728 doi: 10.3389/fmed.2020.584728 |
[39] | Q. Wu, S. Liu, R. Zhang, Q. Tang, L. Dong, X. Li, et al., ACU & MOX-DATA: A platform for fusion analysis and visual display acupuncture multi-omics heterogeneous data, Acupunct. Herb. Med., 3 (2023), 59-62. https://doi.org/10.1097/HM9.0000000000000051 doi: 10.1097/HM9.0000000000000051 |
[40] | C. Jiang, H. B. Qu, In-line spectroscopy combined with multivariate analysis methods for endpoint determination in column chromatographic adsorption processes for herbal medicine, Acupunct. Herb. Med., 2 (2022), 253-260. https://doi.org/10.1097/HM9.0000000000000035 doi: 10.1097/HM9.0000000000000035 |
[41] | H. Wu, Y. Zhou, Y. Wang, L. Tong, F. Wang, S. Song, et al., Current state and future directions of intranasal delivery route for central nervous system disorders: A scientometric and visualization analysis, Front. Pharmacol., 12 (2021), 717192. https://doi.org/10.3389/fphar.2021.717192 doi: 10.3389/fphar.2021.717192 |
[42] | J. Huang, J. Zhang, F. Wang, B. Zhang, X. Tang, Comprehensive analysis of cuproptosis-related genes in immune infiltration and diagnosis in ulcerative colitis, Front. Immunol., 13 (2022), 1008146. https://doi.org/10.3389/fimmu.2022.1008146 doi: 10.3389/fimmu.2022.1008146 |
[43] | J. Huang, Y. Zheng, J. Ma, J. Ma J, M. Lu, X. Ma, et al., Exploration of the potential mechanisms of Wumei pill for the treatment of ulcerative colitis by network pharmacology, Gastroenterol. Res. Pract., 2021 (2021), 4227668. https://doi.org/10.1155/2021/4227668 doi: 10.1155/2021/4227668 |
[44] | J. Huang, Y. Wang, P. Xu, J. Liu, J. Ma, Y. Wang, et al., Molecular mechanism of the effect of Zhizhu pill on gastroesophageal reflux disease based on network pharmacology and molecular docking, Evid. Based. Complement. Alternat. Med., 2022 (2022), 2996865. https://doi.org/10.1155/2022/2996865 doi: 10.1155/2022/2996865 |
[45] | S. Momtazmanesh, A. Nowroozi, N. Rezaei, Artificial intelligence in rheumatoid arthritis: Current status and future perspectives: A state-of-the-art review, Rheumatol. Ther., 9 (2022), 1249-1304. https://doi.org/10.1007/s40744-022-00475-4 doi: 10.1007/s40744-022-00475-4 |
[46] | J. Kruppa, A. Ziegler, I. R. Konig, Risk estimation and risk prediction using machine-learning methods, Hum. Genet., 131 (2012), 1639–1654. https://doi.org/10.1007/s00439-012-1194-y doi: 10.1007/s00439-012-1194-y |
[47] | S. Negi, G. Juyal, S. Senapati, P. Prasad, A. Gupta, S. Singh, et al., A genome-wide association study reveals ARL15, a novel non-HLA susceptibility gene for rheumatoid arthritis in North Indians, Arthritis Rheum., 65 (2013), 3026–3035. https://doi.org/10.1002/art.38110 doi: 10.1002/art.38110 |
[48] | P. A. Keane, E. J. Topol, With an eye to AI and autonomous diagnosis, NPJ. Digit. Med., 1 (2018), 40. https://doi.org/10.1038/s41746-018-0048-y doi: 10.1038/s41746-018-0048-y |
[49] | Z. Obermeyer, E. J. Emanuel, Predicting the future—Big Data, machine learning, and clinical medicine, N. Engl. J. Med., 375 (2016), 1216–1219. https://doi.org/10.1056/NEJMp1606181 doi: 10.1056/NEJMp1606181 |
[50] | T. Panch, H. Mattie, R. Atun, Artificial intelligence and algorithmic bias: Implications for health systems, J. Glob. Health, 9 (2019), 010318. https://doi.org/10.7189/jogh.09.020318 doi: 10.7189/jogh.09.020318 |