Research article

Dynamic analysis of a bacterial resistance model with impulsive state feedback control


  • Received: 03 September 2023 Revised: 02 October 2023 Accepted: 19 October 2023 Published: 10 November 2023
  • Bacterial resistance caused by prolonged administration of the same antibiotics exacerbates the threat of bacterial infection to human health. It is essential to optimize antibiotic treatment measures. In this paper, we formulate a simplified model of conversion between sensitive and resistant bacteria. Subsequently, impulsive state feedback control is introduced to reduce bacterial resistance to a low level. The global asymptotic stability of the positive equilibrium and the orbital stability of the order-1 periodic solution are proved by the Poincaré-Bendixson Theorem and the theory of the semi-continuous dynamical system, respectively. Finally, numerical simulations are performed to validate the accuracy of the theoretical findings.

    Citation: Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang. Dynamic analysis of a bacterial resistance model with impulsive state feedback control[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903

    Related Papers:

  • Bacterial resistance caused by prolonged administration of the same antibiotics exacerbates the threat of bacterial infection to human health. It is essential to optimize antibiotic treatment measures. In this paper, we formulate a simplified model of conversion between sensitive and resistant bacteria. Subsequently, impulsive state feedback control is introduced to reduce bacterial resistance to a low level. The global asymptotic stability of the positive equilibrium and the orbital stability of the order-1 periodic solution are proved by the Poincaré-Bendixson Theorem and the theory of the semi-continuous dynamical system, respectively. Finally, numerical simulations are performed to validate the accuracy of the theoretical findings.



    加载中


    [1] K. Ababneh, I. E. Alkhazali, The impact of antibiotic abuse: Health and economic burden, Biomed. J. Sci. Tech. Res., 16 (2019), 11794–11797. https://doi.org/10.26717/BJSTR.2019.16.002802 doi: 10.26717/BJSTR.2019.16.002802
    [2] D. J. Austin, R. M. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc., B, 354 (1999), 721–738. http://doi.org/10.1098/rstb.1999.0425 doi: 10.1098/rstb.1999.0425
    [3] J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13 (2015), 42–51. https://doi.org/10.1038/nrmicro3380 doi: 10.1038/nrmicro3380
    [4] J. J. Dong, J. D. Russo, K. Sampson, Population dynamics model and analysis for bacteria transformation and conjugation, J. Phys. Commun., 4 (2020), 095021. https://doi.org/10.1088/2399-6528/abb8be doi: 10.1088/2399-6528/abb8be
    [5] T. Stalder, L. M. Rogers, C. Renfrow, H. Yano, Z. Smith, E. M. Top, Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance, Sci. Rep., 7 (2017), 4853. https://doi.org/10.1038/s41598-017-04662-0 doi: 10.1038/s41598-017-04662-0
    [6] E. Ibargüen-Mondragón, J. P. Romero-Leiton, L. Esteva, M. C. Gómez, S. P. Hidalgo-Bonilla, Stability and periodic solutions for a model of bacterial resistance to antibiotics caused by mutations and plasmids, Appl. Math. Modell., 76 (2019), 238–251. https://doi.org/10.1016/j.apm.2019.06.017 doi: 10.1016/j.apm.2019.06.017
    [7] E. Ibargüen-Mondragón, S. Mosquera, M. Cerón, E. M. Burbano-Rosero, Sandra P. Hidalgo-Bonilla, L. Esteva, et al., Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems, 117 (2014), 60–67. https://doi.org/10.1016/j.biosystems.2014.01.005 doi: 10.1016/j.biosystems.2014.01.005
    [8] B. Daşbaşı, İ. Öztürk, Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response, SpringerPlus, 5 (2016), 1–17. https://doi.org/10.1186/s40064-016-2017-8 doi: 10.1186/s40064-016-2017-8
    [9] X. Hou, B. Liu, L. Wang, Z. Zhao, Complex dynamics in a Filippov pest control model with group defense, Int. J. Biomath., 15 (2022), 2250053. https://doi.org/10.1142/S179352452250053X doi: 10.1142/S179352452250053X
    [10] A. M. Garber, Antibiotic exposure and resistance in mixed bacterial populations, Theor. Popul. Biol., 32 (1987), 326–346. https://doi.org/10.1016/0040-5809(87)90053-0 doi: 10.1016/0040-5809(87)90053-0
    [11] Z. Zhao, F. Tao, Q. Li, Dynamic analysis of conversion from a drug-sensitivity strain to a drug-resistant strain, Int. J. Biomath., 11 (2018), 1850113. https://doi.org/10.1142/S1793524518501139 doi: 10.1142/S1793524518501139
    [12] J. Jia, Y. Zhao, Z. Zhao, B. Liu, X. Song, Y. Hui, Dynamics of a within-host drug resistance model with impulsive state feedback control, Math. Biosci. Eng., 20 (2023), 2219–2231. https://doi.org/10.3934/mbe.2023103 doi: 10.3934/mbe.2023103
    [13] E. Massad, M. N. Burattini, F. A. B. Coutinho, An optimization model for antibiotic use, Appl. Math. Comput., 201 (2008), 161–167. https://doi.org/10.1016/j.amc.2007.12.007 doi: 10.1016/j.amc.2007.12.007
    [14] E. Ibargüen-Mondragón, L. Esteva, M. C. Gómez, An optimal control problem applied to plasmid-mediated antibiotic resistance, J. Appl. Math. Comput., 68 (2022), 1635–1667. https://doi.org/10.1007/s12190-021-01583-0 doi: 10.1007/s12190-021-01583-0
    [15] W. Lv, L. Liu, S. J. Zhuang, Dynamics and optimal control in transmission of tungiasis diseases. Int. J. Biomath., 15 (2022), 2150076. https://doi.org/10.1142/S1793524521500765
    [16] J. Xu, S. Yuan, T. Zhang, Optimal harvesting of a fuzzy water hyacinth-fish model with Kuznets curve effect, Int. J. Biomath., 16 (2023), 2250082. https://doi.org/10.1142/S1793524522500826 doi: 10.1142/S1793524522500826
    [17] M. Bodzioch, P. Bajger, U. Foryś, Competition between populations: preventing domination of resistant population using optimal control, Appl. Math. Modell., 114 (2023), 671–693. https://doi.org/10.1016/j.apm.2022.10.016 doi: 10.1016/j.apm.2022.10.016
    [18] G. Rigatos, M. Abbaszadeh, G. Cuccurullo, A nonlinear optimal control method against the spreading of epidemics, Int. J. Biomath., 15 (2022), 2250026. https://doi.org/10.1142/S1793524522500267 doi: 10.1142/S1793524522500267
    [19] Q. Liu, L. Huang, L. Chen, A pest management model with state feedback control, Adv. Differ. Equations, 2016 (2016), 1–11. https://doi.org/10.1186/s13662-016-0985-1 doi: 10.1186/s13662-016-0985-1
    [20] M. Zhang, G. Song, L. Chen, A state feedback impulse model for computer worm control, Nonlinear Dyn., 85 (2016), 1561–1569. https://doi.org/10.1007/s11071-016-2779-0 doi: 10.1007/s11071-016-2779-0
    [21] B. Liu, Y. Tian, B. Kang, Dynamics on a holling II predator-prey model with state-dependent impulsive control, Int. J. Biomath., 5 (2012), 1260006. https://doi.org/10.1142/S1793524512600066 doi: 10.1142/S1793524512600066
    [22] H. Li, Y. Tian, Dynamic behavior analysis of a feedback control predator-prey model with exponential fear effect and Hassell-Varley functional response, J. Franklin Inst., 360 (2023), 3479–3498. https://doi.org/10.1016/j.jfranklin.2022.11.030 doi: 10.1016/j.jfranklin.2022.11.030
    [23] P. Feketa, V. Klinshov, L. Lücken, A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 105955. https://doi.org/10.1016/j.cnsns.2021.105955 doi: 10.1016/j.cnsns.2021.105955
    [24] M. Huang, L. Chen, X. Song, Stability of a convex order one periodic solution of unilateral asymptotic type, Nonlinear Dyn., 90 (2017), 83–93. https://doi.org/10.1007/s11071-017-3647-2 doi: 10.1007/s11071-017-3647-2
    [25] L. Chen, X. Liang, Y. Pei, The periodic solutions of the impulsive state feedback dynamical system, Commun. Math. Biol. Neurosci., 2018 (2018), 14–29. https://doi.org/10.28919/cmbn/3754 doi: 10.28919/cmbn/3754
    [26] Y. Tian, Y. Gao, K. Sun, A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies, Math. Biosci. Eng., 20 (2023), 1558–1579. https://doi.org/10.3934/mbe.2023071 doi: 10.3934/mbe.2023071
    [27] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal.: Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [28] J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
    [29] C. Briat, A. Seuret, Robust stability of impulsive systems: A functional-based approach, IFAC Proc. Vol., 45 (2012), 412–417. https://doi.org/10.3182/20120606-3-NL-3011.00064 doi: 10.3182/20120606-3-NL-3011.00064
    [30] Y. Tian, Y. Gao, K. Sun, Qualitative analysis of exponential power rate fishery model and complex dynamics guided by a discontinuous weighted fishing strategy, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107011. https://doi.org/10.1016/j.cnsns.2022.107011 doi: 10.1016/j.cnsns.2022.107011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1388) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog