In this paper, we work on the discrete modified Leslie type predator-prey model with Holling type II functional response. The existence and local stability of the fixed points of this system are studied. According to bifurcation theory and normal forms, we investigate the codimension 1 and 2 bifurcations of positive fixed points, including the fold, 1:1 strong resonance, fold-flip and 1:2 strong resonance bifurcations. In particular, the discussion of discrete codimension 2 bifurcation is rare and difficult. Our work can be seen as an attempt to complement existing research on this topic. In addition, numerical analysis is used to demonstrate the correctness of the theoretical results. Our analysis of this discrete system revealed quite different dynamical behaviors than the continuous one.
Citation: Yajie Sun, Ming Zhao, Yunfei Du. Multiple bifurcations of a discrete modified Leslie-Gower predator-prey model[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20437-20467. doi: 10.3934/mbe.2023904
In this paper, we work on the discrete modified Leslie type predator-prey model with Holling type II functional response. The existence and local stability of the fixed points of this system are studied. According to bifurcation theory and normal forms, we investigate the codimension 1 and 2 bifurcations of positive fixed points, including the fold, 1:1 strong resonance, fold-flip and 1:2 strong resonance bifurcations. In particular, the discussion of discrete codimension 2 bifurcation is rare and difficult. Our work can be seen as an attempt to complement existing research on this topic. In addition, numerical analysis is used to demonstrate the correctness of the theoretical results. Our analysis of this discrete system revealed quite different dynamical behaviors than the continuous one.
[1] | J. D. Murray, Mathematical Biology: I. An Introduction, New York, Springer-Verlag, 2002. |
[2] | J. C. Huang, S. G. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024 |
[3] | Y. F. Dai, Y. L. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response, Nonlinear Anal. Real., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003 |
[4] | S. B. Hsu, T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/S0036139993253201 doi: 10.1137/S0036139993253201 |
[5] | Y. F. Dai, Y. L. Zhao, Hopf cyclicity and global dynamics for a predator-prey system of Leslie type with simplified Holling type IV functional response, Int. J. Bifurcati. Chaos, 28 (2018), 1850166. https://doi.org/10.1142/S0218127418501663 doi: 10.1142/S0218127418501663 |
[6] | Y. L. Li, D. M. Xiao, Bifurcations of a predator–prey system of Holling and Leslie types, Chaos, Soliton. Frac., 34 (2018), 606–620. https://doi.org/10.1016/j.chaos.2006.03.068 doi: 10.1016/j.chaos.2006.03.068 |
[7] | J. Zhang, J. Su, Bifurcations in a predator-prey model of Leslie-type with simplified Holling type IV functional response, Int. J. Bifurcat. Chaos, 31 (2021), 2150054. https://doi.org/10.1142/S0218127421500541 doi: 10.1142/S0218127421500541 |
[8] | W. Ding, W. Z. Huang, Global dynamics of a ratio-dependent Holling-Tanner predator-prey system, J. Math. Anal. Appl., 460 (2018), 458–475. https://doi.org/10.1016/j.jmaa.2017.11.057 doi: 10.1016/j.jmaa.2017.11.057 |
[9] | Z. Q. Liang, H. W. Pan, Qualitative analysis of a ratio-dependent Holling-Tanner model, J. Math. Anal. Appl., 334 (2007), 954–964. https://doi.org/10.1016/j.jmaa.2006.12.079 doi: 10.1016/j.jmaa.2006.12.079 |
[10] | M. A. Aziz-Alaoui, M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6 |
[11] | J. Giné, C. Valls, Nonlinear oscillations in the modified Leslie-Gower model, Nonlinear Anal. Real., 51 (2020), 103010. https://doi.org/10.1016/j.nonrwa.2019.103010 doi: 10.1016/j.nonrwa.2019.103010 |
[12] | Y. G. Lin, D. Q. Jiang, Long-time behavior of a stochastic predator-prey model with modified Leslie–Gower and Holling-type II schemes, Int. J. Biomath., 9 (2016), 1650039. https://doi.org/10.1142/S179352451650039X doi: 10.1142/S179352451650039X |
[13] | J. L. Xie, H. Y. Liu, D. F. Luo, The effects of harvesting on the dynamics of a Leslie-Gower model, Discrete Dyn. Nat. Soc., 2021 (2021), 5520758. https://doi.org/10.1155/2021/5520758 doi: 10.1155/2021/5520758 |
[14] | C. Xiang, J. C. Huang, H. Wang, Linking bifurcation analysis of Holling-Tanner model with generalist predator to a changing environment, Stud. Appl. Math., 149 (2022), 124–163. https://doi.org/10.1111/sapm.12492 doi: 10.1111/sapm.12492 |
[15] | D. Barman, J. Roy, S. Alam, Impact of wind in the dynamics of prey-predator interactions, Math. Comput. Simulat., 191 (2022), 49–81. https://doi.org/10.1016/j.matcom.2021.07.022 doi: 10.1016/j.matcom.2021.07.022 |
[16] | K. Chakraborty, M. Chakraborty, K. Tapan, Optimal control of harvest and bifurcation of a prey-predator model with stage structure, Appl. Math. Comput., 217 (2011), 8778–8792. https://doi.org/10.1016/j.amc.2011.03.139 doi: 10.1016/j.amc.2011.03.139 |
[17] | X. L. Liu, S. Q. Liu, Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model, Nonlinear Dynam., 67 (2012), 847–857. https://doi.org/10.1007/s11071-011-0030-6 doi: 10.1007/s11071-011-0030-6 |
[18] | R. Banerjee, P. Das, D. Mukherjee, Global dynamics of a Holling Type-III two prey-one predator discrete model with optimal harvest strategy, Nonlinear Dynam., 99 (2020), 3285–3300. https://doi.org/10.1007/s11071-020-05490-0 doi: 10.1007/s11071-020-05490-0 |
[19] | L. F. Cheng, H. J. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator–prey model with Allee effect, Commun. Nonlinear Sci., 38 (2016), 288–302. https://doi.org/10.1016/j.cnsns.2016.02.038 doi: 10.1016/j.cnsns.2016.02.038 |
[20] | M. Liu, F. W. Meng, D. P. Hu, Codimension-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model, Nonlinear Dynam., 110 (2022), 1831–1865. https://doi.org/10.1007/s11071-022-07694-y doi: 10.1007/s11071-022-07694-y |
[21] | W. Y. Liu, D. H. Cai, Bifurcation, chaos analysis and control in a discrete-time predator-prey system, Adv. Differ. Equ., 2019 (2019), 1–22. https://doi.org/10.1186/s13662-019-1950-6 doi: 10.1186/s13662-019-1950-6 |
[22] | Y. J. Sun, M. Zhao, Y. F. Du, Bifurcations, chaos analysis and control in a discrete predator-prey model with mixed functional responses, Int. J. Biomath., (2023), 2350028. https://doi.org/10.1142/S1793524523500286 |
[23] | J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons, UK, 2016. |
[24] | S. N. Elaydi, Discrete chaos: with applications in science and engineering, Chapman and Hall/CRC, New York, 2000. |
[25] | W. Li, X. Y. Li, Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput., 8 (2018), 1679–1693. https://doi.org/10.11948/2018.1679 doi: 10.11948/2018.1679 |
[26] | Y. Q. Liu, X. Y. Li, Dynamics of a discrete predator-prey model with Holling-II functional response, Int. J. Biomath., 14 (2021), 1–20. https://doi.org/10.1142/S1793524521500686 doi: 10.1142/S1793524521500686 |
[27] | Yu. A. Kuznetsov, Elements of applied bifurcation theory, Springer, New York, 2004. |
[28] | K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations, J. Differ. Equations, 185 (2002), 1–24. https://doi.org/10.1006/jdeq.2002.4177 doi: 10.1006/jdeq.2002.4177 |
[29] | Yu. A. Kuznetsov, H. G. E. Meijer, L. V. Veen, The fold-flip bifurcation, Int. J. Bifurcat. Chaos, 14 (2004), 2253–2282. https://doi.org/10.1142/S0218127404010576 doi: 10.1142/S0218127404010576 |
[30] | Q. L. Chen, Z. D. Teng, F. Wang, Fold-flip and strong resonance bifurcations of a discrete-time mosquito model, Chaos Solition. Fract., 144 (2021), 110704. https://doi.org/10.1016/j.chaos.2021.110704 doi: 10.1016/j.chaos.2021.110704 |
[31] | J. L. Ren, L. P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895–1931. https://doi.org/10.1007/s00332-016-9323-8 doi: 10.1007/s00332-016-9323-8 |
[32] | Yu. A. Kuznetsov, H. G. E. Meijer, Numerical bifurcation analysis of maps: from theory to software, Cambridge University Press, 2019. |
[33] | H. G. E. Meijer, W. Govaerts, Yu. A. Kuznetsov, R. K. Ghaziani, N. Neirynck, MatContM: a toolbox for continuation and bifurcation of cycles of maps: command line use, Universiteit Gent, Utrecht University, and University of Twente, 2017. |