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Abstract: In this paper, we work on the discrete modified Leslie type predator-prey model with
Holling type II functional response. The existence and local stability of the fixed points of this system
are studied. According to bifurcation theory and normal forms, we investigate the codimension 1 and 2
bifurcations of positive fixed points, including the fold, 1:1 strong resonance, fold-flip and 1:2 strong
resonance bifurcations. In particular, the discussion of discrete codimension 2 bifurcation is rare and
difficult. Our work can be seen as an attempt to complement existing research on this topic. In addition,
numerical analysis is used to demonstrate the correctness of the theoretical results. Our analysis of this
discrete system revealed quite different dynamical behaviors than the continuous one.
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1. Introduction

Mathematical biology has gradually become one of the hot spots and frontier topics in recent
decades. The advent of qualitative and quantitative analysis of biological models has made it possible
to move from understanding the underlying mechanisms of principles to analyzing them scientifically.
It provides a guarantee for making predictions about some biological phenomena. Analyzing species’
interactions is one of the research directions in mathematical biology. Generally, a network of
interacting species, called a trophic web, forms a complex structure. Each population of interacting
species is affected by the others [1]. Considering the interaction of two species, when the growth rate
of one population increases and the other’s decreases, these two species are in a predatory
relationship. Within a region, the two species with a predatory relationship may coexist or experience
the case of species extinction. These situations are of interest to biologists and mathematicians. Thus
they construct predator-prey models to research the predatory relationship.
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The general Leslie type predator-prey model is one of the most classical predator-prey models; it
has the following form { dx̄

dτ = rx̄
(
1 − x̄

k1

)
− p̄(x̄, ȳ)ȳ,

dȳ
dτ = sȳ

(
1 − ȳ

hx̄

)
,

(1.1)

where x̄ is the population of the prey and ȳ is the population of the predator. The parameters r and s
are intrinsic growth rates for the prey and predator populations, respectively. k1 reflects the carrying
capacity for prey and p̄(x̄, ȳ) is the functional response function which represents how the predator
deals with changes in the prey. hx̄ is the carrying capacity for the predator which is proportional to the
available prey.

Different functional response functions p̄(x̄, ȳ) have various effects on the dynamical properties
of system (1.1). The authors of [2–4] have considered that p̄(x̄, ȳ) is replaced by Holling type III
functional response. The case that p̄(x̄, ȳ) is Holling type IV functional response has been discussed
by the authors of [5–7]. The authors of [8, 9] have characterized the case that the functional response
function p̄(x̄, ȳ) is related to the predator and prey populations. In 2003, Aziz-Alaoui and Okiye [10]
modified system (1.1) by introducing Holling type II functional response and predator’s other food
sources. This model is given as follows: dx̄

dτ = x̄
(
r − r

k1
x̄ − mȳ

x̄+n

)
,

dȳ
dτ = ȳ

(
s − sȳ

hx̄+k2

)
,

(1.2)

where mȳ
x̄+n is Holling type II functional response. hx̄ + k2 is the carrying capacity for the predator

population and the term k2 stands for other food sources for the predator population. All parameters of
this system are positive.

Ever since system (1.2) was proposed, it has attracted many interested researchers. Giné and
Valls [11] discussed the nonlinear oscillations in system (1.2). Lin and Jiang [12] applied n = k2

h to
system (1.2), combined with stochastic perturbation. And, Xie et al. [13] investigated the case that
n = k2

h with the linear harvesting of two species. In particular, Xiang et al. [14] applied the following
scaling to system (1.2):

x̄ = k1x, ȳ = hk1y, τ =
t
r

and they obtained the following:  dx
dt = x(1 − x) − kxy

x+a1
,

dy
dt = by

(
1 − y

x+a2

)
,

(1.3)

where k = mh
r , b = s

r , a1 =
n
k1

and a2 =
k2
hk1

. They analyzed the codimension 2 and 3 bifurcations of
system (1.3). Moreover, in their work, a lot of valuable results were found by adding the changing
environment.

Besides the well-known continuous models, such as those described in [15–17], the discrete ones
have a profound influence and are equally noteworthy. The discrete systems are more applicable to
populations with non-overlapping generations, and they have many unique phenomena in addition to
the dynamics corresponding to the continuity. The bifurcation of discrete systems plays a key role.
When the bifurcation parameter is slightly perturbed near the critical value, the topology of the
discrete system changes. Then, it will exhibit a series of dynamic changes that deserve attention.
Especially, the study of the discrete codimension 2 bifurcations is more difficult and should receive
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attention. In the analysis of codimension 2 bifurcations, two independent coefficients of the difference
equation are selected as bifurcation parameters. Crossing the two-dimensional bifurcation curves can
cause the occurrence of some corresponding codimension 1 bifurcations. There are many attractive
results about the bifurcations in discrete systems, such as those described in [18–22]. Among them,
the authors of [21] discretized system (1.2) and analyzed its dynamics, which involved the
codimension 1 bifurcations and Marotto’s chaos. To the best of our knowledge, there are no works
about codimension 2 bifurcations of the discrete form of system (1.2). Thus, this issue is the major
research topic of our work.

There are many methods of obtaining the discrete form of continuous systems, such as the Runge-
Kutta, Taylor series and linear multistep methods. Although these are higher-accuracy methods, they
use more calculations, more past values or derivatives [23]. However, the Euler method is a traditional
and simple way. In particular, the stability of the Euler integrator is associated with the value of the
step size. When the step size of the Euler method is large, it may be possible to obtain dynamics that
are very different from those of the original continuous system. Chaos is also related to this artificially
induced instability [20].

Therefore, we apply the same scaling as in [14] to system (1.2) and use the Euler method. Then the
following model is obtained:  xn+1 = xn + dxn(1 − xn) − dkxnyn

x+a1
,

yn+1 = yn + dbyn
(
1 − yn

x+a2

)
,

(1.4)

where d is the step size and all parameters are positive. We provide the stability and bifurcation analysis
of system (1.4), and this paper is organized as follows. In Section 2, the existence and local stability of
fixed points are investigated mainly through the use of the stability theory and center manifold theorem.
In Section 3, we analyze the occurrence of codimension 1 and 2 bifurcations of the interior fixed
points, including fold bifurcation, 1:1 and 1:2 strong resonance bifurcations and fold-flip bifurcation.
Moreover, the results are demonstrated through numerical analysis in Section 4. A brief conclusion is
shown in Section 5.

2. The existence and stability of fixed points

From the following equations:  x = x + dx(1 − x) − dkxy
x+a1
,

y = y + dby
(
1 − y

x+a2

)
,

(2.1)

it is easy to know that system (1.4) has the trivial fixed point P0(0, 0) and the semitrivial fixed points
P1(1, 0), P2(0, a2). For the positive fixed points, we have the following assumptions.

(i) If k, a1, a2 ∈
{
a2 =

(1−k−a1)2+4a1
4k , k+a1 < 1

}
, then system (1.4) has a positive fixed point P3(x3, y3) =(1−k−a1

2 , 1−k−a1+2a2
2

)
.

(ii) If k, a1, a2 ∈
{ a1

k < a2 <
(1−k−a1)2+4a1

4k , k + a1 < 1
}
, then system (1.4) has two positive fixed points

P4,5(x4,5, y4,5) =
(

1−k−a1∓
√

(1−k−a1)2−4(ka2−a1)
2 ,

1−k−a1+2a2∓
√

(1−k−a1)2−4(ka2−a1)
2

)
.

(iii) If k, a1, a2 ∈
{
a2 ≤

a1
k , k + a1 < 1

}
, then system (1.4) has a unique positive fixed point P5(x5, y5).
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Next, we consider the stability of these fixed points and have the following propositions.

Proposition 1. The fixed point P0 is unstable and P1 is a saddle.

Proof. J(P0) and J(P1) are the Jacobian matrices of system (1.4) at P0 and P1, respectively, where

J(P0) =

1 + d 0

0 1 + bd

 (2.2)

and

J(P1) =

1 − d −kd
1+a1

0 1 + bd

 . (2.3)

Apparently, the eigenvalues associated with P0 satisfy that |λP0,1| = 1 + d > 1 and |λP0,2| = 1 + bd > 1.
λP1,1 = 1 − d and λP1,2 = 1 + bd are the eigenvalues associated with P1, where λP1,1 < 1 and λP1,2 > 1.
Hence, we know that the fixed point P0 is unstable and P1 is a saddle. □

Proposition 2. If a2 <
a1
k , then the fixed point P2 is a saddle. If a2 >

a1
k , then the fixed point P2 is

stable. And if a2 =
a1
k , then P2 is semi-stable from the left.

Proof. The Jacobian matrix of system (1.4) at P2 is

J(P2) =

1 + d − kda2
a1

0

bd 1 − bd

 . (2.4)

λP2,1 = 1 + d − kda2
a1

and λP2,2 = 1 − bd are the associated eigenvalues, where λP2,2 < 1. It follows from
a2 < (>) a1

k that |λP2,1| = 1 + d − kda2
a1
> (<)1. If a2 < (or >) a1

k , then the fixed point P2 is a saddle (or
stable).

When a2 =
a1
k , let un = xn and vn = yn −

a1
k . Thus, system (1.4) become as follows:

un+1 = un +
(
−d + d

a1

)
u2

n −
dk
a1

unvn +
dk
a2

1
u2

nvn −
d
a2

1
u3

n + O((|un| + |vn|)4),

vn+1 = bdun + (1 − bd)vn −
dbk
a1

u2
n +

dbk
a1

unvn −
dbk
a1

v2
n +

dbk2

a2
1

u3
n −

2dbk2

a2
1

u2
nvn

+dbk2

a2
1

unv2
n + O((|un| + |vn|)4).

(2.5)

Applying the invertible transformation (
un

vn

)
=

(
1 0
1 1

) (
Xn

Yn

)
(2.6)

to system (2.5), we get (
Xn+1

Yn+1

)
=

(
1 0
0 1 − db

) (
Xn

Yn

)
+

(
f (Xn,Yn)
g(Xn,Yn)

)
, (2.7)

where

f (Xn,Yn) =
d − dk − da1

a1
X2

n −
dk
a1

XnYn +
dk − d

a2
1

X3
n +

dk
a2

1

X2
nYn + O((|Xn| + |Yn|)4),
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g(Xn,Yn) =
da1 + dk − d − dbk

a1
X2

n −
dk − dbk

a1
XnYn −

dbk
a1

Y2
n +

d − dk
a2

1

X3
n

−
dk
a2

1

X2
nYn +

dbk2

a2
1

XnY2
n + O((|Xn| + |Yn|)4).

By the center manifold theorem, we assume that Yn = h(Xn) = αX2
n + βX

3
n + O(|Xn|

4). And the
equation

h(Xn + f (Xn,h(Xn))) − (1 − db)h(Xn) − g(Xn,h(Xn)) = 0

is ought to be satisfied. Then the coefficients α = a1+k−1−bk
ba1

and β = (3k−bk+2a1−2)(a1+k−1−bk)
a1b are calculated.

Substituting Yn = h(Xn) into (2.7), we obtain

Xn+1 = F (Xn) = Xn +
d − dk − da1

a1
X2

n +
d(k − 1 − ka1)(a1 + k − 1 − bk)

ba3
1

X3
n + O(|Xn|

4).

Naturally, we conclude that F ′(0) = 1 and F ′′(0) = 2d(1−k−a1)
a1

> 0. Hence, by the theory in [24], P2 is
an unstable fixed point and it is semi-stable from the left. □

Proposition 3. The fixed point P3 is non-hyperbolic.

Proof. The Jacobian matrix of system (1.4) at P3 is

J(P3) =
(
1 + dk(a1+k−1)

k−1−a1

dk(a1+k−1)
1−k+a1

bd 1 − bd

)
.

The associated eigenvalues are λP3,1 = 1 and λP3,2 =
k−1−kd+k2d+bd−kbd−a1+kda1+bda1

k−1−a1
. Therefore, P3 is

non-hyperbolic. □

In order to obtain the conditions that make the fixed point P5 (or P4) stable, we emphasize the
following lemma first.

Lemma 4. [25, 26] Let H(λ) = λ2 + Aλ + B, where A and B are two real constants. Suppose that λ1

and λ2 are two roots of H(λ) = 0. Then, the following statements are true.

(i) If H(1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if H(−1) > 0 and B < 1;
(i.2) λ1 = −1 and λ2 , −1 if and only if H(−1) = 0 and A , 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if H(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if H(−1) > 0 and B > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots, and |λ1| = |λ2| = 1 if and only if −2 < A < 2

and B = 1;
(i.6) λ1 = λ2 = −1 if and only if H(−1) = 0 and A = 2.

(ii) If H(1) = 0, namely, if 1 is one root of H(λ) = 0, then the other root λ satisfies that |λ| = (<, >)1
if and only if B = (<, >)1.

(iii) If H(1) < 0, then H(λ) = 0 has one root lying in (1,+∞). Moreover,

(iii.1) the other root λ satisfies that λ < (=) − 1 if and only if H(−1) < (=)0;
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(iii.2) the other root λ satisfies that −1 < λ < 1 if and only if H(−1) > 0.

Proposition 5. If conditions (2.9)–(2.11) are satisfied, then P5 is stable.

Proof. The Jacobian matrix of system (1.4) at P5 is

J(P5) =
(
1 + d − 2dx5 −

dka1(a2+x5)
(a1+x5)2

−dkx5
a1+x5

bd 1 − bd

)
. (2.8)

According to Lemma 4, we come to the result as follows. If

H(1) = 1 − Tr(J(P5)) + Det(J(P5)) = −bd2 + 2bd2x5 +
bd2ka1(a2 + x5)

(a1 + x5)2 +
bd2kx5

a1 + x5
> 0, (2.9)

H(−1) = 1 + Tr(J(P5)) + Det(J(P5))

= 4 + 2d − 2bd − bd2 +
kd(a1a2(bd − 2) + 2(bd − 1)a1x5 + bdx2

5)
(x5 + a1)2 − 4dx5 + 2bd2x5 > 0

(2.10)

and

Det(J(P5)) − 1 =
a1a2(bd − 1) + a1x5(2bd − 1) + bdx2

5

(a1 + x5)2 + d − bd − bd2 + 2dx5 + 2bd2x5 < 0 (2.11)

hold, then P5 is stable. □

Remark. The example with specific parameters given in Section 4 can intuitively illustrate this
proposition. The conditions for P4 stability are similar, so we omit them.

3. Bifurcation analysis

3.1. Bifurcations at P3

In this subsection, we discuss the codimension 1 and 2 bifurcations at P3. The coefficients that are
not listed explicitly in Subsection 3.1 will be given in Appendices A, B and C.

First, we focus on the case that b , −k(a1+k−1)
1−k+a1

and b , 2
d −

k(a1+k−1)
1−k+a1

, i.e., |λP3,1| = 1 and |λP3,2| , 1.
We derive the following theorem about the codimension 1 bifurcation of P3.

Theorem 6. If b , −k(a1+k−1)
1−k+a1

and b , 2
d −

k(a1+k−1)
1−k+a1

, then system (1.4) undergoes a fold bifurcation at P3.

Proof. a2 is chosen as the bifurcation parameter and a new variable. Let a2 =
(1−k−a1)2+4a1

4k + a∗f , where
a∗f is a sufficiently small perturbation. Then we transform P3 into (0, 0) by taking Un = xn − x3 and
Vn = yn − y3. Thus, system (1.4) can be expanded at the origin and we obtain the following form

Un+1

a∗f
Vn+1

 =

1 + dk(a1+k−1)

k−1−a1
0 dk(a1+k−1)

1−k+a1

0 1 0
bd bd 1 − bd



Un

a∗f
Vn

 +


f1(Un,Vn, a∗f )
0

g1(Un,Vn, a∗f )

 , (3.1)
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where

f1(Un,Vn, a∗f ) =
(
−d +

2da1(1 + a1 + k)
(1 − k + a1)2

)
U2

n −
4dka1

(1 − k + a1)2 UnVn + O((|Un| + |Vn| + |a∗f |)
3),

g1(Un,Vn, a∗f ) =
−8dkb

(a1 + 1)2 − k2 Una∗f +
8dkb

(a1 + 1)2 − k2 Vna∗f −
4dkb

(a1 + 1)2 − k2 U2
n +

8dkb
(a1 + 1)2 − k2 UnVn

−
4dkb

(a1 + 1)2 − k2 V2
n + O((|Un| + |Vn| + |a∗f |)

3).

Denote Q =
dk(a1+k−1)

1−k+a1
and λ2 =

k−1−kd+k2d+bd−kbd−a1+kda1+bda1
k−1−a1

. Applying the following invertible
transformation to system (3.1):


Un

a∗f
Vn

 =

1 1 Qλ2

0 1
db +

1
Q 0

1 1 + 1
Q −dbλ2



X f ,n

a f

Y f ,n

 (3.2)

then we have 
X f ,n+1

a f

Y f ,n+1

 =

1 1 0
0 1 0
0 0 λ2



X f ,n

a f

Y f ,n

 +


f2(X f ,n,Y f ,n, a f )
0

g2(X f ,n,Y f ,n, a f )

 , (3.3)

where

f2(X f ,n,Y f ,n, a f ) = ǎ20X2
f ,n + ǎ11X f ,nY f ,n + ǎ02Y2

f ,n + ǎ1X f ,na f + ǎ2Y f ,na f + ǎ3a2
f + O((|X f ,n| + |Y f ,n| + |a f |)3),

g2(X f ,n,Y f ,n, a f ) = b̌02Y2
f ,n + b̌1X f ,na f + b̌2Y f ,na f + b̌3a2

f + O((X f ,n| + |Y f ,n| + |a f |)3).

According to the center manifold theorem, Y f ,n = H (X f ,n, a f ) = h1X2
f ,n + h2X f ,na f + h3a2

f +

O((|X f ,n| + |a f |)3) is assumed and the equation

H (X f ,n + a f + f2(X f ,n,H (X f ,n, a f ), a f ), a f ) − λ2H (X f ,n, a f ) − g2(X f ,n,H (X f ,n, a f ), a f ) = 0

should be satisfied. We calculate that h1 = 0, h2 =
b̌1

1−λ2
and h3 =

b̌3(1−λ2)
(1−λ2)2+b̌1

. Then substituting
Y f ,n =H (X f ,n, a f ) into (3.3), we attain

X f ,n+1 = F̄ (X f ,n, a f ) = X f ,n + a f + ǎ20X2
f ,n + ǎ1X f ,na f + ǎ3a2

f + O((|X f ,n| + |a f |)3).

Naturally, F̄ (0, 0) = 0, ∂F̄
∂X f ,n

(0, 0) = 1, ∂F̄
∂a f

(0, 0) = 1 and ∂2F̄
∂X2

f ,n
(0, 0) = 2d(a1+k−1)

1−k+a1
, 0 are calculated.

Hence, system (1.4) undergoes a fold bifurcation at P3. □

When b = −k(a1+k−1)
1−k+a1

or b = 2
d −

k(a1+k−1)
1−k+a1

, the eigenvalues corresponding to P3 satisfy that |λP3,1| =

|λP3,2| = 1. Therefore, we next investigate the codimension 2 bifurcations at P3 in Theorems 7 and 8.

Theorem 7. If the conditions (k−1)2 , a1(3k−1), a1(a1+4k) and detDγV(0) , 0 hold, then system (1.4)
undergoes a 1:1 strong resonance bifurcation at P3. Denote that γ = {b∗R1, a

∗
R1} and {b, a2} is a small

neighborhood of {bR1, aR1}, where b = bR1 + b∗R1, a2 = aR1 + a∗R1, bR1 =
−k(a1+k−1)

1−k+a1
and aR1 =

(1−k−a1)2+4a1
4k .

When |γ| is sufficiently small, the following local dynamics exist:
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1) There is a fold bifurcation that occurs on

V1(γ) =
1
4

V2
2 (γ) + O(|γ|3)

in the γ-space.
2) For one of the fixed points born at the fold bifurcation of 1), there is a Neimark-Sacker bifurcation

that occurs on
V1(γ) = O(|γ|3), V2(γ) + O(|γ|2) < 0

in the γ-space. Moreover, the invariant closed curve of the Neimark-Sacker bifurcation is
attracting (repelling) if

b̄20(0)(ā20(0) + b̄11(0) − b̄20(0)) < 0 (> 0).

3) There is a homoclinic bifurcation at which the stable and unstable manifolds of the saddle point
born at the fold bifurcation of 1) occurs on two curves H1,2 and has the asymptotic form:

V1(γ) = −
6

25
V2

2 (γ) + O(|γ|3), V2(γ) + O(|γ|2) < 0

in the γ-space. The distance between two homoclinic bifurcation curves H1,2 is exponentially
small with regard to

√
|γ|.

The above-described curves and phase portraits are shown schematically in Figure 1.

③ ②

①

④

⑤

�

�2

+

�

� �

�1

�2

(a)

②① �1③

④ �2 ⑤

(b)

Figure 1. (a) Bifurcation curves; (b) corresponding phase portraits.

Proof. Let b = bR1+b∗R1, a2 = aR1+a∗R1, ūn = xn− x3 and v̄n = yn−y3; then, we can expand system (1.4)
at (0, 0) as follows(

ūn+1

v̄n+1

)
=

 1 + dk(a1+k−1)
k−1−a1

dk(a1+k−1)
1−k+a1

dbR1 + db∗R1 −
2dbR1a∗R1
x3+aR1

1 − dbR1 − da∗R1 +
2dbR1a∗R1
x3+aR1

 (ūn

v̄n

)
+

(
f̄1(ūn, v̄n)
ḡ1(ūn, v̄n)

)
(3.4)

where

f̄1(ūn, v̄n) =
(
−d +

2da1(1 + k + a1)
(1 − k + a1)2

)
ū2

n −
4dka1

(1 − k + a1)2 ūnv̄n + O((|ūn| + |v̄n|)3),
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ḡ1(ūn, v̄n) =
−d(bR1 + b∗R1)y2

3

(x3 + aR1 + a∗R1)3 ū2
n +

2d(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 ūnv̄n −
d(bR1 + b∗R1)

x3 + aR1 + a∗R1
v̄2

n + O((|ūn| + |v̄n|)3).

Denote that Q = dk(a1+k−1)
1−k+a1

and JR1(γ) is the Jacobian matrix of system (3.4) at the origin. When
b∗R1 = a∗R1 = 0, the two eigenvalues of JR1(0) are λ̄1 = λ̄2 = 1. We can select the following linearly
independent eigenvectors (generalized eigenvectors):

p̄0 =

(
1
1

)
, p̄1 =

(
0
1
Q

)
, q̄1 =

(
1
0

)
, q̄0 =

(
−Q
Q

)
, (3.5)

which satisfy the following equations

JR1(0) p̄0 = p̄0, JR1(0)p̄1 = p̄0 + p̄1, JT
R1(0)q̄1 = q̄1, JT

R1(0)q̄0 = q̄0 + q̄1,

⟨p̄0, q̄0⟩ = ⟨p̄1, q̄1⟩ = 1, ⟨p̄1, q̄0⟩ = ⟨p̄0, q̄1⟩ = 0,

where the symbol ⟨∗, ∗⟩ stands for the standard scalar product in R2. Then, we can construct the
invertible transformation (

ūn

v̄n

)
= l̄n p̄0 + m̄n p̄1 =

(
1 0
1 1

Q

) (
l̄n

m̄n

)
(3.6)

to simplify the linear part of system (3.4). And, the following equations are deduced: l̄n =
〈
q̄0, (ūn, v̄n)T

〉
= ūn,

m̄n =
〈
q̄1, (ūn, v̄n)T

〉
= −Qūn + Qv̄n.

(3.7)

Under these new coordinates, system (3.4) becomes(
l̄n+1

m̄n+1

)
=

(
1 1
0 1

) (
l̄n

m̄n

)
+

(
ā00(γ) + f̄2(l̄n, m̄n)
b̄00(γ) + ḡ2(l̄n, m̄n)

)
, (3.8)

where

f̄2(l̄n, m̄n) = ā10(γ)l̄n + ā01(γ)m̄n +
1
2

ā20(γ)l̄2
n + ā11(γ)l̄nm̄n +

1
2

ā02(γ)m̄2
n + O((|l̄n| + |m̄n|)3),

ḡ2(l̄n, m̄n) = b̄10(γ)l̄n + b̄01(γ)m̄n +
1
2

b̄20(γ)l̄2
n + b̄11(γ)l̄nm̄n +

1
2

b̄02(γ)m̄2
n + O((|l̄n| + |m̄n|)3),

and ā00(0) = ā10(0) = ā01(0) = b̄00(0) = b̄10(0) = b̄01(0) = 0.
According to Lemma 9.6 [27], system (3.8) can be written in the following form if |γ| is sufficiently

small: (
l̄n+1

m̄n+1

)
7→ φ1

γ(l̄n, m̄n) + O((|l̄n| + |m̄n|)3), (3.9)

where φ1
γ(l̄n, m̄n) is the flow of the planar system( ˙̄l

˙̄m

)
=

(
0 1
0 0

) (
l̄
m̄

)
+

(
c̄00(γ) + f̄3(l̄, m̄)
d̄00(γ) + ḡ3(l̄, m̄)

)
, (3.10)
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where

f̄3(l̄, m̄) = c̄10(γ)l̄ + c̄01(γ)m̄ +
1
2

c̄20(γ)l̄2 + c̄11(γ)l̄m̄ +
1
2

c̄02(γ)m̄2,

ḡ3(l̄, m̄) = d̄10(γ)l̄ + d̄01(γ)m̄ +
1
2

d̄20(γ)l̄2 + d̄11(γ)l̄m̄ +
1
2

d̄02(γ)m̄2.

Especially, c̄00(0) = c̄10(0) = c̄01(0) = d̄00(0) = d̄10(0) = d̄01(0) = 0.
By calculation, the nondegeneracy condition d̄20(0) = b̄20(0) = 2dQ − 4da1(1+k+a1)Q

(1−k+a1)2 , 0 is equal to

(k − 1)2 , a1(3k − 1). (3.11)

And, the following equivalence relationship is deduced:

c̄20(0) + d̄11(0) = −d(1 + 2Q)
(1 − k + a1)2 − 2(1 + k + a1)

(1 − k + a1)2 , 0⇔ (k − 1)2 , a1(a1 + 4k). (3.12)

Suppose that conditions (3.11) and (3.12) hold. According to Lemma 3.2 [28], we get the new system{
ϑ̇1 = ϑ2,

ϑ̇2 = V1(γ) + V2(γ)ϑ1 + ϑ
2
1 + sϑ1ϑ2,

(3.13)

by applying the analytic changes of coordinates and a scaling of time to system (3.10), where s =
sign[d̄20(0)(c̄20(0) + d̄11(0))] = ±1 and

V1(γ) =
8A4

0A1(γ)

(b̄20(0))3
−

8A3
0A2(γ)A3(γ)

(b̄20(0))3
+

4A2
0A2

2(γ)

(b̄20(0))2
+ O(|γ|3),

V2(γ) =
4A2

0A4(γ)

(b̄20(0))2
−

4A0A2(γ)
b̄20(0)

+ O(|γ|2).

Further, a series of complex calculations provide that

detDγV(0) =
64

k2(k − a1 − 1)5(k + a1 − 1)2(1 + k2 − a2
1 − 2k(1 + 2a1)4)

×(
(a1 + 1)2(a1 − 1) + k(1 + a1)(3 + 5a1 + d(a1 − 1)2)

+ k3(3da1 + 3d + 1) − k4d − k2(3d + 3da1 − 5da2
1 + 7a1 + 3)

)
.

(3.14)

If conditions (3.11) and (3.12) and the transversality condition detDγV(0) , 0 hold, then
system (3.13) is the versal unfolding of the Bogdanov-Takens singularity of codimension 2. Referring
to Proposition 3.1 [28], the existence of 1:1 strong resonance bifurcation of system (1.4) is
obtained. □

Theorem 8. Assume that d , 2(1−k+a1)
k(a1+k−1) and d , a1(k+4+4a1)

2k(a2
1−(k−1)2) . The fold-flip bifurcation of system (1.4)

occurs at P3 when {b, a2} varies in a sufficiently small neighborhood of {b f f , a f f }, where b f f =
2
d −

k(a1+k−1)
1−k+a1

and a f f =
(1−k−a1)2+4a1

4k . Furthermore, there are the following local dynamical behaviors taking
place:
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1) There exists a nondegenerate fold bifurcation on the curve
(X̂, Ŷ , α1) =

(
−α2
Â(0)
+ O

(
α2

2
)
, 0, α2

2

2Â(0)+O
(
α3

2

)).
2) There exists a nondegenerate flip bifurcation on the curve (X̂, Ŷ , α1) = (0, 0, 0).
3) If B̂(0) > 0, α1 < 0 and (Â(0))2B̂(0) + 3Â(0)B̂(0) + Â(0)D̂(0) − B̂(0)Ĉ(0) , 0, then there exists a

nondegenerate Neimark-Sacker bifurcation of the second iteration of system (3.17) on the curve

(X̂, Ŷ , α2) =
(
0,

√
−2α1
B̂(0)
+ O

(
α

2
3
1
)
,
α2

1(D̂(0)+2B̂(0))
B̂(0)

+ O
(
α2

1
) )

.

Proof. We select b and a2 as bifurcation parameters. Denote b = b f f + b∗f f , a2 = a f f + a∗f f and
µ = {a∗f f , b

∗
f f }. By the transformations ûn = xn − x3 and v̂n = yn − y3, system (1.4) can be rewritten in

the following form (
ûn+1

v̂n+1

)
=

(
â10(µ) â01(µ)
b̂10(µ) b̂01(µ)

) (
ûn

v̂n

)
+

(
â00(µ) + f̂1(ûn, v̂n)
b̂00(µ) + ĝ1(ûn, v̂n)

)
, (3.15)

where

f̂1(ûn, v̂n) = â20(µ)û2
n + â11(µ)ûnv̂n + â30(µ)û3

f f ,n + â21(µ)û2
nv̂n + O((|v̂n| + |v̂n|)4),

ĝ1(ûn, v̂n) = b̂20(µ)û2
n + b̂11(µ)ûnv̂n + b̂02(µ)v̂2

n + b̂30(µ)û3
n + b̂21(µ)û2

nv̂n + b̂12(µ)ûnv̂2
n + O((|v̂n| + |v̂n|)4).

Define that J f f (µ) is the Jacobian matrix of system (3.15) at (0, 0). Then, the associated eigenvalues
are λ̂1(µ) = 1 and

λ̂2(µ) = −1 +
(16k(1 + a1) − 8dk3 − 8k2(2 − d + da1))a∗f f

(k − 1 − a1)(a2 − (1 + a1)2)

+
(d(1 + a1)3 + dk(1 + a1)2 − dk3 + dk2(1 + a1))b∗f f

(k − 1 − a1)(a2 − (1 + a1)2)
≜ −1 + A1a∗f f + A2b∗f f .

The vectors p̂1(µ) (or q̂1(µ)) and p̂2(µ) (or q̂2(µ)) are the eigenvectors of J f f (µ) (or JT
f f (µ)) belonging

to the eigenvalues λ̂1(µ) and λ̂2(µ), respectively, such that J f f (µ)p̂1(µ) = λ1(µ) p̂1(µ), JT
f f (µ)q̂1(µ) =

λ1(µ)q̂1(µ), J f f (µ) p̂2(µ) = λ2(µ)p̂2(µ) and JT
f f (µ)q̂2(µ) = λ2(µ)q̂2(µ). By calculation, we can choose a

set of vectors

p̂1(µ) =
(
1
1

)
, p̂2(µ) =

(
−â01(µ)

â10(µ) + 1 − A1a∗f f − A2b∗f f

)
,

q̂1(µ) = l1

(
−b̂10(µ)

â10(µ) − 1

)
, q̂2(µ) = l2

(
−b̂10(µ)

â10(µ) + 1 − A1a∗f f − A2b∗f f

)
,

satisfying that ⟨p̂1(µ), q̂1(µ)⟩ = ⟨p̂2(µ), q̂2(µ)⟩ = 1 and ⟨p̂1(µ), q̂2(µ)⟩ = ⟨p̂2(µ), q̂1(µ)⟩ = 0, where

l1 =
2

1 − â10(µ) + b̂10(µ)
, l2 =

1

−â01(µ)b̂10(µ)(â10(µ) + 1 − A1a∗f f − A2b∗f f )
2
.

For simplification of the linear part of system (3.15), we express (ûn, v̂n)T as the linear combination of
eigenvectors, as follows: (

ûn

v̂n

)
= l̂n p̂1(µ) + m̂n p̂2(µ)
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and have the following new coordinates: l̂n =
〈
q̂1(µ), (ûn, v̂n)T

〉
,

m̂n =
〈
q̂2(µ), (ûn, v̂n)T

〉
.

Under the coordinates (l̂n, m̂n)T , system (3.15) has the following form{
l̂n+1 = ĉ00(µ) + λ̂1(µ)l̂n + f̂2(l̂n, m̂n),
m̂n+1 = d̂00(µ) + λ̂2(µ)m̂n + ĝ2(l̂n, m̂n),

(3.16)

where

f̂2(l̂n, m̂n) =
1
2

ĉ20(µ)l̂2
n + ĉ11(µ)l̂nm̂n +

1
2

ĉ02(µ)m̂2
n +

1
6

ĉ30(µ)l̂3
n +

1
2

ĉ(µ)21l̂2
nm̂n +

1
2

ĉ12(µ)l̂nm̂2
n

+
1
6

ĉ03(µ)m̂3
n + O((|l̂n| + |m̂n|)4),

ĝ2(l̂n, m̂n) =
1
2

d̂20(µ)l̂2
n + d̂11(µ)l̂nm̂n +

1
2

d̂02(µ)m̂2
n +

1
6

d̂30(µ)l̂3
n +

1
2

d̂21(µ)l̂2
nm̂n +

1
2

d̂12(µ)l̂nm̂2
n

+
1
6

d̂03(µ)m̂3
n + O((|l̂n| + |m̂n|)4).

Assume that Q = dk(a1+k−1)
1−k+a1

, 2, i.e., d , 2(1−k+a1)
k(a1+k−1) ; the coefficients ĉ00(µ), d̂00(µ), λ̂1(µ) and λ̂2(µ) can

be expanded as follows

ĉ00(µ) = a1a∗f f +a2b∗f f + O(||µ||2), λ1(µ) = 1 +a3a∗f f +a4b∗f f + O(||µ||2),

d̂00(µ) = c1a∗f f + c2b∗f f + O(||µ||2), λ2(µ) = −1 + c3a∗f f + c4b∗f f + O(||µ||2),

where

a1 =
d2b f f k(a1 + k − 1)

k − a1 − 1
, a2 = 0, a3 = 0, a4 = 0, c1 =

1
Q(Q − 2)

,

c2 = 0, c3 = −A1, c4 = −A2.

Supposing that M = 2dQ − dka1
(1−k+a1)2 −

4da1(1+a1)
(1−k+a1)2 , 0, i.e., d , a1(k+4+4a1)

2k(a2
1−(k−1)2) , it is easy to obtain that

d̂11(0) = M
Q(2−Q) , 0,

△ =

(
2a2c3ĉ20(µ)

ˆd11(µ)

)∣∣∣∣∣∣
µ=0

=
4dA2Q2(1 − k − a1)(2 − Q)3

M(a1 − k + 1)
, 0

and 4 ˆd11(0)△ , 0. Therefore, according to Proposition 2.1.3 [29], system (3.16) is smoothly equivalent
to the following:

X̂n+1 = α1 + (1 + α2)X̂n +
1
2 Â(α)X̂2

n +
1
2 B̂(α)Ŷ2

n +
1
6Ĉ(α)X̂3

n +
1
2 D̂(α)X̂nŶ2

n

+O((|X̂n| + |Ŷn|)4),
Ŷn+1 = −Ŷn + X̂nŶn + O((|X̂n| + |Ŷn|)4),

(3.17)
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where

α1 =
d2b f f k(a1 + k − 1)

k − a1 − 1
a∗f f + O(||µ||2),

α2 =

(
2Q
M

(
d −

2da1

a1 − k + 1

)
(2 − Q)2

( 32
(a1 + k)2 − 1

− 2A1 −
2M

Q2(2 − Q)2

)
+

M
Q

)
a∗f f

−
4A2Q

M

( 2da1

a1 − k + 1
− d

)
(2 − Q)2b∗f f + O(||µ||2).

And considering the critical state, we have

Â(0) =
ĉ20(0)

d̂11(0)
=

2Qd(1 − k − a1)(2 − Q)2

M(a1 − k + 1)
, B̂(0) = ĉ02(0)d̂11(0) =

2Md(1 − k − a1)
Q(a1 − k + 1)

,

Ĉ(0) =
1

(d̂11(0))2

(
ĉ30(0) +

3
2

ĉ11(0)d̂20(0)
)
=

(2 − Q)2

Q2M2

(24da1(2 − Q)
(1 − k + a1)2 +

3d(1 − k − a1)M
Q(a1 − k + 1)

)
,

D̂(0) =
1

6d̂11(0)
(3ĉ02(0)(d̂02(0)d̂20(0) + 2d̂21(0) − 2ĉ11(0)d̂20(0)) − ĉ20(0)(3(d̂02(0))2

+ 2d̂03(0))) − (ĉ11(0))2 + ĉ12(0) +
1
2

ĉ11(0)d̂02(0) − (d̂02(0))2 −
2
3

d̂03(0).

Apparently, Â(0) and B̂(0) are not equal to zero because k + a1 < 1.
By the knowledge of the local codimension 1 bifurcation in [29] and [30], we know the following:

1) If Â(0) , 0, then there exists a nondegenerate fold bifurcation on the curve (X̂, Ŷ , α1) =
(
−α2
Â(0)
+

O
(
α2

2
)
, 0, α2

2

2Â(0)+O
(
α3

2

)).
2) If B̂(0) , 0, then there exists a nondegenerate flip bifurcation on the curve (X̂, Ŷ , α1) = (0, 0, 0).
3) If B̂(0) > 0, α1 < 0 and (Â(0))2B̂(0) + 3Â(0)B̂(0) + Â(0)D̂(0) − B̂(0)Ĉ(0) , 0, then there exists a

nondegenerate Neimark-Sacker bifurcation of the second iteration of system (3.17) on the curve

(X̂, Ŷ , α2) =
(
0,

√
−2α1
B̂(0)
+ O

(
α

2
3
1
)
,
α2

1(D̂(0)+2B̂(0))
B̂(0)

+ O
(
α2

1
) )

.

We summarize the results in Theorem 8. In addition, the schematic diagrams of bifurcation curves and
phase portraits classfied by different values of Â(0) and B̂(0) can be found on pp. 476–478 in [27]. □

3.2. Bifurcations at P5

If k, a1, a2 ∈
{ a1

k < a2 <
(1−k−a1)2+4a1

4k , k + a1 < 1
}
, then system (1.4) has two positive fixed points

P4,5(x4,5, y4,5). When a2 decreases to a1
k (or is less than it), P4 is not positive and system (1.4) has the

unique interior fixed point P5. Because of the different levels of details, in this work, we consider the
bifurcations at P5 when k, a1, a2 ∈

{
a2 ≤

a1
k , k + a1 < 1

}
. The coefficients that are not listed explicitly in

this subsection will be given in Appendix D.

Theorem 9. Suppose that 2a1(bR2+d)2−6a1+ (bR2)2d2x5 , 0, Ã1(0) , 0 and B̃1(0) , 0. If {k, b} varies
in a sufficiently small neighborhood of {kR2, bR2}, then system (1.4) undergoes a 1:2 strong resonance
bifurcation at P5 , where

kR2, bR2 ∈

{
d − 2dx5 − bR2d − bR2d2 + 2bR2d2x5 −

dkR2a1(a2 + x5)
(x5 + a1)2 +

d2kR2bR2(2a1x5 + a1a2 + x2
5)

(x5 + a1)2 = 0,
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1 − bR2 − 2x5 −
ka1(a2 + x5)
(a1 + x5)2 +

4
d
= 0

}
.

Moreover, the following dynamics take place in system (1.4):

(i) there exists a flip bifurcation curve {(s1, s2) : s1 = 0};
(ii) there exists the nondegenerate Neimark-Sacker bifurcation curve {(s1, s2) : s2 = 0, s1 < 0};

(iii) there is a heteroclinic bifurcation curve {(s1, s2) : s2 =
−5s1

3 + o(s1), s1 < 0}.

Proof. Let k = kR2 + k∗R2 and b = bR2 + b∗R2. By taking ũn = xn − x5 and ṽn = yn − y5, P5 is transformed
to (0, 0). Then, system (1.4) has the following new form

ũn+1 = k̃10(θ)ũn + k̃01(θ)ṽn + k̃20(θ)ũ2
n + k̃11(θ)ũnṽn + k̃30(θ)ũ3

n + k̃21(θ)ũ2
nṽn + O((|ũn| + |ṽn|)4),

ṽn+1 = r̃10(θ)ũn + r̃01(θ)ṽn + r̃20(θ)ũ2
n + r̃11(θ)ũnṽn + r̃02(θ)ṽ2

n + r̃30(θ)ũ3
n + r̃21(θ)ũ2

nṽn + r̃12(θ)ũnṽ2
n

+O((|ũn| + |ṽn|)4),
(3.18)

where θ = {k∗R2, b
∗
R2}. The Jacobian matrix of system (3.18) is

JR2(θ) =
1 + d(1 − 2x5) − d(kR2+k∗R2)y5a1

(x5+a1)2 −
d(kR2+k∗R2)y5

x5+a1

d(bR2 + b∗R2) 1 − d(bR2 + b∗R2)

 .
When k∗R2 = b∗R2 = 0, we have

JR2(0) =
(
1 + d(1 − 2x5) − dkR2y5a1

(x5+a1)2
−dkR2y5
x5+a1

dbR2 1 − dbR2

)
≜

(
1 + a11 a12

dbR2 1 − dbR2

)
.

The associated eigenvalues are λ̃1 = λ̃2 = −1. By calculations, we can choose a set of eigenvectors and
generalized eigenvectors

q̃0 =

(
dbR2 − 2

dbR2

)
, q̃1 =

(
1
0

)
, p̃1 =

(
1

a12
dbR2−2

)
, p̃0 =

(
0
−a12

(dbR2−2)2

)
,

such that

JR2(0)q̃0 = −q̃0, JR2(0)q̃1 = −q̃1 + q̃0, JT
R2(0)p̃1 = −p̃1, JT

R2(0)p̃0 = −p̃0 + p̃1,

⟨ p̃0, q̃0⟩ = ⟨ p̃1, q̃1⟩ = 1 and ⟨ p̃1, q̃0⟩ = ⟨ p̃0, q̃1⟩ = 0.

Construct the transformation(
ũn

ṽn

)
= l̃nq̃0 + m̃nq̃1 =

(
dbR2 − 2 1

dbR2 0

) (
l̃n

m̃n

)
. (3.19)

Then, the new coordinates are given by l̃n =
〈
p̃0(µ), (ũn, ṽn)T

〉
,

m̃n =
〈
p̃1(µ), (ũn, ṽn)T

〉
.

(3.20)
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Applying (3.19) and (3.20) to system (3.18), we obtain(
l̃n+1

m̃n+1

)
=

(
−1 + ã(θ) 1 + b̃(θ)

c̃(θ) −1 + d̃(θ)

) (
l̃n

m̃n

)
+

(
f̃1(l̃n, m̃n)
g̃1(l̃n, m̃n)

)
, (3.21)

where

f̃1(l̃n, m̃n) = ã20(θ)l̃2
n + ã11(θ)l̃nm̃n + ã02(θ)m̃2

n + ã30(θ)l̃3
n + ã21(θ)l̃2

nm̃n + ã12(θ)l̃nm̃2
n + ã03(θ)m̃3

n

+ O((|l̃n| + |m̃n|)4)
g̃1(l̃n, m̃n) = b̃20(θ)l̃2

n + b̃11(θ)l̃nm̃n + b̃02(θ)m̃2
n + b̃30(θ)l̃3

n + b̃21(θ)l̃2
nm̃n + b̃12(θ)l̃nm̃2

n + b̃03(θ)m̃3
n

+ O((|l̃n| + |m̃n|)4).

To further simplify the linear part of system (3.21), the following non-singular linear coordinate
transformation is applied to this system:(

l̃n

m̃n

)
=

bR2+b∗R2
bR2

0
2b∗R2
bR2

1

 (X̃n

Ỹn

)
.

Then, we have the following system:(
X̃n+1

Ỹn+1

)
=

(
−1 1
ε̃(θ) −1 + δ̃(θ)

) (
X̃n

Ỹn

)
+

(
f̃2(X̃n, Ỹn)
g̃2(X̃n, Ỹn)

)
(3.22)

where

f̃2(X̃n, Ỹn) = c̃20(θ)X̃2
n + c̃11(θ)X̃nỸn + c̃02(θ)Ỹ2

n + c̃30(θ)X̃3
n + c̃21(θ)X̃2

n Ỹn + c̃12(θ)X̃nỸ2
n + c̃03(θ)Ỹ3

n

+ O((|X̃n| + |Ỹn|)4),
g̃2(X̃n, Ỹn) = d̃20(θ)X̃2

n + d̃11(θ)X̃nỸn + d̃02(θ)Ỹ2
n + d̃30(θ)X̃3

n + d̃21(θ)X̃2
n Ỹn + d̃12(θ)X̃nỸ2

n + d̃03(θ)Ỹ3
n

+ O((|X̃n| + |Ỹn|)4).

When k∗R2 = 0 and b∗R2 = 0, we have

det
(
ε̃k∗R2

(0) ε̃b∗R2
(0)

δ̃k∗R2
(0) δ̃b∗R2

(0)

)
=

dy5(2a1(b2
R2d2 − 2) − 6a1 + (bR2)2d2x5)

bR2(a1 + x5)2 . (3.23)

Supposing that 2a1(b2
R2d2 − 2)− 6a1 + (bR2)2d2x5 , 0, (3.23) is not equal to zero. It means that the map

{k∗R2, b
∗
R2} → {ε̃(θ), δ̃(θ)} is regular when k∗R2 = b∗R2 = 0. Therefore, we can transform θ = {k∗R2, b

∗
R2} to

ζ = {ζ1, ζ2}, where ζ1 = ε̃(θ) and ζ2 = δ̃(θ). The perturbations k∗R2 and b∗R2 can be seen as the functions
of ζ1 and ζ2 as follows

k∗R2 = ϕ1(ζ)

=
(a1 + x5)2bR2

4bR2QR2d2y5(2a1 + x5)

(
d2(2a1 + x5)y5

(a1 + x5)2 (2ζ2bR2 + 2(bR2)2 + (bR2)3d)

+ 4PR2 +

(
8((bR2)2d − 2bR2 + 8)(ζ2PR2 − ζ1QR2)

d2bR2(2a1 + x5)y5

(a1 + x5)2 +
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(
PR2(4 − 2bR2 + (bR2)2d) −

2bR2d2(2a1 + x5)y5ζ2
(a1 + x5)2

)2
bR2QR2(bR2d − 2)

) 1
2
)
,

b∗R2 = ϕ2(ζ) =
QR2

d
k∗R2 −

ζ2
d
=

QR2

d
ϕ1(ζ) −

ζ2
d
,

where PR2 =
−d2bR2y5(2a1+x5)+2dy5a1

(x5+a1)2 , QR2 =
−dy5a1

(x5+a1)2 and MR2 =
−1
bR2

. With {ζ1, ζ2}, system (3.22) can be
expressed as (

X̃n+1

Ỹn+1

)
=

(
−1 1
ζ1 −1 + ζ2

) (
X̃n

Ỹn

)
+

(
f̃3(X̃n, Ỹn)
g̃3(X̃n, Ỹn)

)
(3.24)

where

f̃3(X̃n, Ỹn) = g̃20(ζ)X̃2
n + g̃11(ζ)X̃nỸn + g̃02(ζ)Ỹ2

n + g̃30(ζ)X̃3
n + g̃21(ζ)X̃2

n Ỹn

+ g̃12(ζ)X̃nỸ2
n + g̃03(ζ)Ỹ3

n + O((|X̃n| + |Ỹn|)4),
g̃3(X̃n, Ỹn) = h̃20(ζ)X̃2

n + h̃11(ζ)X̃nỸn + h̃02(ζ)Ỹ2
n + h̃30(ζ)X̃3

n + h̃21(ζ)X̃2
n Ỹn

+ h̃12(ζ)X̃nỸ2
n + h̃03(ζ)Ỹ3

n + O((|X̃n| + |Ỹn|)4).

According to Lemma 9.8 [27], system (3.24) can be rewritten as(
L̃n+1

M̃n+1

)
=

(
−1 1
ζ1 −1 + ζ2

) (
L̃n

M̃n

)
+

(
0

Ã(ζ)L̃3
n + B̃(ζ)L̃2

nM̃n

)
+ O((|L̃n| + |M̃n|)4), (3.25)

where

Ã(0) = h̃30(0) + g̃20(0)h̃20(0) +
(h̃20(0))2

2
+

h̃20(0)h̃11(0)
2

,

B̃(0) = h̃21(0) + 3g̃30(0) +
g̃20(0)h̃11(0)

2
+

5h̃20(0)h̃11(0)
4

+ h̃20(0)h̃02(0) + 3(g̃20(0))2 +
5g̃20(0)h̃20(0)

2

+
5g̃11(0)h̃20(0)

2
+ (h̃20(0))2 +

(h̃11(0))2

2
.

Obviously, the linear part of system (3.25) is (
−1 1
0 −1

)
(3.26)

when ζ1 = ζ2 = 0. Because the eigenvalues of matrix (3.26) are negative, it is impossible to
approximate system (3.25) by a flow. Hence, we consider the second iteration of this system and get(

L̃n+1

M̃n+1

)
=

(
1 + ζ1 −2 + ζ2

−2ζ1 + ζ1ζ2 1 + ζ1 − 2ζ2 + (ζ2)2

) (
L̃n

M̃n

)
+

(
C̃(L̃n, M̃n, ζ)
D̃(L̃n, M̃n, ζ)

)
, (3.27)

where

C̃(L̃n, M̃n, ζ) = Ã(ζ)L̃3
n + B̃(ζ)L̃2

nM̃n,

D̃(L̃n, M̃n, ζ) = (ζ1B̃(ζ) + ζ2Ã(ζ) − 2Ã(ζ))L̃3
n + (3Ã(ζ) − 2B̃(ζ) − 2ζ1B̃(ζ) + ζ2B̃(ζ))L̃2

nM̃n

+ (2B̃(ζ) − 3Ã(ζ) + ζ1B̃(ζ) − 2ζ2B̃(ζ))L̃nM̃2
n + (Ã(ζ) − B̃(ζ) + ζ2B̃(ζ))M̃3

n
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+ O((|L̃n| + |M̃n|)4).

Denote ρ = {L̃n, M̃n}
T .When ||ζ || is sufficiently small, then system (3.27) can be represented by

Φζ(ρ) + O(||ρ||4), where Φζ(ρ) is a flow of the planar system given by

ρ̇ = HR2 ρ + p(ζ, ρ), (3.28)

HR2 =

(
−ζ1 −2 − 2ζ1

3 − ζ2
−2ζ1 −ζ1 − 2ζ2

)
+ O(||ζ ||2); (3.29)

p(ζ, ρ) is the symbol of homogeneous cubic terms. Moreover,Φζ(ρ)+O(||ρ||4) can be further simplified.
The planar system is smoothly equivalent to the following:(

τ̇1

τ̇2

)
=

(
0 1
η1(ζ) η2(ζ)

) (
τ1

τ2

)
+

(
0

Ã1(ζ)τ3
1 + B̃1(ζ)τ2

1τ2

)
, (3.30)

where η1(ζ) = 4ζ1+O(||ζ ||2), η2(ζ) = −2ζ1−2ζ2+O(||ζ ||2), Ã1(0) = 4Ã(0) and B̃1(0) = −2B̃(0)−6Ã(0).
If Ã1(0), B̃1(0) , 0, the bifurcations of system (3.30) can be analyzed by using the following system:{

ϵ̇1 = ϵ2,

ϵ̇2 = s1ϵ1 + s2ϵ2 + s3ϵ
3
1 − ϵ

2
1ϵ2,

(3.31)

where s3 = sign(Ã1(0)). By applying the theory in [27] and [31], we summarize our analysis into
Theorem 9. The schematic diagrams of bifurcation curves and phase portraits can be found on pp. 444–
446 in [27]. □

4. Numerical analysis

In this section, we use some cases with specific values to explain our theoretical analysis.

4.1. The example of Proposition 5 with specific parameters

200 300 400 500 600 700 800 900 1000

n

0

0.5

1

1.5

prey

predator

Figure 2. The time series diagram of prey and predator populations with the parameters
a1 = 0.1, a2 = 0.4, k = 0.3, b = 1.5 and d = 0.7.
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Let a1 = 0.1, a2 = 0.4, k = 0.3, b = 1.5 and d = 0.7. We find that the conditions
H(1) = 0.330403 > 0, H(−1) = 1.95787 > 0 and Det(J(E5)) − 1 = −0.855866 < 0 hold. Therefore,
P5(0.564575, 0.964575) is the stable interior fixed point of system (1.4). Figure 2 is the time-series
diagram of the prey and predator populations. As the number of iterations increases, the populations
of both species are constant, which implies that P5 is stable.

4.2. Fold bifurcation

Let a1 = 0.2, k = 0.4, d = 0.8 and b = 0.5. a2 = 0.6 is the critical value such that the fold bifurcation
of system (1.4) occurs. Figure 3 is the fold bifurcation diagram. By analyzing this diagram, we find
that there is no positive fixed point of system (1.4) when a2 > 0.6. If a2 = 0.6, there is a unique interior
fixed point P3(0.2, 0.8). And if a2 < 0.6, there are two interior fixed points P4 and P5 bifurcate from
P3. According to the eigenvalues of P4 and P5, we know that P5 is stable and P4 is unstable.

0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62

a
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

Figure 3. Fold bifurcation diagram.

4.3. 1:1 strong resonance bifurcation

Fixing d = 0.8, k = 0.7 and a1 = 0.1. The critical values of the bifurcation parameters are
aR1 = 0.15714286 and bR1 = 0.35 when λP3,1 = λP3,2 = 1. Then we calculate that the conditions
(k−1)2 = 0.03 , a1(3k−1) = 0.11, (k−1)2 = 0.03 , a1(a1+4k) = 0.29 and detDγV(0) = −3770.47 , 0
are satisfied. Hence, system (1.4) undergoes a 1:1 strong resonance bifurcation at P3(0.1, 0.25714286)
as {b, a2} varies in a small neighborhood of {0.35, 0.15714286}. The software package MatContM
has been applied to confirm our analysis. For more details of this package, [32, 33] are available for
reference. The Neimark-Sacker (NS) and fold (LP) curves are shown in Figure 4(a) and the symbol
R1 denotes the 1:1 strong resonance bifurcation point. In Figure 4(b), we plot the phase portrait with
a2 = 0.13 and b = 0.35. Based on observation of this subfigure, there exists an invariant closed curve.
Figure 4(c) is the time series diagram of the prey x and predator y populations with the same specific
parameters as Figure 4(b). The blue and magenta points represent the populations of prey and predator,
respectively. Both species exist in periodic oscillations due to the invariant closed curve.
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Figure 4. (a) The NS and LP curves with d = 0.8, k = 0.7 and a1 = 0.1; (b) phase portrait
with d = 0.8, k = 0.7, a1 = 0.1, a2 = 0.13 and b = 0.35; (c) time-series diagram of the prey
x and predator y populations with the same specific parameters as Figure 4(b).

4.4. Fold-flip bifurcation

Let d = 0.8, k = 0.3 and a1 = 0.3. b = 2.63 and a2 = 1.13333 are the critical values of the
bifurcation parameters such that λP3,1 = 1 and λP3,2 = −1. Then, we have that conditions d , 2(1−k+a1)

k(a1+k−1) =

−16.66667 and d , a1(k+4+4a1)
2k(a2

1−(k−1)2) = −5.75. By Theorem 8, the fold-flip bifurcation of system (1.4)
occurs at P3(0.2, 1.33333) when {b, a2} varies in a sufficiently small neighborhood of {2.63, 1.13333}.
Figure 5(a) illustrates our analysis and LPPD is the symbol of the fold-flip bifurcation point. Then,
let a2 = 1.15 and b = 3.5. The phase portrait is shown in Figure 5(b). At this point, system (1.4)
is in a chaotic state in which the predator and prey populations cannot coexist stably. In Figure 5(c),
the positive values of the corresponding maximum Lyapunov exponents also explain the existence of
chaos.
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Figure 5. (a) The period-doubling (PD) and LP curves with d = 0.8, k = 0.3 and a1 = 0.3;
(b) phase portrait with d = 0.8, k = 0.3, a1 = 0.3, a2 = 1.15 and b = 3.5; (c) maximum
Lyapunov exponents corresponding to Figure 5(b).

4.5. 1:2 strong resonance bifurcation

Suppose that d = 2.3, a1 = 0.2 and a2 = 0.4. kR2 = 0.336956 and bR2 = 1.47749 are the critical
bifurcation parameters such that λ̃1 = λ̃2 = −1. The conditions 2a1(b2

R2d2 − 2) − 6a1 + (bR2)2d2x5 =

9.27343 , 0, Ã1(0) = −178.936 , 0 and B̃1(0) = 26.7684 , 0 hold. According to Theorem 9, the 1:2
strong resonance bifurcation of system (1.4) takes place at P5(0.576225, 0.976225), when {k, b} varies
in a small neighborhood of {0.336956, 1.47749}. The NS and PD curves are plotted in Figure 6(a)
which illustrates the existence of this bifurcation. The symbol R2 stands for the 1:2 strong resonance
bifurcation point. In this example, we take the step size of the Euler method as 2.3. The choice of
a large step size changes the dynamical behaviors of the original continuous system. Moreover, we
can also find fold-flip and generalized period-doubling bifurcation points in Figure 6(a), where the
symbol GPD represents the period-doubling bifurcation point. Figure 6(b) is the phase portrait of x
and y, when k = 0.33 and b = 1.47. From this subfigure, we can observe that due to the existence of
this bifurcation, the dynamical properties of system (1.4) change in the neighborhood of the critical
parameters and produce an invariant closed curve.

Then, select d and b as the bifurcation parameters. Let k = 0.6, a1 = 0.2 and a2 = 0.3. By
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numerical simulation, we know that a 1:2 strong resonance bifurcation of system (1.4) exists at
P5(0.27320508, 0.57320508) when {b, d} varies in a sufficiently small neighborhood of
{1.0728398, 4.3176514}. The PD and NS curves in Figure 6(c) intuitively show the existence of 1:2
strong resonance bifurcation. The critical values of bifurcation parameter d are large which illustrates
the effect of step size on the dynamics.
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Figure 6. (a)The NS and PD curves with d = 2.3, a1 = 0.2 and a2 = 0.4; (b) phase portrait
with d = 2.3, a1 = 0.2, a2 = 0.4, k = 0.13 and b = 0.35; (c) NS and PD curves with k = 0.6,
a1 = 0.2 and a2 = 0.3.

5. Conclusions

In this paper, we discuss the existence and stability of the fixed points of system (1.4). The
bifurcations of system (1.4) have also been investigated and numerical analysis has been used to
support our work. We provide an analysis of the codimension 1 and 2 bifurcations at P3, including
fold, 1:1 strong resonance and fold-flip bifurcations. It demonstrates the abundant dynamics of
system (1.4). Further, we have analyzed the existence of 1:2 strong resonance bifurcation at P5. And,
through examples with specific values, we found that selecting another two independent coefficients
as bifurcation parameters does not change the existence of this bifurcation. In addition, the
continuation curves are used to show the new dynamical behaviors, including the generalized
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period-doubling and fold-flip bifurcations at P5. For the interior fixed point P4, the analysis of
bifurcations is similar, so we have omitted the detailed descriptions in this work. The occurrences of
these codimension 2 bifurcations imply that system (1.4) undergoes local codimension 1 bifurcations,
such as fold, flip, homoclinic and Neimark-Sacker bifurcations. These complex phenomena may lead
to the species not being able to coexist in a stable state.

To the best of our knowledge, the content of our analysis for system (1.4) has not been studied. Our
work demonstrates that, compared to the continuous system, the dynamical properties of the discrete
system are variable. In particular, the dynamics of discrete systems are affected by the choice of
a large step size of the Euler method. The difference between continuous and discrete systems is
attractive. Additionally, 1:1 strong resonance bifurcation corresponds to Bogdanov-Takens bifurcation
in continuous systems. However, generalized period-doubling bifurcation, fold-flip bifurcation and 1:2
strong resonance bifurcation are unique to the discrete system and have many interesting properties.
And, the discrete systems can reflect the interactions of species more realistically when the populations
of species are small or the processes of birth and death occur at discrete times. Moreover, other
codimension 2 bifurcations and the harvesting of species are meaningful topics. We will consider
these in the future.
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A. The coefficients in the proof of Theorem 6.

The coefficients of system (3.3) are as follows:

ǎ20 =
dQ
k
, ǎ11 =

4da1(1 + a1)Qλ2

(1 − k + a1)2 +
4d2kba1λ2

(1 − k + a1)2 − 2dQλ2,
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ǎ02 =
(2da1(1 + a1 + k)

(1 − k + a1)2 − d
)
Q2λ2

2 +
4dk2(1 − k − a1)λ2

2

1 − k + a1
(Q2 + 2dbQ + d2b2) +

4d2kba1λ
2
2Q

(1 − k + a1)2 ,

ǎ1 =
4da1(1 + a1 + k)

(1 − k + a1)2 − d −
4dka1(1 + 2Q)
Q(1 − k + a1)2 −

8dk2(1 − k − a1)
(1 − k + a1)2(1 + k + a1)

,

ǎ2 =
4da1(1 + a1)Qλ2

(1 − k + a1)2 −
4dka1(1 − db)λ2

(1 − k + a1)2 +
8dk2λ2(k − 1 + a1)

(k − 1 − a1)((a1 + 1)2 − k2)
− 2dQλ2

+
8k2λ2Q(k − 1 + a1)

b(k − 1 − a1)((a1 + 1)2 − k2)
,

ǎ3 =
−4dka1(1 + Q)
Q(1 − k + a1)2 +

4k2(k + a1 − 1)
db2(k − 1 − a1)((a1 + 1)2 − k2)

, b̌02 =
4kλ2(Q2 + 2dbQ + d2b2)

(a1 + 1)2 − k2 ,

b̌1 =
−8k

λ2((a1 + 1)2 − k2)
, b̌2 =

8k
(a1 + 1)2 − k2 +

8kQ
db((a1 + 1)2 − k2)

, b̌3 =
4k

d2b2λ2((a1 + 1)2 − k2)
.

B. The coefficients in the proof of Theorem 7.

1) The coefficients āi j(γ), b̄i j(γ) (0 ≤ i + j < 3) of system (3.8):

ā00(γ) = ā10(γ) = ā01(γ) = ā02(γ) = 0, ā20(γ) = −2d +
4da1(1 + k + a1)

(1 − k + a1)2 ,

ā11(γ) =
−4dka1

(1 − k + a1)2Q
, b̄00(γ) = −Q2a∗R1, b̄10(γ) = 0, b̄01(γ) = −db∗R1 +

2dbR1a∗R1

x3 + aR1
,

b̄20(γ) = 2dQ −
4da1(1 + k + a1)Q

(1 − k + a1)2 −
2d(bR1 + b∗R1)y2

3Q
(x3 + aR1 + a∗R1)3 +

4d(bR1 + b∗R1)y3Q
(x3 + aR1 + a∗R1)2 −

2d(bR1 + b∗R1)Q
x3 + aR1 + a∗R1

,

b̄11(γ) =
4dka1

(1 − k + a1)2 +
2d(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 −
2d(bR1 + b∗R1)
x3 + aR1 + a∗R1

,

b̄02(γ) =
−4d(bR1 + b∗R1)

(x3 + aR1 + a∗R1)Q
.

2) The coefficients c̄i j(γ), d̄i j(γ) (0 ≤ i + j < 3) of system (3.10):

c̄00(γ) =
Q2a∗R1

2
+

dQ2b∗R1a∗R1

3
−

2dQ2bR1(a∗R1)2

3(x3 + aR1)
, c̄10(γ) = 0, c̄01(γ) =

db∗R1

2
−

dbR1a∗R1

x3 + aR1
,

c̄20(γ) =
4da1(1 + k + a1)

(1 − k + a1)2 +
4da1(1 + k + a1)Q

(1 − k + a1)2 +
d(bR1 + b∗R1)y2

3Q
(x3 + aR1 + a∗R1)3 −

2d(bR1 + b∗R1)y3Q
(x3 + aR1 + a∗R1)2

− 2d − dQ +
d(bR1 + b∗R1)Q
x3 + aR1 + a∗R1

,

c̄11(γ) = d −
4dka1

(1 − k + a1)2Q
−

2da1(1 + 2k + a1)
(1 − k + a1)2 +

2dQ
3

(
1 −

2a1(1 + k + a1)
(1 − k + a1)2 −

(bR1 + b∗R1)y2
3

(x3 + aR1 + a∗R1)3

+
2(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 −
bR1 + b∗R1

x3 + aR1 + a∗R1

)
−

d(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 +
d(bR1 + b∗R1)

x3 + aR1 + a∗R1
,

c̄02(γ) =
−d(1 + Q)

3
+

4dka1

(1 − k + a1)2Q
+

2da1(1 + k + a1)(1 + Q)
3(1 − k + a1)2 +

d(bR1 + b∗R1)
Q(x3 + aR1 + a∗R1)
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+
dQ
3

( (bR1 + b∗R1)y2
3

(x3 + aR1 + a∗R1)3 −
(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 +
bR1 + b∗R1

x3 + aR1 + a∗R1

)
+

4d
3

( 2ka1

(1 − k + a1)2 +
(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 −
bR1 + b∗R1

x3 + aR1 + a∗R1

)
,

d̄00(γ) = Q2a∗R1

( dbR1a∗R1

x3 + aR1
−

db∗R1

2
− 1

)
, d̄10(γ) = 0, d̄01(γ) = −db∗R1 +

2dbR1a∗R1

x3 + aR1
,

d̄20(γ) = 2dQ −
4da1(1 + k + a1)Q

(1 − k + a1)2 −
2d(bR1 + b∗R1)y2

3Q
(x3 + aR1 + a∗R1)3 +

4d(bR1 + b∗R1)y3Q
(x3 + aR1 + a∗R1)2 −

2d(bR1 + b∗R1)Q
x3 + aR1 + a∗R1

,

d̄11(γ) = −dQ +
4dka1

(1 − k + a1)2 +
2da1Q(1 + k + a1)

(1 − k + a1)2 +
2d(bR1 + b∗R1)y3(1 − Q)

(x3 + aR1 + a∗R1)2 +
d(bR1 + b∗R1)y2

3Q
(x3 + aR1 + a∗R1)3

+
d(bR1 + b∗R1)(Q − 2)

x3 + aR1 + a∗R1
,

d̄02(γ) =
1
3

(
dQ −

2da1(1 + k + a1)Q
(1 − k + a1)2 −

d(bR1 + b∗R1)y2
3Q

(x3 + aR1 + a∗R1)3 +
2d(bR1 + b∗R1)y3Q
(x3 + aR1 + a∗R1)2 −

d(bR1 + b∗R1)Q
x3 + aR1 + a∗R1

)
−

2d(bR1 + b∗R1)y3

(x3 + aR1 + a∗R1)2 +
2d(bR1 + b∗R1)
x3 + aR1 + a∗R1

−
4dka1

(1 − k + a1)2 −
4d(bR1 + b∗R1)

(x3 + aR1 + a∗R1)Q
.

3) The coefficients A0, Ai(γ) (i = 1, 2, 3, 4) of system (3.13):

A0 = −d(1 + 2Q)
(1 − k + a1)2 − 2(1 + k + a1)

(1 − k + a1)2 ,

A1(γ) = b̄00(γ) −
1
2

b̄00(γ)b̄01(γ) +
1
2

(1
6

ā20(0) − ā11(0) −
1
8

b̄20(0) +
5

12
b̄11(0) −

1
4

b̄02(0)
)
(b̄00(γ))2

A2(γ) = b̄01(γ) −
( 1
12

ā20(0) +
1
2

ā11(0) −
1

12
b̄20(0) +

1
12

b̄11(0)
)
b̄00(γ),

A3(γ) =
(
−

1
2

ā20(0) + ā11(0) +
1
12

b̄20(0)
)
b̄00(γ),

A4(γ) =
(1
2

ā20(0) − ā11(0) −
3
4

b̄20(0) + 2b̄11(0) − b̄02(0)
)
b̄00(γ).

C. The coefficients in the proof of Theorem 8.

1) The coefficients âi j(γ), b̂i j(γ) (0 ≤ i + j < 4) of system (3.15):

â00(µ) = 0, â10(µ) = 1 +
dk(a1 + k − 1)

k − 1 − a1
, â01(µ) =

dk(a1 + k − 1)
1 − k + a1

,

â20(µ) = −d +
2da1(1 + k + a1)

(1 − k − a1)2 , â11(µ) =
−4dka1

(1 − k − a1)2 ,

â30(µ) =
4da1(1 + k + a1)

(k − 1 − a1)3 , â21(µ) =
−8da1k

(k − 1 − a1)3 , b̂00(µ) = db f f a∗f f ,

b̂10(µ) = db f f + db∗f f −
2db f f a∗f f

x3 + a f f
, b̂01(µ) = 1 − db f f − db∗f f +

2db f f a∗f f

x3 + a f f
,
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b̂20(µ) =
−d(b f f + b∗f f )y

2
3

(x3 + a f f + a∗f f )
3 , b̂11(µ) =

2d(b f f + b∗f f )y3

(x3 + a f f + a∗f f )
2 , b̂02(µ) =

−d(b f f + b∗f f )

x3 + a f f + a∗f f

,

b̂30(µ) =
d(b f f + b∗f f )y

2
3

(x3 + a f f + a∗f f )
4 , b̂21(µ) =

−2d(b f f + b∗f f )y3

(x3 + a f f + a∗f f )
3 , b̂12(µ) =

d(b f f + b∗f f )

(x3 + a f f + a∗f f )
2 .

2) The coefficients ĉ00(µ), d̂00(µ), ĉi j(γ), ĉi j(γ) (2 ≤ i + j < 4) of system (3.16):

ĉ00(µ) = (â10(µ) − 1)l1db f f a∗f f , d̂00(µ) = (â10(µ) + 1 − A1a∗f f − A2b∗f f )l2db f f a∗f f ,

ĉ20(µ) = −2b̂10(µ)l1Ê20(µ) + 2(â10(µ) − 1)l1F̂20(µ),

ĉ11(µ) = −b̂10(µ)l1Ê11(µ) + (â10(µ) − 1)l1F̂11(µ),

ĉ02(µ) = −2b̂10(µ)l1Ê02(µ) + 2(â10(µ) − 1)l1F̂02(µ),

ĉ30(µ) = −6b̂10(µ)l1Ê30(µ) + 6(â10(µ) − 1)l1F̂30(µ),

ĉ21(µ) = −2b̂10(µ)l1Ê21(µ) + 2(â10(µ) − 1)l1F̂21(µ),

ĉ12(µ) = −2b̂10(µ)l1Ê12(µ) + 2(â10(µ) − 1)l1F̂12(µ),

ĉ03(µ) = −6b̂10(µ)l1Ê03(µ) + 6(â10(µ) − 1)l1F̂03(µ),

d̂20(µ) = −2b̂10(µ)l2Ê20(µ) + 2(â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂20(µ),

d̂11(µ) = −b̂10(µ)l2Ê11(µ) + (â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂11(µ),

d̂02(µ) = −2b̂10(µ)l2Ê02(µ) + 2(â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂02(µ),

d̂30(µ) = −6b̂10(µ)l2Ê30(µ) + 6(â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂30(µ),

d̂21(µ) = −2b̂10(µ)l2Ê21(µ) + 2(â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂21(µ),

d̂03(µ) = −6b̂10(µ)l2Ê03(µ) + 6(â10(µ) + 1 − A1a∗f f − A2b∗f f )l2F̂03(µ),

where

Ê20(µ) = −d +
2da1

1 − k + a1
,

Ê11(µ) = 2dâ01(µ) −
8dka1

(1 − k + a1)2 −
4da1(1 + a1)â01(µ)

(1 − k + a1)2 +
4dka1(A1a∗f f + A2b∗f f )

(1 − k + a1)2 ,

Ê02(µ) = −d(â01(µ))2 +
2da1(â01(µ))2

1 − k + a1
+

8dka1â01(µ)
(1 − k + a1)2 −

4dka1â01(µ)(A1a∗f f + A2b∗f f )

(1 − k + a1)2 ,

Ê30(µ) =
−4da1

(1 − k + a1)2 ,

Ê21(µ) =
12da1â01(µ)
(1 − k + a1)2 +

16dka1

(1 − k + a1)3 +
8dka1(A1a∗f f + A2b∗f f )

(1 − k + a1)3 ,

Ê12(µ) =
−12da1(â01(µ))2

(1 − k + a1)2 −
32dka1â01(µ)
(1 − k + a1)3 +

16dka1(A1a∗f f + A2b∗f f )â01(µ)

(1 − k + a1)3 ,

Ê03(µ) =
4da1(â01(µ))3

(1 − k + a1)2 +
16dka1(â01(µ))2

(1 − k + a1)3 −
8dka1(A1a∗f f + A2b∗f f )(â01(µ))2

(1 − k + a1)3 ,

F̂20(µ) =
−d(b f f + b∗f f )y

2
3

(x3 + a f f + a∗f f )
3 +

2d(b f f + b∗f f )y3

(x3 + a f f + a∗f f )
2 −

d(b f f + b∗f f )

x3 + a f f + a∗f f

,
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F̂11(µ) =
2d(b f f + b∗f f )y3(2 − 2â01(µ) − A1a∗f f − A2b∗f f )

(x3 + a f f + a∗f f )
2

+
2d(b f f + b∗f f )y

2
3â01(µ)

(x3 + a f f + a∗f f )
3 +

2d(b f f + b∗f f )(â01(µ) − 2 + A1a∗f f + A2b∗f f )

x3 + a f f + a∗f f

,

F̂02(µ) =
−d(b f f + b∗f f )y

2
3(â01(µ))2

(x3 + a f f + a∗f f )
3 +

2d(b f f + b∗f f )y3â01(µ)(â01(µ) − 2 + A1a∗f f + A2b∗f f )

(x3 + a f f + a∗f f )
2

−
d(b f f + b∗f f )(2 − â01(µ) − A1a∗f f − A2b∗f f )

2

x3 + a f f + a∗f f

,

F̂30(µ) =
d(b f f + b∗f f )y

2
3

(x3 + a f f + a∗f f )
4 −

2d(b f f + b∗f f )y3

(x3 + a f f + a∗f f )
3 +

d(b f f + b∗f f )

(x3 + a f f + a∗f f )
2 ,

F̂21(µ) =
−3d(b f f + b∗f f )y

2
3â01(µ)

(x3 + a f f + a∗f f )
4 −

2d(b f f + b∗f f )y3(2 − 3â01(µ) − A1a∗f f − A2b∗f f )

(x3 + a f f + a∗f f )
3

+
d(b f f + b∗f f )(4 − 3â01(µ) − 2A1a∗f f − 2A2b∗f f )

(x3 + a f f + a∗f f )
2 ,

F̂12(µ) = −
2d(b f f + b∗f f )y3(â01(µ)2 − 2â01(µ)(2 − â01(µ) − A1a∗f f − A2b∗f f ))

(x3 + a f f + a∗f f )
3

+
d(b f f + b∗f f )((2 − â01(µ) − A1a∗f f − A2b∗f f )(2 − 3â01(µ) − A1a∗f f − A2b∗f f )

(x3 + a f f + a∗f f )
2

+
3d(b f f + b∗f f )y

2
3(â01(µ))2

(x3 + a f f + a∗f f )
4 ,

F̂03(µ) =
−d(b f f + b∗f f )y

2
3(â01(µ))3

(x3 + a f f + a∗f f )
4 +

−d(b f f + b∗f f )(â01(µ)(2 − â01(µ) − A1a∗f f − A2b∗f f )
2)

(x3 + a f f + a∗f f )
2

−
2d(b f f + b∗f f )y3((â01(µ))2(2 − â01(µ) − A1a∗f f − A2b∗f f ))

(x3 + a f f + a∗f f )
3 .

D. The coefficients in the proof of Theorem 9.

1) The coefficients k̃i j(θ), r̃i j(θ) (1 ≤ i + j < 4) of system (3.18)

k̃10(θ) = 1 + d(1 − 2x5) −
d(kR2 + k∗R2)y5a1

(x5 + a1)2 , k̃01(θ) =
−d(kR2 + k∗R2)y5

x5 + a1
,

k̃20(θ) =
d(kR2 + k∗R2)y5a1

(x5 + a1)3 − d, k̃11(θ) =
−d(kR2 + k∗R2)a1

(x5 + a1)2 , k̃30(θ) =
−d(kR2 + k∗R2)y5a1

(x5 + a1)4 ,

k̃21(θ) =
d(kR2 + k∗R2)a1

(x5 + a1)3 , r̃10(θ) = d(bR2 + b∗R2), r̃01(θ) = 1 − d(bR2 + b∗R2),

r̃20(θ) = −
d(bR2 + b∗R2)

x5 + a2
, r̃11(θ) =

2d(bR2 + b∗R2)
x5 + a2

, r̃02(θ) = −
d(bR2 + b∗R2)

x5 + a2
,
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r̃30(θ) =
d(bR2 + b∗R2)
(x5 + a2)2 , r̃21(θ) = −

2d(bR2 + b∗R2)
(x5 + a2)2 , r̃12(θ) =

d(bR2 + b∗R2)
(x5 + a2)2 .

2) Denote PR2 =
−d2bR2y5(2a1+x5)+2dy5a1

(x5+a1)2 , QR2 =
−dy5a1

(x5+a1)2 and MR2 =
−1
bR2

. The coefficients ã(θ), b̃(θ), c̃(θ),
d̃(θ), ãi j(θ), b̃i j(θ) (2 ≤ i + j < 4) of system (3.21):

ã(θ) = 2MR2b∗R2, b̃(θ) = −MR2b∗R2, c̃(θ) = PR2k∗R2 − 2(dbR2 − 2)b∗R2,

d̃(θ) = QR2k∗R2 + (dbR2 − 2)b∗R2, ã20(θ) =
−4(bR2 + b∗R2)
bR2(x5 + a2)

, ã11(θ) =
4(bR2 + b∗R2)
bR2(x5 + a2)

,

ã02(θ) =
−(bR2 + b∗R2)
bR2(x5 + a2)

, ã30(θ) =
4(dbR2 − 2)(bR2 + b∗R2)

bR2(x5 + a2)2 , ã21(θ) =
2(dbR2 + 6)(bR2 + b∗R2)

bR2(x5 + a2)2 ,

ã12(θ) =
(dbR2 − 6)(bR2 + b∗R2)

bR2(x5 + a2)2 , ã03(θ) =
bR2 + b∗R2

bR2(x5 + a2)2 ,

b̃20(θ) = (dbR2 − 2)2
(d(kR2 + k∗R2)y5a1

(x5 + a1)3 − d
)
−

d2(kR2 + k∗R2)a1bR2(dbR2 − 2)
(x5 + a1)2

+
4(bR2 + b∗R2)(dbR2 − 2)

x5 + a2
,

b̃11(θ) = 2(dbR2 − 2)
(d(kR2 + k∗R2)y5a1

(x5 + a1)3 − d
)
−

d2(kR2 + k∗R2)a1bR2

(x5 + a1)2 −
4(bR2 + b∗R2)(dbR2 − 2)

x5 + a2
,

b̃02(θ) =
d(kR2 + k∗R2)y5a1

(x5 + a1)3 − d +
(bR2 + b∗R2)(dbR2 − 2)

x5 + a2
,

b̃30(θ) =
da1(dbR2 − 2)2(kR2 + k∗R2)(2y5 + dbR2(a1 − a2))

(x5 + a1)4 −
4(bR2 + b∗R2)(dbR2 − 2)2

(x5 + a2)2 ,

b̃21(θ) =
da1(dbR2 − 2)(kR2 + k∗R2)(6y5 − dbR2y5 + 3dbR2(a1 − a2))

(x5 + a1)4

−
2(bR2 + b∗R2)(dbR2 − 2)(dbR2 + 6)

(x5 + a2)2 ,

b̃12(θ) =
da1(kR2 + k∗R2)(2y5 − 2dbR2y5 + 3dbR2(a1 − a2))

(x5 + a1)4 −
(bR2 + b∗R2)(dbR2 − 2)(dbR2 − 6)

(x5 + a2)2 ,

b̃03(θ) =
−da1(kR2 + k∗R2)y5

(x5 + a1)4 −
(bR2 + b∗R2)(dbR2 − 2)

(x5 + a2)2 .

3) The coefficients ε̃(θ), δ̃(θ), c̃i j(θ), d̃i j(θ) (2 ≤ i + j < 4) of system (3.22):

ε̃(θ) = 2MR2(2 − bR2d)b∗R2 + PR2k∗R2 + (2b∗R2(bR2d − 2)MR2 − PR2k∗R2)MR2b∗R2

− 2MR2(b∗R2(bR2d − 2)MR2 + QR2k∗R2)b∗R2,

δ̃(θ) = MR2bR2db∗R2 + QR2k∗R2,

c̃20(θ) =
bR2 + b∗R2

bR2
ã20(θ) +

2b∗R2

bR2
ã11(θ) +

4(b∗R2)2ã02(θ)
bR2(bR2 + b∗R2)

, c̃11(θ) = ã11(θ) +
4b∗R2ã02(θ)
bR2 + b∗R2

,

c̃02(θ) =
bR2ã02(θ)
bR2 + b∗R2

,
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c̃30(θ) =
(bR2 + b∗R2)2

(bR2)2 ã30(θ) +
2(bR2 + b∗R2)b∗R2

(bR2)2 ã21(θ) +
4(b∗R2)2ã12(θ)

(bR2)2 +
8(b∗R2)3ã03(θ)

(bR2)2(bR2 + b∗R2)
,

c̃21(θ) =
bR2 + b∗R2

bR2
ã21(θ) +

4b∗R2ã12(θ)
bR2

+
12(b∗R2)2ã03(θ)
bR2(bR2 + b∗R2)

,

c̃12(θ) = ã12(θ) +
6b∗R2ã03(θ)
bR2 + b∗R2

, c̃03(θ) =
bR2ã03(θ)
bR2 + b∗R2

,

d̃20(θ) =
−2b∗R2(bR2 + b∗R2)

(bR2)2 ã20(θ) −
4(b∗R2)2

(bR2)2 ã11(θ) −
8(b∗R2)3ã02(θ)

(bR2)2(bR2 + b∗R2)
+

(bR2 + b∗R2)2

(bR2)2 b̃20(θ)

+
2(bR2 + b∗R2)b∗R2

(bR2)2 b̃11(θ) +
4(b∗R2)2

(bR2)2 b̃02(θ),

d̃11(θ) =
−2b∗R2

bR2
ã11(θ) −

8(b∗R2)2ã02

bR2(bR2 + b∗R2)
+

bR2 + b∗R2

bR2
b̃11(θ) +

4b∗R2

bR2
b̃02(θ),

d̃02(θ) =
−2ã02(θ)b∗R2

b∗R2 + bR2
+ b̃02(θ),

d̃30(θ) =
−2b∗R2(bR2 + b∗R2)2

(bR2)3 ã30(θ) −
4(b∗R2)2(b∗R2 + bR2)

(bR2)3 ã21(θ) −
8(b∗R2)3

(bR2)3 ã12(θ) +
8(b∗R2)3

(bR2)3 b̃03(θ)

−
16(b∗R2)4

(bR2)3(bR2 + b∗R2)
ã03(θ) +

(bR2 + b∗R2)3

(bR2)3 b̃30(θ) +
2(bR2 + b∗R2)2b∗R2

(bR2)3 b̃21(θ)

+
4(bR2 + b∗R2)(b∗R2)2

(bR2)3 b̃12(θ),

d̃21(θ) =
−2b∗R2(b∗R2 + bR2)

(bR2)2 ã21(θ) −
24(b∗R2)3ã03(θ)

(bR2)2(bR2 + b∗R2)
+

(b∗R2 + bR2)2

(bR2)2 b̃21(θ) −
8(b∗R2)2

(bR2)2 ã12(θ)

+
4(b∗R2 + bR2)b∗R2

(bR2)2 b̃12(θ) +
12(b∗R2)2

(bR2)2 b̃03(θ),

d̃12(θ) =
−2b∗R2

bR2
ã12(θ) −

12(b∗R2)2

bR2(bR2 + b∗R2)
ã03(θ) +

bR2 + b∗R2

bR2
b̃12(θ) +

6b∗R2

bR2
bR2

03 (θ),

d̃03(θ) = b̃03(θ) −
2b∗R2ã03(θ)
b∗R2 + bR2

.

4) The coefficients g̃i j(ζ), h̃i j(ζ) (2 ≤ i + j < 4) of system (3.24):

g̃20(ζ) =
bR2 + ϕ2(ζ)

bR2
ã20(ζ) +

2ϕ2(ζ)
bR2

ã11(ζ) +
4(ϕ2(ζ))2ã02(ζ)
bR2(bR2 + ϕ2(ζ))

,

g̃11(ζ) = ã11(ζ) +
4ϕ2(ζ)ã02(ζ)
bR2 + ϕ2(ζ)

, g̃02(ζ) =
bR2ã02(ζ)

bR2 + ϕ2(ζ)
,

g̃30(ζ) =
(bR2 + ϕ2(ζ))2

(bR2)2 ã30(ζ) +
2(bR2 + ϕ2(ζ))ϕ2(ζ)

(bR2)2 ã21(ζ) +
4(ϕ2(ζ))2ã12(ζ)

(bR2)2 +
8(ϕ2(ζ))3ã03(ζ)

(bR2)2(bR2 + ϕ2(ζ))
,

g̃21(ζ) =
bR2 + ϕ2(ζ)

bR2
ã21(ζ) +

4ϕ2(ζ)ã12(ζ)
bR2

+
12(ϕ2(ζ))2ã03(ζ)
bR2(bR2 + ϕ2(ζ))

,
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g̃12(ζ) = ã12(ζ) +
6ϕ2(ζ)ã03(ζ)
bR2 + ϕ2(ζ)

, g̃03(ζ) =
bR2ã03(ζ)

bR2 + ϕ2(ζ)
,

h̃20(θ) =
−2ϕ2(ζ)(bR2 + ϕ2(ζ))

(bR2)2 ã20(ζ) −
4(ϕ2(ζ))2

(bR2)2 ã11(ζ) −
8(ϕ2(ζ))3ã02(ζ)

(bR2)2(bR2 + ϕ2(ζ))
+

(bR2 + ϕ2(ζ))2

(bR2)2 b̃20(ζ)

+
2(bR2 + ϕ2(ζ))ϕ2(ζ)

(bR2)2 b̃11(ζ) +
4(ϕ2(ζ))2

(bR2)2 b̃02(ζ),

h̃11(ζ) =
−2ϕ2(ζ)

bR2
ã11(ζ) −

8(ϕ2(ζ))2ã02(ζ)
bR2(bR2 + ϕ2(ζ))

+
bR2 + ϕ2(ζ)

bR2
b̃11(ζ) +

4ϕ2(ζ)
bR2

b̃02(ζ),

h̃02(ζ) =
−2ã02(ζ)ϕ2(ζ)
ϕ2(ζ) + bR2

+ b̃02(ζ),

h̃30(ζ) =
−2ϕ2(ζ)(bR2 + ϕ2(ζ))2

(bR2)3 ã30(ζ) −
4(ϕ2(ζ))2(ϕ2(ζ) + bR2)

(bR2)3 ã21(ζ) −
8(ϕ2(ζ))3

(bR2)3 ã12(ζ)

−
16(ϕ2(ζ))4

(bR2)3(bR2 + ϕ2(ζ))
ã03(ζ) +

(bR2 + ϕ2(ζ))3

(bR2)3 b̃30(ζ) +
2(bR2 + ϕ2(ζ))2ϕ2(ζ)

(bR2)3 b̃21(ζ)

+
4(bR2 + ϕ2(ζ))(ϕ2(ζ))2

(bR2)3 b̃12(ζ) +
8(ϕ2(ζ))3

(bR2)3 b̃03(ζ),

h̃21(ζ) =
−2ϕ2(ζ)(ϕ2(ζ) + bR2)

(bR2)2 ã21(ζ) −
8(ϕ2(ζ))2

(bR2)2 ã12(ζ) −
24(b∗R2)3ã03(ζ)

(bR2)2(bR2 + ϕ2(ζ))
+

(ϕ2(ζ) + bR2)2

(bR2)2 b̃21(ζ)

+
4(ϕ2(ζ) + bR2)ϕ2(ζ)

(bR2)2 b̃12(ζ) +
12(ϕ2(ζ))2

(bR2)2 b̃03(ζ),

h̃12(ζ) =
−2ϕ2(ζ)

bR2
ã12(ζ) −

12(ϕ2(ζ))2

bR2(bR2 + ϕ2(ζ))
ã03(ζ) +

bR2 + ϕ2(ζ)
bR2

b̃12(ζ) +
6ϕ2(ζ)

bR2
b̃03(ζ),

h̃03(ζ) = b̃03(ζ) −
2ϕ2(ζ)ã03(ζ)
ϕ2(ζ) + bR2

.
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