Research article

Numerical computation of preimage domains for spiral slit regions and simulation of flow around bodies

  • Received: 17 August 2022 Revised: 25 September 2022 Accepted: 07 October 2022 Published: 13 October 2022
  • In this paper, we propose the iterative numerical methods to calculate the conformal preimage domains for the specified logarithmic spiral slit regions and develop the applications of conformal mappings in the simulations of the flow around bodies. Firstly, we postulate that the boundaries of the preimage domains mapped onto logarithmic spiral slits are ellipses. The lengths of the long axes of ellipses and the coordinates of the centers are calculated using our iterative methods. Secondly, each type of the presented iterative method calculates numerical conformal mappings via solving the boundary integral equation with the generalized Neumann kernel. Finally, numerical examples show the convergence and availability of our iterative methods and display the simulations of the flow around the bodies as an application.

    Citation: Kang Wu, Yibin Lu. Numerical computation of preimage domains for spiral slit regions and simulation of flow around bodies[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 720-736. doi: 10.3934/mbe.2023033

    Related Papers:

  • In this paper, we propose the iterative numerical methods to calculate the conformal preimage domains for the specified logarithmic spiral slit regions and develop the applications of conformal mappings in the simulations of the flow around bodies. Firstly, we postulate that the boundaries of the preimage domains mapped onto logarithmic spiral slits are ellipses. The lengths of the long axes of ellipses and the coordinates of the centers are calculated using our iterative methods. Secondly, each type of the presented iterative method calculates numerical conformal mappings via solving the boundary integral equation with the generalized Neumann kernel. Finally, numerical examples show the convergence and availability of our iterative methods and display the simulations of the flow around the bodies as an application.



    加载中


    [1] M. Nasser, M. Vuorinen, Computation of conformal invariants, Appl. Math. Comput., 389 (2021), 125617. https://doi.org/10.1016/j.amc.2020.125617 doi: 10.1016/j.amc.2020.125617
    [2] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, New York: McGraw-Hill, (1973). https://doi.org/10.1090/chel/371 doi: 10.1090/chel/371
    [3] C. Pommerenke, On the logarithmic capacity and conformal mapping, Duke Math. J., 35 (1968), 321–325. https://doi.org/10.1215/S0012-7094-68-03531-X doi: 10.1215/S0012-7094-68-03531-X
    [4] L. Bourchtein, Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions, Complex Var. Elliptic Equ., 58 (2013), 821–836. https://doi.org/10.1080/17476933.2011.622045 doi: 10.1080/17476933.2011.622045
    [5] D. Crowdy, Conformal slit maps in applied mathematics, Anziam J., 53 (2012), 171–189. https://doi.org/10.1017/S1446181112000119 doi: 10.1017/S1446181112000119
    [6] N. Hale, T. Wynn Tee, Conformal maps to multiply slit domains and applications, SIAM J. Sci. Comput., 31 (2009), 3195–3215. https://doi.org/10.1137/080738325 doi: 10.1137/080738325
    [7] X. Y. Liu, W. Li, M. Li, C. S. Chen, Circulant matrix and conformal mapping for solving partial differential equations, Comput. Math. Appl., 68 (2014), 67–76. https://doi.org/10.1016/j.camwa.2014.05.005 doi: 10.1016/j.camwa.2014.05.005
    [8] K. Amano, D. Okano, Numerical conformal mappings onto the canonical slit domains, Theor. Appl. Mechan. Japan, 60 (2012), 317–332. https://doi.org/10.11345/nctam.60.317 doi: 10.11345/nctam.60.317
    [9] W. Choi, Nonlinear surface waves interacting with a linear shear current, Math. Comput. Simul., 80 (2009), 29–36. https://doi.org/10.1016/j.matcom.2009.06.021 doi: 10.1016/j.matcom.2009.06.021
    [10] H. Li, Y. D. Xu, Q. N. Wu, H. Y. Chen, Carpet cloak from optical conformal mapping, Sci. China Inform. Sci., 56 (2013), 120411. https://doi.org/10.1007/s11432-013-5036-x doi: 10.1007/s11432-013-5036-x
    [11] K. Amano, A charge simulation method for numerical conformal mapping onto circular and radial slit domains, SIAM J. Sci. Comput., 19 (1998), 1169–1187. https://doi.org/10.1137/S1064827595294307 doi: 10.1137/S1064827595294307
    [12] K. Amano, Numerical conformal mapping onto the radial slit domains by the charge simulation method, Japan Soc. Industr. Appl. Math., 5 (1995), 267–280.
    [13] L. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods Function Theory, 20 (2020), 369–387. https://doi.org/10.1007/s40315-020-00325-w doi: 10.1007/s40315-020-00325-w
    [14] M. Nasser, Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel, SIAM J. Sci. Comput., 31 (2009), 1695–1715. https://doi.org/10.1137/070711438 doi: 10.1137/070711438
    [15] M. Nasser, Fast computation of the circular map, Comput Methods Function Theory, 15 (2015), 187–223. https://doi.org/10.1007/s40315-014-0098-3 doi: 10.1007/s40315-014-0098-3
    [16] M. Nasser, Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe's canonical slit regions, J. Math. Anal. Appl., 398 (2013), 729–743. https://doi.org/10.1016/j.jmaa.2012.09.020 doi: 10.1016/j.jmaa.2012.09.020
    [17] M. Nasser, Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe's canonical slit domains, J. Math. Anal. Appl., 382 (2011), 47–56. https://doi.org/10.1016/j.jmaa.2011.04.030 doi: 10.1016/j.jmaa.2011.04.030
    [18] M. Nasser, A. Murid, Z. Zamzamir, A boundary integral method for the Riemann–Hilbert problem in domains with corners, Complex Var. Elliptic Equ., 53 (2008), 989–1008. https://doi.org/10.1080/17476930802335080 doi: 10.1080/17476930802335080
    [19] M. Nasser, Fast solution of boundary integral equations with the generalized Neumann kernel, Electron. Transact. Numer. Ana., 44 (2015), 189–229.
    [20] M. Nasser, F. Al-Shihri, A fast boundary integral equation method for conformal mapping of multiply connected regions, SIAM J. Sci. Comput., 35 (2013), A1736–A1760. https://doi.org/10.1137/120901933 doi: 10.1137/120901933
    [21] D. Crowdy, A new calculus for two-dimensional vortex dynamics, Theor. Comput. Fluid Dynam., 24 (2010), 9–24. https://doi.org/10.1007/s00162-009-0098-5 doi: 10.1007/s00162-009-0098-5
    [22] D. Crowdy, Analytical solutions for uniform potential flow past multiple cylinders, European J. Mechan. B/Fluids, 25 (2006), 459–470. https://doi.org/10.1016/j.euromechflu.2005.11.005 doi: 10.1016/j.euromechflu.2005.11.005
    [23] D. Crowdy, Calculating the lift on a finite stack of cylindrical aerofoils, Proceed. Royal Soc. A Math. Phys. Eng. Sci., 462 (2006), 1387–1407. https://doi.org/10.1098/rspa.2005.1631 doi: 10.1098/rspa.2005.1631
    [24] D. Crowdy, Explicit solution for the potential flow due to an assembly of stirrers in an inviscid fluid, J. Eng. Math., 62 (2008), 333–344. https://doi.org/10.1007/s10665-008-9222-6 doi: 10.1007/s10665-008-9222-6
    [25] K. Amano, D. Okano, K. Endo, H. Ogata, Numerical conformal mappings onto the canonical slit domains of Koebe (1916) by the charge simulation method, Japan Soc. Indust. Appl. Math., 24 (2014), 157–183.
    [26] M. Nasser, C. C. Green, A fast numerical method for ideal fluid flow in domains with multiple stirrers, Nonlinearity, 31 (2018), 815–837. https://doi.org/10.1088/1361-6544/aa99a5 doi: 10.1088/1361-6544/aa99a5
    [27] J. T. Chen, J. H. Kao, Y. L. Huang, S. K. Kao, Applications of degenerate kernels to potential flow across circular, elliptical cylinders and a thin airfoil, European J. Mechan. B/Fluids, 90 (2021), 29–48. https://doi.org/10.1016/j.euromechflu.2021.07.012 doi: 10.1016/j.euromechflu.2021.07.012
    [28] J. T. Chen, Y. T. Chou, J. H. Kao, J. W. Lee, Analytical solution for potential flow across two circular cylinders using the BIE in conjunction with degenerate kernels of bipolar coordinates, Appl. Math. Letters, 132 (2022), 108137. https://doi.org/10.1016/j.aml.2022.108137 doi: 10.1016/j.aml.2022.108137
    [29] N. Aoyama, T. Sakajo, H. Tanaka, A computational theory for spiral point vortices in multiply connected domains with slit boundaries, Japan J. Industr. Appl. Math., 30 (2013), 485–509. https://doi.org/10.1007/s13160-013-0113-5 doi: 10.1007/s13160-013-0113-5
    [30] M. Nasser, Numerical computing of preimage domains for bounded multiply connected slit domains, J. Sci. Comput., 78 (2019), 582–606. https://doi.org/10.1007/s10915-018-0784-9 doi: 10.1007/s10915-018-0784-9
    [31] P. Koebe, Abhandlungen zur Theorie der konformen Abbildung, Ⅳ. Abbildung mehrfach zusammenhtingender schlichter Bereiche auf Schlitzbereiche, Acta Math., 41 (1916), 305–344. https://doi.org/10.1007/BF02422949 doi: 10.1007/BF02422949
    [32] G. C. Wen, Conformal Mappings and Boundary Value Problems, Providence: American Mathematical Society, (1992).
    [33] R. Wegmann, M. Nasser, The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions, J. Comput. Appl. Math., 214 (2008), 36–57. https://doi.org/10.1016/j.cam.2007.01.021 doi: 10.1016/j.cam.2007.01.021
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1517) PDF downloads(95) Cited by(1)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog