The multiplicative degree-Kirchhoff index is a significant topological index. This paper is devoted to the exact formulas for the expected value of the multiplicative degree-Kirchhoff index in random polygonal chains. Moreover, on the basis of the result above, the multiplicative degree-Kirchhoff index of all polygonal chains with extremal values and average values are obtained.
Citation: Xinmei Liu, Xinfeng Liang, Xianya Geng. Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032
The multiplicative degree-Kirchhoff index is a significant topological index. This paper is devoted to the exact formulas for the expected value of the multiplicative degree-Kirchhoff index in random polygonal chains. Moreover, on the basis of the result above, the multiplicative degree-Kirchhoff index of all polygonal chains with extremal values and average values are obtained.
[1] | J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008. https://doi.org/10.1007/978-1-84628-970-5 |
[2] | D. J. Klein, Graph geometry, graph metrics and Wiener, MATCH Commun. Math. Comput. Chem., 35 (1997), 7–27. |
[3] |
H. Hosoya, K. Kawasaki, K. Mizutani, Topological index and thermodynamic properties, Ⅰ. Empirical rules on the boiling point of saturated hydrocarbons, Bull. Chem. Soc. Jpn., 45 (1972), 3415–3421. https://doi.org/10.1246/bcsj.45.3415 doi: 10.1246/bcsj.45.3415
![]() |
[4] |
Y. D. Gao, H. Hosoya, Topological index and thermodynamic properties, Ⅳ. Size dependency of the structure activity correlation of alkanes, Bull. Chem. Soc. Jpn. 61 (1988), 3093–3102. https://doi.org/10.1246/bcsj.61.3093 doi: 10.1246/bcsj.61.3093
![]() |
[5] |
H. Hosoya, M. Murakami, Topological index as applied to $\pi$-electronic systems, Ⅱ. Topological bond order, J. Chem. Soc. Jpn., 48 (1975), 3512–3517. https://doi.org/10.1246/bcsj.48.3512 doi: 10.1246/bcsj.48.3512
![]() |
[6] |
H. Narumi, H. Hosoya, Topological index and thermodynamic properties. Ⅱ. Analysis of the topological factors on the absolute entropy of acyclic saturated hydrocarbons, Bull. Chem. Soc. Jpn., 53 (1980), 1228–1237. https://doi.org/10.1246/bcsj.53.1228 doi: 10.1246/bcsj.53.1228
![]() |
[7] |
H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Comput. Model., 55 (2012), 634–644. https://doi.org/10.1016/j.mcm.2011.08.037 doi: 10.1016/j.mcm.2011.08.037
![]() |
[8] |
J. F. Qi, M. L. Fang, X. Y. Geng, The expected value for the wiener index in the random spiro chains, Polycycl. Aromat. Compounds., (2022). https://doi.org/10.1080/10406638.2022.2038218 doi: 10.1080/10406638.2022.2038218
![]() |
[9] |
I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci., 34 (1994), 1087–1089. https://doi.org/10.1021/ci00021a009 doi: 10.1021/ci00021a009
![]() |
[10] |
D. J. Klein, H. Y. Zhu, Distances and volumina for graphs, J. Math. Chem., 23 (1998), 179–195. https://doi.org/10.1023/A:1019108905697 doi: 10.1023/A:1019108905697
![]() |
[11] |
L. Sun, Wang, W. Zhou, Some results on resistance distances and resistance matrices, Linear Multil. Algebra., 63 (2015), 523–533. https://doi.org/10.1080/03081087.2013.877011 doi: 10.1080/03081087.2013.877011
![]() |
[12] | H. Deng, Z. Tang, Kirchhoff indices of spiro and polyphenyl hexagonal chains, Util. Math., 95 (2014), 113–128. |
[13] |
D. J.Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95. https://doi.org/10.1007/BF01164627 doi: 10.1007/BF01164627
![]() |
[14] |
A. Georgakopoulos, Uniqueness of electrical currents in a network of finite total resistance, J. Lond. Math. Soc., 82 (1998), 256–272. https://doi.org/10.1112/jlms/jdq034 doi: 10.1112/jlms/jdq034
![]() |
[15] |
H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math., 155 (2007), 654–661. https://doi.org/10.1016/j.dam.2006.09.008 doi: 10.1016/j.dam.2006.09.008
![]() |
[16] |
G.H. Huang, M.J. Kuang, H.Y. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, Ars Math. Contemp., 2 (2015), 197–207. https://doi.org/10.26493/1855-3974.458.7b0 doi: 10.26493/1855-3974.458.7b0
![]() |
[17] |
L. L. Zhang, Q. S. Li, S. C. Li, M. J. Zhang, The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain, J. Discrete Appl. Math., 282 (2020), 243–256. https://doi.org/10.1016/j.dam.2019.11.007 doi: 10.1016/j.dam.2019.11.007
![]() |
[18] | H. C. Liu, M. Y. Zeng, H. Y. Deng, Z. K. Tang, Some indices in the random spiro chains, Iranian J. Math. Chem., , 11 (2020), 255–270. |
[19] |
Z. Zhu, C. Yuan, E. O. D. Andriantiana, S. Wagner, Graphs with maximal Hosoya index and minimal Merrifield-Simmons index, Discret. Math., 329 (2014), 77–87. https://doi.org/10.1016/j.disc.2014.04.009 doi: 10.1016/j.disc.2014.04.009
![]() |
[20] | P. Zhao, B. Zhao, X. Chen, Y. Bai, Two classes of chains with maximal and minimal total $\pi-electron$ energy, MATCH Commun. Math. Comput. Chem., 62 (2009), 525–536. |
[21] |
H. Hosoya, M. Gotoh, M. Murakami, S. Ikeda, Topological index and thermodynamic properties, J. Chem. Inf. Comput. Sci., 392 (1999), 192–196. https://doi.org/10.1021/ci980058l doi: 10.1021/ci980058l
![]() |
[22] |
H.E. Simmons, R.E. Merrifield, Mathematical description of molecular structure, Roc. Natl. Acad. Sci. USA, 742 (1977), 2616–2619. https://doi.org/10.1073/pnas.74.7.2616 doi: 10.1073/pnas.74.7.2616
![]() |
[23] |
Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains, Authorea, (2020). https://doi.org/10.22541/au.158976905.50760887 doi: 10.22541/au.158976905.50760887
![]() |
[24] |
Z. Raza, The harmonic and second Zagreb Indices of random polyphenyl and spiro chains, Polycycl. Aromat. Compounds., (2020). https://doi.org/10.1080/10406638.2020.1749089 doi: 10.1080/10406638.2020.1749089
![]() |
[25] |
Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield-Simmons index and Hosoya index of polyphenyl chains, MATCH Commun. Math. Comput. Chem., 62 (2019), 649–656. https://doi.org/10.1111/j.1467-9892.2008.00605.x doi: 10.1111/j.1467-9892.2008.00605.x
![]() |
[26] |
H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Computer Model., 55 (2012), 634–644. https://doi.org/10.1016/j.mcm.2011.08.037 doi: 10.1016/j.mcm.2011.08.037
![]() |
[27] |
R. E. Merrifield, H. E. Simmons, Enumeration of structure-sensitive graphical subsets, Proc. Natl. Acad. Sci. USA, 78 (1981), 692–695. https://doi.org/10.1073/pnas.78.2.692 doi: 10.1073/pnas.78.2.692
![]() |
[28] |
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000. https://doi.org/10.1002/9783527613106 doi: 10.1002/9783527613106
![]() |
[29] |
G. Luthe, J. A. Jacobus, L. W. Robertson, Receptor interactions by polybrominated diphenyl ethers versus polychlobrinated biphenyls: A theoretical structure-activity assessment, Environ. Toxicol. Pharm., 25 (2008), 202–210. https://doi.org/10.1016/j.etap.2007.10.017 doi: 10.1016/j.etap.2007.10.017
![]() |
[30] |
M. Traetteberg, G. Hagen, S. J. Cyvin, Ⅳ. 1, 3, 5, 7-Cyclooctatetraene, Zeitschrift Fr Naturforschung B., 25 (1970), 134–138. https://doi.org/10.1515/znb-1970-0201 doi: 10.1515/znb-1970-0201
![]() |