
The Gutman index and Schultz index of a connected graph are degree-distance-based topological indices. In this paper, we devoted to establish the explicit analytical expressions for the simple formulae of the expected values of the Gutman and Schultz indices in a random polygonal. Based on these results above, we get the extremal values and average values of Gunman and Schultz indices of all polygonal chains.
Citation: Wanlin Zhu, Minglei Fang, Xianya Geng. Enumeration of the Gutman and Schultz indices in the random polygonal chains[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10826-10845. doi: 10.3934/mbe.2022506
[1] | Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032 |
[2] | Saylé C. Sigarreta, Saylí M. Sigarreta, Hugo Cruz-Suárez . On degree–based topological indices of random polyomino chains. Mathematical Biosciences and Engineering, 2022, 19(9): 8760-8773. doi: 10.3934/mbe.2022406 |
[3] | Zahid Raza, Juan LG Guirao, Ghada Bassioni . The comparative analysis of two molecular indices in random polyphenyl and spiro chains. Mathematical Biosciences and Engineering, 2022, 19(12): 12500-12517. doi: 10.3934/mbe.2022583 |
[4] | V. R. Kulli, J. A. Méndez-Bermúdez, José M. Rodríguez, José M. Sigarreta . Revan Sombor indices: Analytical and statistical study. Mathematical Biosciences and Engineering, 2023, 20(2): 1801-1819. doi: 10.3934/mbe.2023082 |
[5] | Zhishan Zheng, Lin Zhou, Han Wu, Lihong Zhou . Construction cost prediction system based on Random Forest optimized by the Bird Swarm Algorithm. Mathematical Biosciences and Engineering, 2023, 20(8): 15044-15074. doi: 10.3934/mbe.2023674 |
[6] | Xiujun Zhang, Umair Saleem, Muhammad Waheed, Muhammad Kamran Jamil, Muhammad Zeeshan . Comparative study of five topological invariants of supramolecular chain of different complexes of N-salicylidene-L-valine. Mathematical Biosciences and Engineering, 2023, 20(7): 11528-11544. doi: 10.3934/mbe.2023511 |
[7] | J. A. Méndez-Bermúdez, José M. Rodríguez, José L. Sánchez, José M. Sigarreta . Analytical and computational properties of the variable symmetric division deg index. Mathematical Biosciences and Engineering, 2022, 19(9): 8908-8922. doi: 10.3934/mbe.2022413 |
[8] | Xiaoxu Peng, Heming Jia, Chunbo Lang . Modified dragonfly algorithm based multilevel thresholding method for color images segmentation. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324 |
[9] | Xin Chen, Tengda Li, Will Cao . Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction. Mathematical Biosciences and Engineering, 2023, 20(10): 17589-17607. doi: 10.3934/mbe.2023781 |
[10] | Jia Ouyang, Yinyin Xiao, Shaopeng Liu, Zhenghong Xiao, Xiuxiu Liao . Set-valued data collection with local differential privacy based on category hierarchy. Mathematical Biosciences and Engineering, 2021, 18(3): 2733-2763. doi: 10.3934/mbe.2021139 |
The Gutman index and Schultz index of a connected graph are degree-distance-based topological indices. In this paper, we devoted to establish the explicit analytical expressions for the simple formulae of the expected values of the Gutman and Schultz indices in a random polygonal. Based on these results above, we get the extremal values and average values of Gunman and Schultz indices of all polygonal chains.
In this paper, we only consider simple and finite connected graphs. Chemical graph theory is a branch of mathematical chemistry which deals with the nontrivial applications of graph theory to solve molecular problems. The basic method is to model the molecular structure of a compound [1,2,3]. Each atom is represented by a vertex, and the chemical bonds between atoms are represented by the edges between the vertices. Thus, the entire molecular structure is represented by a diagram, which is called a molecular diagram. For more detailed information, we can refer to [4,5] and the references cited therein.
In this paper, chemical diagrams are studied by topological indices [6,7,8,9]. According to the different parameters such as point degree, adjacent point degree and distance between two points, topological indices can be divided into many categories. A graph G is an ordered (V(G),E(G)) consisting of a nonempty set V(G) of vertices, a set E(G), disjoint from V(G), of edges. The degree dG(v) (or d(v) for short) of a vertex v in G is the number of edges of G incident with v. The shortest distance between vertex u and vertex v is denoted by d(u,v) [10,11,12,13].
Wiener index is defined as [14]
W(G)=∑{u,v}⊆VGdG(u,v). | (1.1) |
The Wiener index is more and more widely used and studied, see [15,16,17]. Zhang, Li and so on [18,19] give the explicit analytical expressions for the expected values of the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Now we will consider the random polygonal chains that are meaningful.
Gutman index is defined as
Gut(G)=12∑u∈VG∑v∈VG(dG(u)dG(v))dG(u,v)=∑u,v⊆VG(dG(u)dG(v))dG(u,v). | (1.2) |
Schultz index is defined as
S(G)=12∑u∈VG∑v∈VG(dG(u)+dG(v))dG(u,v)=∑u,v⊆VG(dG(u)+dG(v))dG(u,v). | (1.3) |
More articles on developing such a topology indices of the [20,21,22,23], such as mathematical properties, discrimination and applications refer to [24,25,26,27].
A random polygonal chain Gn with n polygons is made up of a polygonal chain Gn−1 with n−1 polygons to which a new terminal polygon Hn by a cut edge, see Figure 1. When n≥3, the terminal polygon Hn has k connection ways, these connections are recorded as G1n, G2n, G3n, …, Gkn. see Figure 2. A random polygonal chain Gn(p1,p2,p3,…,pk−1) has n polygons is a polygonal chain acquired by gradyally adding terminal polygons. Each step of adding can be randomly selected from k connection methods:
● Gk−1→G12k with probability p1,
● Gk−1→G22k with probability p2,
● ⋮ ⋮ ⋮
● Gk−1→G32k with probability p3,
● Gk−1→Gk−12k with probability pk−1,
● Gk−1→Gk2k with probability pk=1−p1−p2−p3−⋯−pk−1,
where the probabilities p1, p2, p3, …, pk−1 are constants, there are independent of k.
Let Gn be a polygonal chain with n polygons H1, H2, …, Hn. ukωk is connecting Hk and Hk+1 with uk∈VHk in Gn, ωk∈VHk+1 (k=1,2,…,n−1). Obviously, both ωk and uk+1 are thevertices in Hk+1 and d(ωk,uk+1)∈{1,2,3,…,n}. Specially, Gn is the meta-chain Mn, the ortho-chain O1n, O2n, …, Ok−2nand the para-chain Ln if d(ωk,uk+1)=1 (i.e., p1=1), d(ωk,uk+1) = 2 (i.e., p2=1), d(ωk,uk+1) = 3 (i.e., p3=1), …, d(ωk,uk+1) = k (i.e., pk=1) (∀ k∈{1,2,…,n−2}), respectively.
Zhang and Li et al.[18], obtained the random polyphenylene chain expected values of some topological indices. We calculate the explicit analytical expressions for the expected values of the Gutman index, Schultz index of a random polygonal chain. Based on above results, we get the extremal values and average values of Gunman and Schultz indices of random polygonal chains.
In this section, we will consider the expected values of Gutman index of the random polygonal chain. In fact, Gn+1 is Gn linked to a new terminal polygonal Hn+1 by an edge, Hn+1 is made up with vertices x1, x2, x3, …, x2k, and the new edge is unx1; see Figure 1. For ∀v∈VGn,
d(x1,v)=d(un,v)+1, d(x2,v)=d(un,v)+2, …, d(xk,v)=d(un,v)+k, | (2.1) |
d(xk+1,v)=d(un,v)+k+1, d(xk+2,v)=d(un,v)+k, …, d(x2k,v)=d(un,v)+2. | (2.2) |
∑v∈VGndGn+1(v)=[(2k−2)⋅2+2⋅3]n−1=(4k+2)n−1. | (2.3) |
And,
2k∑i=1d(xi)d(x1,xi)=2k2, 2k∑i=1d(xi)d(x2,xi)=2k2+1,2k∑i=1d(xi)d(x3,xi)=2k2+2, …, 2k∑i=1d(xi)d(xk,xi)=2k2+k−1,2k∑i=1d(xi)d(xk+1,xi)=2k2+k, 2k∑i=1d(xi)d(xk+2,xi)=2k2+k−1, …, …, 2k∑i=1d(xi)d(x2k−1,xi)=2k2+2, 2k∑i=1d(xi)d(x2k,xi)=2k2+1. | (2.4) |
Theorem 2.1 The E(Gut(Gn))(n≥1) of the random polygonal chain Gn is
E(Gut(Gn))={(8k3+16k2+10k+2)−(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi}n33+{(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi−(4k2+6k+2)}n2+{(4k3−4k2+8k+7)−2(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi}n3−1. |
Proof. The random polygonal chain Gn+1 is Gn linked a new terminal polygonal Hn+1 by an edge, the Hn+1 is made up with vertices x1, x2, x3, …, x2k, and the new edge is unx1; see Figure 1. By(1.2), one has
Gut(Gn+1)=∑{u,v}⊆VGnd(u)d(v)d(u,v)+∑v∈VGn∑xi∈VHn+1d(v)d(xi)d(v,xi)+∑{xixj}⊆VHn+1d(xi)d(xj)d(xi,xj). |
Note that
∑{u,v}⊆VGnd(u)d(v)d(u,v)=∑{u,v}⊆VGn∖{un}d(u)d(v)d(u,v)+∑v∈VGn∖{un}dGn+1(un)d(v)d(un,v)=∑{u,v}⊆VGn∖{un}d(u)d(v)d(u,v)+∑v∈VGn∖{un}(dGn(un)+1)d(v)d(un,v)=Gut(Gn)+∑v∈VGnd(v)d(un,v). |
Recall that d(x1)=3 and d(xi)=2 (i∈{2,3,4,…, 2k}). On the basis of (2.1)-(2.3), We get
∑v∈VGn∑xi∈VHn+1d(v)d(xi)d(v,xi)=∑v∈VGnd(v)[3(d(un,v)+1)+2(d(un,v)+2)+2(d(un,v)+3) +⋯+2(d(un,v)+k+1)+2(d(un,v)+k)+2(d(un,v)+k−1)+⋯+2(d(un,v)+2)]=∑v∈VGnd(v)[(4k+1)d(un,v)+(2k2+4k+1)]=(4k+1)∑v∈VGnd(v)d(un,v)+(2k2+4k+1)∑v∈VGnd(v)=(4k+1)∑v∈VGnd(v)d(un,v)+(2k2+4k+1)[(4k+2)n−1]. |
From (2.4), one has,
∑{xixj}⊆VHn+1d(xi)d(xj)d(xi,xj)=122k∑i=1d(xi)(2k∑j=1d(xj)d(xi,xj))=12[3×2k2+2×(2k2+1)+2×(2k2+2)+⋯ +2×(2k2+k−1)+2×(2k2+k)+2×(2k2+k−1)+⋯+2×(2k2+1)]=4k3+2k2. |
Then
Gut(Gn+1)=Gut(Gn)+(4k+2)∑v∈VGnd(v)d(un,v)+(2k2+4k+1)[(4k+2)n−1]+4k3+2k2. | (2.5) |
For a random polygonal chain Gn, the number ∑v∈VGnd(v)d(un,v) is a random variable. We let
An:=E(∑v∈VGnd(v)d(un,v)). |
Substituting An into (2.5), we obtain the recurrence formula of E(Gut(Gn))
E(Gut(Gn+1))=E(Gut(Gn))+(4k+2)An+(8k3+20k2+12k+2)n+(4k3−4k−1). | (2.6) |
We continue to consider the following k possible ways.
Way 1. Gn⟶G1n+1. In this way, un same as the vertex x2 or x2k. Then, ∑v∈VGnd(v)d(un,v) is described as ∑v∈VGnd(v)d(x2,v) or ∑v∈VGnd(v)d(x2k,v) with probability p1.
Way 2. Gn⟶G2n+1. In this way, un same as the vertex x3 or x2k−1. Then, ∑v∈VGnd(v)d(un,v) is described as ∑v∈VGnd(v)d(x3,v) or ∑v∈VGnd(v)d(x2k−1,v) with probability p2.
Way 3. Gn⟶G3n+1. In this way, un same as the vertex x4 or x2k−2. Then, ∑v∈VGnd(v)d(un,v) is described as ∑v∈VGnd(v)d(x4,v) or ∑v∈VGnd(v)d(x2k−2,v) with probability p3.
⋮ ⋮ ⋮
Way k-3. Gn⟶Gk−3n+1. In this way, un same as the vertex xk−2 or xk+4. Then, ∑v∈VGnd(v) d(un,v) is described as ∑v∈VGnd(v)d(xk−2,v) or ∑v∈VGnd(v)d(xk+4,v) with probability pk−3.
Way k-2. Gn⟶Gk−2n+1. In this way, un same as the vertex xk−1 or xk+3. Then, ∑v∈VGnd(v) d(un,v) is described as ∑v∈VGnd(v)d(xk−1,v) or ∑v∈VGnd(v)d(xk+3,v) with probability pk−2.
Way k-1. Gn⟶Gk−1n+1. In this way, un same as the vertex xk or xk+2. Then, ∑v∈VGnd(v)d(un,v) is described as ∑v∈VGnd(v)d(xk,v) or ∑v∈VGnd(v)d(xk+2,v) with probability pk−1.
Way k. Gn⟶Gkn+1, then un is the vertex xk+1. Then, ∑v∈VGnd(v)d(un,v) is described as ∑v∈VGnd(v)d(xk+1,v) with probability 1−p1−p2−p3−⋯−pk−3−pk−2−pk−1.
On the basis of the above k ways, we get
An=p1∑v∈VGnd(v)d(x2,v)+p2∑v∈VGnd(v)d(x3,v)+p3∑v∈VGnd(v)d(x4,v)+⋯+pk−3∑v∈VGnd(v)d(xk−2,v)+pk−2∑v∈VGnd(v)d(xk−1,v)+pk−1∑v∈VGnd(v)d(xk,v)+(1−p1−p2−p3−⋯−Pk−3−Pk−2−pk−1)∑v∈VGnd(v)d(xk+1,v)=p1[∑v∈VGn−1d(v)d(un−1,v)+2∑v∈VGn−1d(v)+2k2+1]+p2[∑v∈VGn−1d(v)d(un−1,v)+3∑v∈VGn−1d(v)+2k2+2]+p3[∑v∈VGn−1d(v)d(un−1,v)+4∑v∈VGn−1d(v)+2k2+3]+⋯+pk−3[∑v∈VGn−1d(v)d(un−1,v)+(k−2)∑v∈VGn−1d(v)+2k2+k−3]+pk−2[∑v∈VGn−1d(v)d(un−1,v)+(k−1)∑v∈VGn−1d(v)+2k2+k−2]+pk−1[∑v∈VGn−1d(v)d(un−1,v)+k∑v∈VGn−1d(v)+2k2+k−1]+(1−p1−p2−p3−⋯−pk−3−pk−2−pk−1)[∑v∈VGn−1d(v)d(un−1,v)+(k+1)∑v∈VGn−1d(v)+2k2+k]. |
Substitute the expectation for the above equation, let E(An)=An, we obtain
An=An−1+{(4k2+6k+2)−k−1∑i=1[4k2−(4i−2)k−2i]pi}n+k−1∑i=1[4k2−(4i−2)k−2i]pi−(2k2+6k+3). |
Let
M=k−1∑i=1[4k2−(4i−2)k−2i]pi. |
Ni=(2k+1)[4k2−(4i−2)k−2i]pi. |
Hence,
An=An−1+[(4k2+6k+2)−M]n+M−(2k2+6k+3). |
By the calculation
A1=E(∑v∈VGnd(v)d(u1,v))=2k2. |
Based on the above results, we have
An={(2k⋅k+3k+1)−k−1∑i=1[2k2−(2i−1)k−i]pi}n2+{k−1∑i=1[2k2−(2i−1)k−i]pi−(3k+2)}n+1. |
Thus,
An=[(2k⋅k+3k+1)−12M]n2+[12M−(3k+2)]n+1. |
Substitute An into (2.6), we have,
E(Gut(Gn+1))=E(Gut(Gn))+(4k+2)An+(8k3+20k2+12k+2)n+(4k3−4k−1)=E(Gut(Gn))+(4k+2){[(2k⋅k+3k+1)−12M]n2+[12M−(3k+2)]n+1}+(8k3+20k2+12k+2)n+(4k3−4k−1). |
By the calculation E(Gut(G1))=4k3.
Finally, we get the expected expression
E(Gut(Gn))={(8k3+16k2+10k+2)−(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi}n33+{(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi−(4k2+6k+2)}n2+{(4k3−4k2+8k+7)−2(2k+1)k−1∑i=1[4k2−(4i−2)k−2i]pi}n3−1. |
as desired.
Specially, if p1=1, which implies p2=p3=⋯=pk=0, then Gn≅Mn. Similarly, if p2=1 (resp. p3=1, …, pk−2=1, pk−1=1, ), which implies p1=p3=⋯=pk=0 (resp. p1=p2=p4=⋯=pk=0, p1=⋯=pk−3=pk−1=pk=0, p1=p2⋯=pk−2=pk=0), then Gn≅O1n (resp. Gn≅O2n, …, Gn≅Ok−2n). If pk=1, which implies p1=p2=⋯=pk−1=0, then Gn≅Ln. According to Theorem 2.1 we can receive the Gutman index of the polygonal meta-chain Mn, the polygonal ortho-chain O1n, O2n, O3n, …, Ok−2n, the polygonal para-chain Ln, as
Gut(Mn)=(16k2+16k+4)n33+(8k3−4k2−12k−4)n2−(12k3+4k2−20k−11)n3−1Gut(O1n)=(24k2+24k+6)n33+(8k3−12k2−20k−6)n2−(12k3−12k2−36k−15)n3−1,Gut(O2n)=(32k2+32k+8)n33+(8k3−20k2−28k−8)n2−(12k3−28k2−52k−19)n3−1, ⋮ ⋮ ⋮ Gut(Ok−3n)=(8k3−6k−2)n33+(12k2+10k+2)n2−(4k3−36k2−24k−1)n3−1,Gut(Ok−2n)=(8k3+8k2+2k)n33+(4k2+2k)n2−(4k3−20k2−8k+3)n3−1,Gut(Ln)=(8k3+16k2+10k+2)n33−(4k2+6k+2)n2+(4k3−4k2+8k+7)n3−1.Gut(oin)=[(8k3+16k2+10k+2)−Ni+1]n33−[Ni+1−(4k2+6k+2)]n2+[(4k3−4k2+8k+7)−2Ni+1]n3−1. |
Obviously
Gut(Mn)+Gut(Ln)=Gut(O1n)+Gut(O2n)+…+Gut(Ok−2n). |
Corollary 2.2 For a random polygonal chain Gn (n≥3), the para-chain Ln gets to the maximum and the meta-chain Mn gets to the minimum of E(Gut(Gn)).
Proof. By Theorem 2.1
E(Gut(Gn))=k−1∑i=1(−Nin33+Nin2−2Nin3)pi+(8k3+16k2+10k+2)n33−(4k2+6k+2)n2+(4k3−4k2+8k+7)n3−1. |
When n≥3, take the partial derivative of E(Gut(Gn)
∂E(Gut(Gn))∂pi=−Nin33+Nin2−23Nin<0,∂E(Gut(Gn))∂p1=(8k3−6k−2)n33+(8k3−6k−2)n2−2(8k3−6k−2)n3<0,∂E(Gut(Gn))∂p2=(8k3−8k2−14k−4)n33+(8k3−8k2−14k−4)n2−2(8k3−8k2−14k−4)n3<0,∂E(Gut(Gn))∂p3=(8k3−16k2−22k−6)n33+(8k3−16k2−22k−6)n2−2(8k3−16k2−22k−6)n3<0, ⋮ ⋮ ⋮ ∂E(Gut(Gn))∂pk−1=−(8k2+8k+2)n33+(8k2+8k+2)n2−2(8k2+8k+2)n3<0. |
When p1=p2=⋯=pk−1=0 (i.e. pk=1), the para-chain Ln gets to the maximum of E(Gut(Gn)), that is Gn≅Ln. If p1+p2+p3+⋯+pk−1=1, let pk−1=1−p1−p2−⋯−pk−2 (0≤p1≤1, 0≤p2≤1,…,0≤pk−1≤1), we have
E(Gut(Gn))=k−2∑i=1(−Nin33+Nin2−2Nin3)pi+(−Nk−1n33+Nk−1n2−2Nk−1n3)(1−p1−p2−⋯pk−2)+(8k3+16k2+10k+2)n33−(4k2+6k+2)n2+(4k3−4k2+8k+7)n3−1. |
Therefore,
∂E(Gut(Gn))∂pi=−(Ni−Nk−1)n33+(Ni−Nk−1)n2−2(Ni−Nk−1)n3<0,∂E(Gut(Gn))∂p1=−(8k3−8k2−14k−4)n33+(8k3−8k2−14k−4)n2−2(8k3−8k2−14k−4)n3<0,∂E(Gut(Gn))∂p2=−(8k3−16k2−22k−6)n33+(8k3−16k2−22k−6)n2−2(8k3−16k2−22k−6)n3<0, ⋮ ⋮ ⋮ ∂E(Gut(Gn))∂pk−2=−(8k2+8k+2)n33+(8k2+8k+2)n2−2(8k2+8k+2)n3<0. |
So p1=p2=⋯=pk−2=0 (i.e. pk−1=1), E(Gut(Gn)) can't attain the minimum value [28]. With the same calculations as the same above, If p1+p2+p3+…+pi=1, let pi=1−p1−p2−…−pi−1 (0≤p1≤1, 0≤p2≤1,…,0≤pi−1≤1), (i≥3), we have
E(G(Gutn))=k−3∑i=1(−Nin33+Nin2−2Nin3)pi+(−Nk−2n33+Nk−2n2−2Nk−2n3)(1−p1−p2−⋯−pk−3)+(8k3+16k2+10k+2)n33−(4k2+6k+2)n2+(4k3−4k2+8k+7)n3−1. |
Therefore,
∂E(G(Gutn))∂pi=−(Ni−Nk−2)n33+(Ni−Nk−2)n2−2(Ni−Nk−2)n3<0,(k−3≥3). |
only when p1+p2=1, they may get to the minimum value [29,30]. Then let p1=1−p2 (0≤p2≤1)
E(G(Gutn))=(−N1n33+N1n2−2N1n3)(1−p2)+(−N2n33+N2n2−2N2n3)p2+(8k3+16k2+10k+2)n33−(4k2+6k+2)n2+(4k3−4k2+8k+7)n3−1. |
Thus,
∂E(G(Gutn))∂p2=(N1−N2)n33+(N1−N2)n2−2(N1−N2)n3>0. |
So E(G(Gutn)) achieves the minimum value, when p2=0 (i.e. p1=1), that is Gn≅Mn.
In this section, we will consider the expected values of Schultz index of the random polygonal chain. In fact, Gn+1 is Gn linked to a new terminal polygonal Hn+1 by an edge, the Hn+1 is made up with vertices x1, x2, x3, …, x2k, and the new edge is unx1; see Figure 1.
Theorem 3.1 The E(S(Gn))(n≥1) of the random polygonal chain Gn is
E(S(Gn))={(8k3+12k2+4k)−2k−1∑i=1[4k3−(4i−2)k2−2ik]pi}n33+{2k−1∑i=1[4k3−(4i−2)k2−2ik]pi−(2k2+2k)}n2+{(4k3−6k2+2k)−2⋅2k−1∑i=1[4k3−(4i−2)k2−2ik]pi}n3. |
Proof. Recall the random polygonal chain Gn+1 is Gn linked a new terminal polygonal Hn+1 by an edge, the Hn+1 is made up with vertices x1, x2, x3, …, x2k, and the new edge is unx1; see Figure 1. By(1.3),
S(Gn+1)=∑{u,v}⊆VGn(d(u)+d(v))d(u,v)+∑v∈VGn∑xi∈VHn+1(d(v)+d(xi))d(v,xi)+∑{xixj}⊆VHn+1(d(xi)+d(xj))d(xi,xj). |
Note that
∑{u,v}⊆VGn(d(u)+d(v))d(u,v)=∑{u,v}⊆VGn∖{un}(d(u)+d(v))d(u,v)+∑v∈VGn∖{un}(dGn+1(un)+d(v))d(un,v)=∑{u,v}⊆VGn∖{un}(d(u)+d(v))d(u,v)+∑v∈VGn∖{un}dGn((un)+1)+d(v))d(un,v)=S(Gn)+∑v∈VGnd(un,v). |
Recall that d(x1)=3 and d(xi)=2 (i∈{2,3,4,…,2k}). On the basis of (2.1)-(2.3), We get
∑v∈VGn∑xi∈VHn+1(d(v)+d(xi))d(v,xi)=∑v∈VGn∑xi∈VHn+1d(v)d(v,xi)+∑v∈VGn∑xi∈VHn+1d(xi)d(v,xi)=∑v∈VGnd(v)[(d(un,v)+1)+(d(un,v)+2)+(d(un,v)+3)+⋯+(d(un,v)+k+1)+(d(un,v)+k)+…+(d(un,v)+2)]+∑v∈VGn[3(d(un,v)+1)+2(d(un,v)+2)+2(d(un,v)+3)+⋯+2(d(un,v)+k+1)+2(d(un,v)+k)+⋯+2(d(un,v)+2)]=∑v∈VGnd(v)[2kd(un,v)+(k2+2k)]+∑v∈VGn[(4k+1)d(un,v)+(2k2+4k+1)]=2k∑v∈VGnd(v)d(un,v)+(k2+2k)[(4k+2)n−1]+(4k+1)∑v∈VGnd(un,v)+(2k2+4k+1)⋅2kn=2k∑v∈VGnd(v)d(un,v)+(4k+1)d(un,v)+(8k3+18k2+6k)n−(k2+2k). |
From (2.4), one has
∑{xixj}⊆VHn+1(d(xi)+d(xj))d(xi,xj)=122k∑i=12k∑j=1(d(xi)+d(xj))d(xi,xj)=2k∑i=12k∑j=1d(xi)d(xi,xj)=2k2+(2k2+1)+⋯+(2k2+k−1)+(2k2+k)+(2k2+k−1)+⋯+(2k2+1)=[(2k2+1)+(2k2+k−1)](k−1)+4k2+k=4k3+k2. |
Then
S(Gn+1)=S(Gn)+(4k+2)∑v∈VGnd(un,v)+2k∑v∈VGnd(v)d(un,v)+(8k3+18k2+6k)n+(4k3−2k). | (3.1) |
For a random polygonal chain Gn, the number ∑v∈VGnd(un,v) is a random variable. We let
Bn:=E(∑v∈VGnd(un,v)). |
Substituting Bn into (3.1), we obtain the recurrence formula of E(S(Gn)),
E(S(Gn+1))=E(S(Gn))+(4k+2)Bn+2kAn+(8k3+20k2+12k+2)n+(4k3−4k−1). |
Continue to consider the following k possible ways.
Way 1. Gn⟶G1n+1. In this way, un same as the vertex x2 or x2k. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(x2,v) or ∑v∈VGnd(x2k,v) with probability p1.
Way 2. Gn⟶G2n+1. In this way, un same as the vertex x3 or x2k−1. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(x3,v) or ∑v∈VGnd(x2k−1,v) with probability p2.
Way 3. Gn⟶G3n+1. In this way, un same as the vertex x4 or x2k−2. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(x4,v) or ∑v∈VGnd(x2k−2,v) with probability p3.
⋮ ⋮ ⋮
Way k-3. Gn⟶Gk−3n+1. In this way, un same as the vertex xk−2 or xk+4. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(xk−2,v) or ∑v∈VGnd(xk+4,v) with probability pk−3.
Way k-2. Gn⟶Gk−2n+1. In this way, un same as the vertex xk−1 or xk+3. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(xk−1,v) or ∑v∈VGnd(xk+3,v) with probability pk−2.
Way k-1. Gn⟶Gk−1n+1. In this way, un same as the vertex xk or xk+2. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(xk,v) or ∑v∈VGnd(xk+2,v) with probability pk−1.
Way k. Gn⟶Gkn+1, then un is the vertex xk+1. Then, ∑v∈VGnd(un,v) is described as ∑v∈VGnd(xk+1,v) with probability 1−p1−p2−p3−⋯−pk−3−pk−2−pk−1.
On the basis of the above k ways, we get
Bn=p1∑v∈VGnd(x2,v)+p2∑v∈VGnd(x3,v)+p3∑v∈VGnd(x4,v)+⋯+pk−3∑v∈VGnd(xk−2,v)+pk−2∑v∈VGnd(xk−1,v)+pk−1∑v∈VGnd(xk,v)+(1−p1−p2−p3−⋯−Pk−3−Pk−2−pk−1)∑v∈VGnd(xk+1,v)=p1[∑v∈VGn−1d(un−1,v)+2×2k(n−1)+k2]+p2[∑v∈VGn−1d(un−1,v)+3×2k(n−1)+k2]+p3[∑v∈VGn−1d(un−1,v)+4×2k(n−1)+k2]+⋯+pk−3[∑v∈VGn−1d(un−1,v)+(k−2)×2k(n−1)+k2]+pk−2[∑v∈VGn−1d(un−1,v)+(k−1)×2k(n−1)+k2]+pk−1[∑v∈VGn−1d(un−1,v)+k×2k(n−1)+k2]+(1−p1−p2−p3−⋯−pk−3−pk−2−pk−1)[∑v∈VGn−1d(un−1,v)+(k+1)×2k(n−1)+k2]. |
Substitute the expectation for the above equation, , and let E(Bn)=Bn, we obtain
Bn=Bn−1+{(2k2+2k)−k−1∑i=1[2k2+2k−(i+1)⋅2k]pi}n+k−1∑i=1[2k2+2k−(i+1)⋅2k]pi−(k2+2k). |
Let
Z=k−1∑i=1[2k2+2k−(i+1)⋅2k]pi. |
Hence,
Bn=Bn−1+[(2k2+2k)−Z]n+Z−(k2+2k). |
By the calculation
B1=E(∑v∈VG1d(u1,v))=k2. |
Based on the above results, we have
Bn={(k2+k)−12k−1∑i=1[2k2+2k−(i+1)⋅2k]pi}n2+{12k−1∑i=1[2k2+2k−(i+1)⋅2k]pi−k}n. |
Thus,
Bn=[(k2+k)−12Z]n2+[12Z−k]n. |
and
An=[(2k⋅k+3k+1)−12M]n2+[12M−(3k+2)]n+1. |
Therefore,
E(S(Gn+1))=E(S(Gn))+(4k+2)Bn+2kAn+(8k3+20k2+12k+2)n+(4k3−4k−1)=E(S(Gn))+(4k+2){[(k2+k)−12Z]n2+[12Z−k]n}+2k{[(2k⋅k+3k+1)−12M]n2+[12M−(3k+2)]n+1}+(8k3+20k2+12k+2)n+(4k3−4k−1) |
and E(S(G1))=4k3.
Finally, we get the expected expression
E(S(Gn))={(8k3+12k2+4k)−2k−1∑i=1[4k3−(4i−2)k2−2ik]pi}n33+{2k−1∑i=1[4k3−(4i−2)k2−2ik]pi−(2k2+2k)}n2+{(4k3−6k2+2k)−2⋅2k−1∑i=1[4k3−(4i−2)k2−2ik]pi}n3. |
Let
X=2k−1∑i=1[4k3−(4i−2)k2−2ik]pi |
Yi=2[4k3−(4i−2)k2−2ik] |
Hence,
E(S(Gn))=[(8k3+12k2+4k)−X]n33+[X−(2k2+2k)]n2+[(4k3−6k2+2k)−2X]n3. |
as desired.
Specially, If we set (p1,p2,p3, …,pk−1)=(1,0,0,…,0),(0,1,0,…,0), (0,0,1,…,0), ⋯,(0,…,1,0,0), (0,…,0,1,0), (0,…,0,0,1), (0,…,0,0,0), respectively, and by Theorem 3.1, we can receive the Schultz index of the meta-chain Mn, the ortho-chain O1n, O2n, …, Ok−2n and the para-chain Ln, as
S(Mn)=(16k2+8k)n33+(8k3−6k2−6k)n2−(12k3−2k2−10k)n3, S(O1n)=(24k2+12k)n33+(8k3−14k2−10k)n2−(12k3−18k2−18k)n3,S(O2n)=(32k2+16k)n33+(8k3−22k2−14k)n2−(12k3−34k2−26k)n3, ⋮ ⋮ ⋮ S(Ok−3n)=(8k3−4k2−4k)n33+(14k2+6k)n2+(4k3−38k2−14k)n3,S(Ok−2n)=(8k3+4k2)n33+(6k2+2k)n2+(4k3−22k2−6k)n3,S(Ln)=(8k3+12k2+4k)n33−(2k2+2k)n2+(4k3−6k2+2k)n3.S(Oin)=[(8k3+12k2+4k)−Yi+1]n33+[Yi+1−(2k2+2k)]n2+[(4k3−6k2+2k)−2Yi+1]n3. |
Obviously
S(Mn)+S(Ln)=S(O1n)+S(O2n)+…+S(Ok−2n). |
Corollary 3.2 For a random polygonal chain Gn (n≥3), the para-chain Ln gets to the maximum and the meta-chain Mn gets to the minimum of E(S(Gn)).
Proof. By Theorem 3.1
E(S(Gn))=k−1∑i=1(−Yin33+Yin2−2Yin3)pi+(8k3+12k2+4k)n33−(2k2+2k)n2+(4k3−6k2+2k)n3. |
When n≥3, take the partial derivative of E(S(Gn))
∂E(S(Gn))∂pi=−Yin33+Yin2−23Yin<0.∂E(S(Gn))∂p1=−(8k3−4k2−4k)n33+(8k3−4k2−4k)n2−2(8k3−4k2−4k)n3,∂E(S(Gn))∂p2=−(8k3−12k2−8k)n33+(8k3−12k2−8k)n2−2(8k3−12k2−8k)n3<0,∂E(S(Gn))∂p3=−(8k3−20k2−12k)n33+(8k3−20k2−12k)n2−2(8k3−20k2−12k)n3<0, ⋮ ⋮ ⋮ ∂E(S(Gn))∂pk−1=−(8k2+4k)n33+(8k2+4k)n2−2(8k2+4k)n3<0. |
When p1=p2=…=pk−1=0 (i.e. pk=1), the para-chain Ln gets to the maximum of E(S(Gn)), that is Gn≅Ln. If p1+p2+p3+…+pk−1=1, let pk−1=1−p1−p2−…−pk−2 (0≤p1≤1, 0≤p2≤1,…,0≤pk−1≤1), we have
E(S(Gn))=k−2∑i=1(−Yin33+Yin2−2Yin3)pi+(−Yk−1n33+Yk−1n2−2Yk−1n3)(1−p1−p2−⋯−pk−2)+(8k3+12k2+4k)n33−(2k2+2k)n2−(4k3−6k2+2k)n3. |
Therefore,
∂E(S(Gn))∂pi=−(Yi−Yk−1)n33+(Yi−Yk−1)n2−23(Yi−Yk−1)n<0.∂E(S(Gn))∂p1=−(8k3−12k2−8k)n33+(8k3−12k2−8k)n2−23(8k3−12k2−8k)n<0,∂E(S(Gn))∂p2=−(8k3−20k2−12k)n33+(8k3−20k2−12k)n2−23(8k3−20k2−12k)n<0,∂E(S(Gn))∂p3=−(8k3−28k2−16k)n33+(8k3−28k2−16k)n2−23(8k3−28k2−16k)n<0, ⋮ ⋮ ⋮ ∂E(S(Gn))∂pk−2=−(8k2+4k)n33+(8k2+4k)n2−23(8k2+4k)n<0. |
So p1=p2=…=pk−2=0 (i.e. pk−1=1), E(S(Gn))can't attain the minimum value. With the same calculations as above, If p1+p2+p3+…+pi=1, let pi=1−p1−p2−…−pi−1 (0≤p1≤1, 0≤p2≤1,…,0≤pi−1≤1), (i≥3), we have
E(S(Gn))=k−3∑i=1(−Yin33+Yin2−2Yin3)pi+(−Yk−2n33+Yk−2n2−2Yk−2n3)(1−p1−p2−⋯−pk−3)+(8k3+12k2+4k)n33−(2k2+2k)n2+(4k3−6k2+2k)n3. |
Therefore,
∂E(S(Gn))∂pi=−(Yi−Yk−2)n33+(Yi−Yk−2)n2−23(Yi−Yk−2)n<0,(k−3≥3). |
only when p1+p2=1, they may get to the minimum value. Then let p1=1−p2 (0≤p2≤1)
E(S(Gn))=(−Y1n33+Y1n2−2Y1n3)(1−p2)+(−Y2n33+Y2n2−2Y2n3)p2+(8k3+12k2+4k)n33−(2k2+2k)n2+(4k3−6k2+2k)n3. |
Thus,
∂E(S(Gn))∂p2=(Y1−Y2)n33−(Y1−Y2)n2+23(Y1−Y2)n>0. |
So E(S(Gn)) achieves the minimum value, when p2=0 (i.e. p1=1), that is Gn≅Mn.
Recall that Θn is the set of all polygonal chains with n polygons. We give the average value for the Gutman index and Schultz index with respect to Θn.
Gutavr(Θn)=1|Θn|∑G∈ΘnGut(G), Savr(Θn)=1|Θn|∑G∈ΘnS(G). |
For achieving the average value Gutavr(Θn), Savr(Θn), It takes p1=p2=…=pk=1k in the expected value for the Gutman index and Schultz index of the random polygonal chain (i.e.E(Gut(Gn)), E(S(Gn))). According to Theorem 2.1 and 3.1,
Theorem 4.1The Gutavr(Θn)(n≥1) and Savr(Θn)(n≥1) for the the Gutman index and Schultz index of the random chain Gn are
Gutavr(Θn)={(8k3+16k2+10k+2)−(2k+1)kk−1∑i=1[4k2−(4i−2)k−2i]pi}n33+{(2k+1)kk−1∑i=1[4k2−(4i−2)k−2i]pi−(4k2+6k+2)}n2+{(4k3−4k2+8k+7)−2(2k+1)kk−1∑i=1[4k2−(4i−2)k−2i]pi}n3−1. |
Savr(Θn)={(8k3+12k2+4k)−2kk−1∑i=1[4k3−(4i−2)k2−2ik]pi}n33+{2kk−1∑i=1[4k3−(4i−2)k2−2ik]pi−(2k2+2k)}n2+{(4k3−6k2+2k)−2⋅2kk−1∑i=1[4k3−(4i−2)k2−2ik]pi}n3. |
After verification, the equations are established,
Gutavr(Θn)=1kGut(Mn)+1kGut(O1n)+1kGut(O2n)+…+1kGut(Ok−2n)+1kGut(Ln).Savr(Θn)=1kS(Mn)+1kS(O1n)+1kS(O2n)+…+1kS(Ok−2n)+1kS(Ln). |
In this paper, we establish the explicit analytical expressions for the expected values of the Gutman index, Schultz index of a random polygonal chain. We also get the extremal values and average values of Gutman and Schultz indices. All these results will contribute to the study of the topological index of graphs and can better predict the physicochemical properties of more novel compounds, which can be applied to the research of drugs, macromolecular polymers and new materials [20,31,32,33].
In chemical graph theory, the matter of polygonal chain is being widely studied by researchers. The molecular structures of polygonal chemicals are various and its physicochemical properties also become more and more important, and refer to [34,35,36,37]. It is possible to establish exact formulas for the expected values of some indices of a random polygon chain with n regular polygons[38,39,40,41].
The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable comments and suggestions. This research is supported by the National Science Foundation of China (Grant No.12171190), the Graduate innovation fund project of Anhui University of Science and Technology(Grant No.149), the Natural Science Foundation of Anhui Province(Grant No.2008085MA01) and Funded by Research Foundation of the Institute of Environment-friendly Materials and Occupational Health (Wuhu), Anhui University of Science and Technology((Grant No.ALW2021YF09)).
The authors declare that they have no competing interests.
[1] |
A. I. Pavlyuchko, E. V. Vasiliev, L. A. Gribov, Quantum chemical estimation of the overtone contribution to the IR spectra of hydrocarbon halogen derivatives, J. Struct. Chem., (2010), 1045–1051. https://doi.org/10.1007/s10947-010-0161-5 doi: 10.1007/s10947-010-0161-5
![]() |
[2] |
D. R. Flower, On the properties of bit string-based measures of chemical similarity, J. Chem. Inf. Comput. Sci., 38 (1998), 379–386. https://doi.org/10.1021/ci970437z doi: 10.1021/ci970437z
![]() |
[3] |
H. L. Donald, M. A. Whitehead, Molecular geometry and bond energy. III. Cyclooctatetraene and related compounds, J. Am. Chem. Soc., 91 (1969), 238–242. https://doi.org/10.1021/ja01030a003 doi: 10.1021/ja01030a003
![]() |
[4] | E. Estrada, D. Bonchev, P. Zhang, Chemical Graph Theory, Discrete Math. Appl., (2013), 1–24. https://doi.org/10.1201/b16132-92 |
[5] | J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008. |
[6] | F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Reading, 1989. https://doi.org/10.1007/978-0-8176-4789-6-3 |
[7] |
H. Hosoya, Topological index, A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn., 44(1971), 2332–2339. https://doi.org/10.1246/bcsj.44.2332 doi: 10.1246/bcsj.44.2332
![]() |
[8] |
M. Garavelli, F. Bernardi, A. Cembran, Cyclooctatetraene Computational Photo- and Thermal Chemistry: A reactivity model for conjugated hydrocarbons, J. Am. Chem. Soc., 124 (2002), 13770–13789. https://doi.org/10.1021/ja020741v doi: 10.1021/ja020741v
![]() |
[9] | R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J., 26 (1976), 283–296. |
[10] |
A. L. Chen, F. J. Zhang, Wiener index and perfect matchings in random phenylene chains, MATCH Commun. Math. Comput. Chem., 61 (2009), 623–630. https://doi.org/10.1117/12.676730 doi: 10.1117/12.676730
![]() |
[11] |
H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Computer Model., 55 (2012), 634–644. https://doi.org/10.1016/j.mcm.2011.08.037 doi: 10.1016/j.mcm.2011.08.037
![]() |
[12] | L. Ma, H. Bian, B. J. Liu, H. Z. Yu, The expected values of the Wiener indices in the random phenylene and spiro chains, Ars Combin., 130 (2017), 267–274. |
[13] |
Q. N. Zhou, L. G. Wang, Y. Lu, Wiener index and Harary index on Hamilton-connected graphs with large minimum degree, Discrete Appl. Math., 247 (2018), 180–185. https://doi.org/10.1016/j.dam.2018.03.063 doi: 10.1016/j.dam.2018.03.063
![]() |
[14] | Wiener, Structrual determination of paraffin boiling points, J. Am. Chem. Soc.,, 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 |
[15] |
S. Mukwembi, S. Munyira, MunyiraDegree distance and minimum degree, Bull. Aust. Math. Soc., 87 (2013), 255–271. https://doi.org/10.1017/S0004972712000354 doi: 10.1017/S0004972712000354
![]() |
[16] |
S. L. Wei, W. C. Shiu, Enumeration of Wiener indices in random polygonal chains, J. Math. Anal. Appl., 469 (2018), 537–548. https://doi.org/10.1016/j.jmaa.2018.09.027 doi: 10.1016/j.jmaa.2018.09.027
![]() |
[17] |
W. Yang, F. Zhang, Wiener index in random polyphenyl chains, MATCH Commun. Math. Comput. Chem., 68 (2012), 371–376. https://doi.org/10.1155/2012/128492 doi: 10.1155/2012/128492
![]() |
[18] |
L. L. Zhang, Q. S. Li, S. C. Li, M. J. Zhang, The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain, J. Discrete Appl. Math., 282 (2020), 243–256. https://doi.org/10.1016/j.dam.2019.11.007 doi: 10.1016/j.dam.2019.11.007
![]() |
[19] | J. F. Qi, M. L. Fang, X. Y. Geng, The expected value for the Wiener index in the Random Spiro Chains, Polycycl. Aromat. Comp.. https://doi.org/10.1080/10406638.2022.2038218 |
[20] |
A. Heydari, On the modified Schultz index of C4C8(S) nanotubes and nanotorus, Digest. J. Nanomater. Biostruct., 5 (2010), 51–56. https://doi.org/10.1063/1.3279788 doi: 10.1063/1.3279788
![]() |
[21] | M. R. Farahani, Hosoya, Schultz, modified Schultz polynomials and their topological indices of benzene molecules: First members of polycyclic aromatic hydrocarbons (PAHs), Int. J. Theor. Chem., 1 (2013), 9–16. |
[22] |
Z. Xiao, S. Chen, The modified Schultz index of armchair polyhex nanotubes, J. Comput. Theor. Nanosci., 6 (2009), 1109–1114. https://doi.org/10.1166/jctn.2009.1150 doi: 10.1166/jctn.2009.1150
![]() |
[23] |
G. H. Huang, M. J. Kuang, H. Y. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, Ars Math. Contemp., 9 (2015), 197–207. https://doi.org/10.26493/1855-3974.458.7b0 doi: 10.26493/1855-3974.458.7b0
![]() |
[24] | W. C. Evans, D. Evans, Hydrocarbons and derivatives, in Trease and Evans' Pharmacognosy (eds. W. C. Evans and D. Evans), (2009) 173–193. https://doi.org/10.1016/B978-0-7020-2933-2.00019-8 |
[25] |
W. B. Person, G. C. Pimentel, K. S. Pitzer, The Structure of Cyclooctatetraene, J. Am. Chem. Soc., 74 (1952), 3437–3438. https://doi.org/10.1021/ja01133a524 doi: 10.1021/ja01133a524
![]() |
[26] | E. Booth, G. Strobel, B. Knighton, J. Sears, B. Geary, R. Avci, A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives, Biotechnol. Letters., (2011), 1963–1972. https://doi.org/10.1007/s10529-011-0660-2 |
[27] |
S. Chen, Modified Schultz index of zig-zag polyhex nanotubes, J. Comput. Theor. Nanosci., 6 (2009), 1499–1503. https://doi.org/10.1166/jctn.2009.1201 doi: 10.1166/jctn.2009.1201
![]() |
[28] | P. Zhao, B. Zhao, X. Chen, Y. Bai, Two classes of chains with maximal and minimal total π−electron energy, MATCH Commun. Math. Comput. Chem., 62 (2009), 525–536. |
[29] |
X. Chen, B. Zhao, P. Zhao, Six-membered ring spiro chains with extremal Merrifild-Simmons index and Hosoya index, MATCH Commun. Math. Comput. Chem., 62 (2009), 657–665. https://doi.org/10.1111/j.1467-9892.2008.00605 doi: 10.1111/j.1467-9892.2008.00605
![]() |
[30] |
Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield-Simmons index and Hosoya index of polyphenyl chains, MATCH Commun. Math. Comput. Chem., 62 (2009), 649–656. https://doi.org/10.1111/j.1467-9892.2008.00605.x doi: 10.1111/j.1467-9892.2008.00605.x
![]() |
[31] |
I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci., 34 (1994), 1087–1089. https://doi.org/10.1021/ci00021a009 doi: 10.1021/ci00021a009
![]() |
[32] |
R. J. Schwamm, M. D. Anker, M. Lein, R. vs. Addition: The reaction of an Aluminyl Anion with 1, 3, 5, 7-Cyclooctatetraene, J. Chem., 58 (2019), 1489–1493. https://doi.org/10.1002/ange.201811675 doi: 10.1002/ange.201811675
![]() |
[33] | R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000. |
[34] |
G. Luthe, J. A. Jacobus, L. W. Robertson, Receptor interactions by polybrominated diphenyl ethers versus polychlobrinated biphenyls: a theoretical structure-activity assessment, Environ. Toxicol. Pharm., 25 (2008), 202–210. https://doi.org/10.1016/j.etap.2007.10.017 doi: 10.1016/j.etap.2007.10.017
![]() |
[35] | M. Traetteberg, G. Hagen, S. J. Cyvin, IV. 1, 3, 5, 7-Cyclooctatetraene, Zeitschrift Für Naturforschung B., 25 (1970), 134–138. https://doi.org/10.1515/znb-1970-0201 |
[36] |
N. Milas, J. Nolan, Jr. Petrus, H. L. Otto, Notes-Ozonization of Cyclooctatetraene, J. Org. Chem., 23 (1958), 624–625. https://doi.org/10.1021/jo01098a611 doi: 10.1021/jo01098a611
![]() |
[37] |
W. B. Person, G. C. Pimentel, K. S. Pitzer, The Structure of Cyclooctatetraene, J. Am. Chem. Soc., 74 (1952), 3437–3438. https://doi.org/10.1021/ja01133a524 doi: 10.1021/ja01133a524
![]() |
[38] |
F. S. Mathews, W. N. Lipscomb, The structure of Silver Cyclooctatetraene Nitrate, J. Phys. Chem., 63 (1959), 845–850. https://doi.org/10.1021/j150576a017 doi: 10.1021/j150576a017
![]() |
[39] | R. C. Tendick, J. T. O'Beck, M. R. Nimmo, T. Y. Francis Record, Hydrocarbon conversion system and method with a plurality of sources of compressed oxygen-containing gas, Free Patents Online, (2002). |
[40] |
Q. R. Li, Q. Yang, H. Yin, S. Yang, Analysis of by-products from improved Ullmann reaction using TOFMS and GCTOFMS, J. Univ. Sci. Technol. China., 34 (2004), 335–341. https://doi.org10.2174/0929866043478455 doi: 10.2174/0929866043478455
![]() |
[41] |
S. Tepavcevic, A. T. Wroble, M. Bissen, D. J. Wallace, Y. Choi, L. Hanley, Photoemission studies of polythiophene and polyphenyl films produced via surface polymerization by ion-assisted deposition, J. Phys. Chem. B., 109 (2005), 7134–7140. https://doi.org/10.1021/jp0451445 doi: 10.1021/jp0451445
![]() |
1. | Chen Tao, Shengjun Tang, Xianya Geng, The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains, 2024, 13, 2075-1680, 518, 10.3390/axioms13080518 | |
2. | Qi Ma, Extremal polygonal chains with respect to the Kirchhoff index, 2024, 342, 0166218X, 218, 10.1016/j.dam.2023.09.022 |