Processing math: 46%
Research article Special Issues

Modified dragonfly algorithm based multilevel thresholding method for color images segmentation

  • Accurate image segmentation is the preprocessing step of image processing. Multi-level threshold segmentation has important research value in image segmentation, which can effectively solve the problem of region analysis of complex images, but the computational complexity increases accordingly. In order to overcome this problem, an modified Dragonfly algorithm (MDA) is proposed to determine the optimal combination of different levels of thresholds for color images. Chaotic mapping and elite opposition-based learning strategies (EOBL) are used to improve the randomness of the initial population. The hybrid algorithm of Dragonfly Algorithms (DA) and Differential Evolution (DE) is used to balance the two basic stages of optimization: exploration and development. Kapur entropy, minimum cross-entropy and Otsu method are used as fitness functions of image segmentation. The performance of 10 test color images is evaluated and compared with 9 different meta-heuristic algorithms. The results show that the color image segmentation method based on MDA is more effective and accurate than other competitors in average fitness value (AF), standard deviation (STD), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM). Friedman test and Wilcoxon's rank sum test are also performed to assess the significant difference between the algorithms.

    Citation: Xiaoxu Peng, Heming Jia, Chunbo Lang. Modified dragonfly algorithm based multilevel thresholding method for color images segmentation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324

    Related Papers:

    [1] Yefu Zheng, Jun Xu, Hongzhang Chen . TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301
    [2] Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
    [3] Ghous Ali, Adeel Farooq, Mohammed M. Ali Al-Shamiri . Novel multiple criteria decision-making analysis under m-polar fuzzy aggregation operators with application. Mathematical Biosciences and Engineering, 2023, 20(2): 3566-3593. doi: 10.3934/mbe.2023166
    [4] Qianhong Zhang, Fubiao Lin, Xiaoying Zhong . On discrete time Beverton-Holt population model with fuzzy environment. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488. doi: 10.3934/mbe.2019071
    [5] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja . Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Mathematical Biosciences and Engineering, 2021, 18(5): 6552-6580. doi: 10.3934/mbe.2021325
    [6] Bo Sun, Ming Wei, Wei Wu, Binbin Jing . A novel group decision making method for airport operational risk management. Mathematical Biosciences and Engineering, 2020, 17(3): 2402-2417. doi: 10.3934/mbe.2020130
    [7] Sumera Naz, Muhammad Akram, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf, Gohar Yousaf . A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators. Mathematical Biosciences and Engineering, 2022, 19(4): 3843-3878. doi: 10.3934/mbe.2022177
    [8] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Mathematical Biosciences and Engineering, 2022, 19(1): 812-835. doi: 10.3934/mbe.2022037
    [9] Muhammad Akram, G. Muhiuddin, Gustavo Santos-García . An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
    [10] Muhammad Akram, Ahmad N. Al-Kenani, Anam Luqman . Degree based models of granular computing under fuzzy indiscernibility relations. Mathematical Biosciences and Engineering, 2021, 18(6): 8415-8443. doi: 10.3934/mbe.2021417
  • Accurate image segmentation is the preprocessing step of image processing. Multi-level threshold segmentation has important research value in image segmentation, which can effectively solve the problem of region analysis of complex images, but the computational complexity increases accordingly. In order to overcome this problem, an modified Dragonfly algorithm (MDA) is proposed to determine the optimal combination of different levels of thresholds for color images. Chaotic mapping and elite opposition-based learning strategies (EOBL) are used to improve the randomness of the initial population. The hybrid algorithm of Dragonfly Algorithms (DA) and Differential Evolution (DE) is used to balance the two basic stages of optimization: exploration and development. Kapur entropy, minimum cross-entropy and Otsu method are used as fitness functions of image segmentation. The performance of 10 test color images is evaluated and compared with 9 different meta-heuristic algorithms. The results show that the color image segmentation method based on MDA is more effective and accurate than other competitors in average fitness value (AF), standard deviation (STD), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM). Friedman test and Wilcoxon's rank sum test are also performed to assess the significant difference between the algorithms.


    Differential equations play a very important role in modeling physical and engineering problems such as classical mechanics, thermodynamics, general relativity, and electro mechanics. From a broader perspective, the initial conditions are considered to be precisely defined in the model. There are uncertain errors in the observed, measured, or experimental data, which can be ambiguous, incomplete, or inaccurate. We can use the fuzzy differential equation (FDE) to overcome this uncertainty or inaccuracy. Fuzzy set theory was first introduced by Zadeh [1] which deals with uncertainty and vagueness. This theory has many applications in the study of artificial intelligence, decision making problems, soft computing, engineering and operation research. Differential equations play a significant role in modeling virtually every physical, technical, or biological process. Differential equations such as those used to solve real-life problems may not necessarily be directly solvable, that is, they do not have closed form solution. Instead, solution can be approximated using numerical methods. Every differential equation does not possess an exact solution. To overcome this situation, fuzzy set theory is a vital tool to deal with differential equations that do not possess exact solution due to uncertainty in their data. The initial conditions actually are the measurements or observations which lead to the vague information that is why, we use fuzzy differential equations to analyze this unclear information.

    FODE may be viewed as a type of uncertain differential equation in which the uncertain values of parameters, coefficients, initial or boundary conditions are taken into account as fuzzy numbers. FODE has a worth buying significance from both practical and theoretical point of view. Chang and Zadeh [2] first introduced the idea of fuzzy derivative in 1972. The concept developed by Chang and Zadeh was followed up by Dubois and Prade [3], who used the theory of Zadeh's extension principle. FDEs were first discussed by Kaleva [4,5]. Bede and Gal [6] had defined strongly generalized Hukuhara differentiability (SGH-differentiability) of fuzzy-valued function. Kaleva discussed FDE using Puri-Relescue Hukuhara differentiability (H-differentiability) [6,7,8], gave the existence and uniqueness theorem for a solution of the FDE that satisfies the Lipschitz condition. Seikkala [9] introduced the fuzzy derivative which was the generalization of Hukuhara derivative, developed on the basis of Hukuhara difference (H-difference) [10]. Song and Wu [11] studied FDE, and they gave the generalization of the main consequences of Kaleva. FDE and fuzzy initial value problem (FIVP) were discussed by Kaleva in [12]. The derivative of a fuzzy-valued function can be evaluated using H-differentiability introduced by Hukuhara. Fuzzy set theory has great importance in solving FODEs. Many researchers [13,14,15,16] have established different techniques for solving FDEs and fuzzy linear systems. Allahviranloo et al. [17] introduced a method for solving fuzzy differential equation by Taylor expansion. Allahviranloo et al. [18] discussed the existence and uniqueness of the solution for the second-order FODE. Allahviranloo et al. [19] gave the numerical approach to solve FDEs using predictor-corrector method. Friedman et al. [20] gave the numerical approach to extract the solution of fuzzy differential equations and fuzzy integral equations. Wu [21] studied about fuzzy Riemann integral and its numerical integration. Many research articles have been published discussing the solution of fuzzy differential equations using different techniques [22,23,24,25,26]. Allahviraoloo and Ahmadi [27] introduced the concept of the fuzzy Laplace transform (FLT) to solve FDE. Salahshour and Allahviranloo [28] discussed many applications of the fuzzy Laplace transform. The FLT is an important and reliable technique for solving FDE and FIVP. The FLT has the benefit that it solves FIVPs directly without first evaluating a complementary solution and particular solution to FIVP. The FLT converts the fuzzy problem into an algebraic problem which can be easily solved. The initial conditions of FIVP are in the parametric form that splits the problem into two equations. Furthermore, by applying the Laplace transform and the inverse Laplace transform, we are able to find the solution of FIVP. Optimization plays a vital role in a number of fields for the development of technology. Many researchers have discussed advanced optimization algorithms for decision making problems [29]. Moreover, many research articles have been published regarding the importance of advanced optimization algorithms, for instance, heuristics and metaheuristics for challenging decision problems. There are many different domains where advanced optimization algorithms have been applied as solution approaches, such as online learning, scheduling, multi-objective optimization, transportation, medicine, data classification, and others [30,31,32,33,34,35].

    This research paper presents a new analytical method for solving fuzzy initial value problem of fourth-order FODE using the fuzzy Laplace transform. To this end, we establish the fourth order derivative of fuzzy-valued function according to the type of differentiability. We present the relationship between the fourth-order derivative and the Laplace transform of FVF. Moreover, we presents an algorithm to find the solution of fourth-order FIVP. The effectiveness of the introduced method is illustrated by an example. Furthermore, we solved another example about the switching point. The solution of the FIVP possessed the Mittag-Leffler function [36]. We express the solution of FIVP through graphical point of view to visualize and support the theoretical results.

    In short, the main content of this research article has the following perspectives:

    ● Solution of fourth-order fuzzy initial value problem using the Laplace operator.

    ● An important relationship between the Laplace transform of the FVF and its fourth-order derivative.

    ● An algorithm is presented to understand the steps required to solve FIVP.

    ● The validity of the introduced method is verified by an illustrative example.

    ● Another example is solved about switching points.

    ● Application of fourth-order FIVP in RL circuit.

    ● Representation of graphs to visualize and support the theoretical results.

    The rest of the paper is designed as follows: Section 2 contains the preliminary concepts. Section 3 presents the fourth-order derivative of FVF and the relationship between the fourth-order derivative and Laplace transform of FVF. Section 4 contains the framework of research methodology for solving fourth-order FIVP, and the characteristic theorem for the solution of fourth-order FIVP. Section 5 presents supportive numerical examples and an application of fourth-order FIVP in RL circuit. Concluding remarks are given in Section 6.

    In this section, we recall some basic concepts require for this research paper.

    Definition 2.1. [37] A fuzzy set (FS) RF in X is an object of the form

    RF={<t,μ(t)>:tX},

    where μ:X[0,1] denotes the degree of membership of an element tX.

    Definition 2.2. [37] A fuzzy number (FN) u is a non-empty subset of X with the rule of membership grade μ:X[0,1]. Firmly, u is convex, that is,

    μ(t+(1)t1)min{μ(t),μ(t1)},,t,t1with[0,1]andt,t1X.

    Also, u is normal because there exists tX such that μ(t)=1.

    Definition 2.3. [37] A triangular fuzzy number (TFN) u is a subset of FN in R with the following membership function:

    μ(t)={taba;atb,ctcb;btc,0;elsewhere

    where abc and a TFN is denoted by u=(a,b,c).

    Definition 2.4. [37] A parametric fuzzy number (PFN) u is an ordered pair of the functions u1(p) and u2(p), 0p1 that satisfy the following requirements:

    u1(p) is a bounded left continuous, non-decreasing function over (0,1] and right continuous at 0,

    u2(p) is a bounded left continuous, non-increasing function over (0,1] and right continuous at 0,

    u1(p)u2(p), 0p1.

    The collection of all parametric fuzzy numbers (PFNs) (u1(p),u2(p)) with the operations of addition and scalar multiplication is denoted by E1.

    Definition 2.5. [10] let u and v be two fuzzy numbers. If there exists a fuzzy number w such that u=wv, then w is called H-difference of u and v and is denoted by uHv.

    Remark 2.1. Throughout this paper, we use the notation for H-difference.

    Definition 2.6. [10] Let X be a subset of R. A FVF ϑ:XE1 is said to be H-differentiable at t0X if and only if there exists a fuzzy number ϑ(t0)E1 such that the limits

    limδ0ϑ(t0+δ)ϑ(t0)δandlimδ0ϑ(t0)ϑ(t0δ)δ

    both exist and are equal to ϑ(t0). In this case, ϑ(t0) is called the H-derivative of ϑ at t0. If ϑ is H-differentiable at any tX, we call ϑ is H-differentiable over X.

    Definition 2.7. [10] Let u,vE1 be two fuzzy numbers. If there exists a fuzzy number w such that:

    ugHv=wu=v+worv=u+(1)w,

    then w is called the gH-difference of u and v. In terms of p-level sets, gH-difference is defined as:

    [ugHv]p=[min{u1(p)v1(p),u2(p)v2(p)},max{u1(p)v1(p),u2(p)v2(p)}]

    and if H-difference exists, then uv=ugHv.

    Bede and Gal [6] defined SGH-differentiability of fuzzy-valued function based on H-difference [10].

    Definition 2.8. [10] Let X be a subset of R. A FVF ϑ:XE1 is said to be SGH-differentiable at t0X and ϑ(t0)E1 if one of the following conditions is satisfied:

    (ı) For every δ>0, the expressions ϑ(t0+δ)ϑ(t0) and ϑ(t0)ϑ(t0δ) both exist such that

    ϑ(t0)=limδ0ϑ(t0+δ)ϑ(t0)δ=limδ0ϑ(t0)ϑ(t0δ)δ.

    (ıı) For every δ>0, the expressions ϑ(t0)ϑ(t0+δ) and ϑ(t0δ)ϑ(t0) both exist such that

    ϑ(t0)=limδ0ϑ(t0)ϑ(t0+δ)δ=limδ0ϑ(t0δ)ϑ(t0)δ.

    Moreover, if ϑ is differentiable at each tX, then we say that ϑ is differentiable over X.

    Definition 2.9. [36] The Mittag-Leffler function in two parameters ξ,η is defined by the series expansion:

    Eξ,η(t)=i=0tiΓ(ξk+η),(ξ>0,η>0). (2.1)

    The Laplace transform of the Mittag-Leffler function Eξ,η(t) is given by:

    L[tη1Eξ,η(λtξ)]=rξηrξλ,(r>0). (2.2)

    Definition 2.10. (pcut form) [6] Suppose that a FVF ϑ:RE1 is denoted by:

    [ϑ(t,p)]:=[ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)],

    for all p belongs to unit closed interval [0,1] and tR.

    The 1st and 2nd differentiability of a FVF ϑ is defined by:

    ● If ϑ is 1st differentiable ((ı)-differentiable), then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and defined as:

    [ϑ(ı)(t)]p=[ϑ1(p)(t),ϑ2(p)(t)].

    ● If ϑ is 2nd differentiable ((ıı)-differentiable), then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and defined as:

    [ϑ(ıı)(t)]p=[ϑ2(p)(t),ϑ1(p)(t)].

    Definition 2.11. [38] Suppose that a function ϑ and ϑ are differentiable FVFs. The FVF ϑ is denoted by [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)] for all p belongs to unit closed interval [0,1].

    (i) If ϑ is (ı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(ı)(t)]p={[ϑ1(p)(t),ϑ2(p)(t)]if ϑ is(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑis(ıı)-differentiable.

    (ii) If ϑ is (ıı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(ıı)(t)]p={[ϑ2(p)(t),ϑ1(p)(t)]ifϑis(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑis(ıı)-differentiable.

    Definition 2.12. [39] Suppose that a function ϑ, ϑ and ϑ are differentiable FVFs. The function ϑ is denoted by [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)] for all p belongs to unit closed interval [0,1].

    (i) If ϑ is (ı)-differentiable, then the function ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(t)]p={[ϑ1(p)(t),ϑ2(p)(t)]ifϑandϑare(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ is(ıı)-differentiable andϑis(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ is(ı)-differentiable andϑ is (ıı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ and ϑ are (ıı)-differentiable.

    (ii) If ϑ is (ıı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(t)]p={[ϑ2(p)(t),ϑ1(p)(t)]ifϑ andϑare(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ is (ıı)-differentiable and ϑ is(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ is(ı)-differentiable andϑ is(ıı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ andϑ are(ıı)-differentiable.

    In this section, we introduce the fourth-order derivative of fuzzy-valued function on the base of SGH-differentiability which is then the extension of solving first order linear fuzzy differential equation to fourth-order linear fuzzy differential equation.

    Definition 3.1. On the base of SGH-differentiability, we have the following cases to determine the nature of fourth-order derivative of fuzzy-valued function [ϑ(t)]p and to compare the lower and upper FVFs ϑ1(p)(t) and ϑ2(p)(t) respectively according to their fourth-order derivatives. The behavior of fourth-order derivative of FVF [ϑ(t)]p is represented by Table 1.

    Table 1.  Behavior of fourth-order derivatives of [ϑ(t)]p.
    Sr.No. ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)1 Behavior of ϑ1 with ϑ2 Type of differentiability
    1 ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)1 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ı), ϑ(iv)(ı)
    2 ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)2 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ı), ϑ(iv)(ıı)
    3 ϑ1 ϑ1 ϑ1 ϑ2 ϑ(iv)2 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ıı), ϑ(iv)(ıı)
    4 ϑ1 ϑ1 ϑ1 ϑ2 ϑ(iv)1 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ıı), ϑ(iv)(ı)
    5 ϑ1 ϑ1 ϑ2 ϑ2 ϑ(iv)2 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ıı)
    6 ϑ1 ϑ1 ϑ2 ϑ2 ϑ(iv)1 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ı)
    7 ϑ1 ϑ1 ϑ2 ϑ1 ϑ(iv)2 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ı), ϑ(iv)(ıı)
    8 ϑ1 ϑ1 ϑ2 ϑ1 ϑ(iv)1 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ı), ϑ(iv)(ı)
    9 ϑ1 ϑ2 ϑ2 ϑ2 ϑ(iv)2 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ıı)
    10 ϑ1 ϑ2 ϑ1 ϑ2 ϑ(iv)1 ϑ1>ϑ2, ϑ1<ϑ1, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)1 ϑ(ıı), ϑ(ı), ϑ(ıı), ϑ(iv)(ı)
    11 ϑ1 ϑ2 ϑ2 ϑ1 ϑ(iv)1 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ı), ϑ(iv)(ı)
    12 ϑ1 ϑ2 ϑ2 ϑ2 ϑ(iv)1 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ı)
    13 ϑ1 ϑ2 ϑ1 ϑ1 ϑ(iv)1 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ı), ϑ(iv)(ı)
    14 ϑ1 ϑ2 ϑ1 ϑ1 ϑ(iv)2 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ı), ϑ(iv)(ıı)
    15 ϑ1 ϑ2 ϑ1 ϑ2 ϑ(iv)2 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ıı), ϑ(iv)(ıı)
    16 ϑ1 ϑ2 ϑ2 ϑ1 ϑ(iv)2 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ı), ϑ(iv)(ıı)

     | Show Table
    DownLoad: CSV

    Definition 3.2. [40] The points in an interval where fuzzy differentiability of type-(ı) changes to type-(ıı) and vice versa are called switching points.

    Example 3.1. [40] The concept of switching point can be understand by the example of second-order derivative of FVF. Table 2 indicates about the switching points.

    In this research article, we briefly discuss about switching points.

    Table 2.  Nature of second-order derivative of ϑ1 and its relationship with the derivative of ϑ2.
    S.N. ϑ ϑ ϑ Relationship with derivatives of ϑ2 Type of differentiability
    1 ϑ1 ϑ1 ϑ1 ϑ1<ϑ2, ϑ1<ϑ2 ϑ(ı), ϑ(ı)
    2 ϑ1 ϑ1 ϑ2 ϑ1<ϑ2, ϑ1>ϑ2 ϑ(ı), ϑ(ıı)
    3 ϑ1 ϑ2 ϑ1 ϑ1>ϑ2, ϑ1<ϑ2 ϑ(ıı), ϑ(ı)
    4 ϑ1 ϑ2 ϑ2 ϑ1>ϑ2, ϑ1>ϑ2 ϑ(ıı), ϑ(ıı)

     | Show Table
    DownLoad: CSV

    Table 2 shows that the fuzzy-valued function ϑ follows the same differentiability if there is no switch (cases 1 and 4) in increasing or decreasing nature of function or there are two switches (cases 2 and 3).

    Definition 3.3. [27] Let ϑ(t) be a continuous FVF. Assume that ertϑ(t) is an improper fuzzy Riemann integrable on [0,), then the integral 0ertϑ(t)dt is said to be the fuzzy Laplace transform of fuzzy-valued function ϑ and its symbolic representation is given by:

    L[ϑ(t)]=0ertϑ(t)dt,r>0. (3.1)

    In pcut form, Eq (3.1) takes the following form:

    L[ϑ(t)]=[L[ϑ1(p)(t)],L[ϑ2(p)(t)]],

    where, L[ϑ(t)] is the classical notation of Laplace transform of crisp function ϑ(t).

    Theorem 3.1. [27] Let ϑ(t) be an integrable FVF and ϑ(t) be the primitive of ϑ(t) on [0,). Then the Laplace transform of the FVF ϑ(t) according to the type of differentiability is given by:

    (a) If ϑ is (ı)differentiable, then

    L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0). (3.2)

    (b) If ϑ is (ıı)differentiable, then

    L[ϑ(ıı)(t)]=(ϑ(0))(r)L[ϑ(t)]. (3.3)

    Theorem 3.2. [27]Let ϑ(t) and ω(t) be the continuous FVFs and a,b are real constants. Then

    L[aϑ(t)bω(t)]=aL[ϑ(t)]bL[ω(t)]. (3.4)

    We discuss an important result concerning the relationship between Laplace transform of FVF and its fourth-order derivative in the following theorem.

    Theorem 3.3. Let ϑ(t) be a fuzzy-valued function such that ertϑ(t), ertϑ(t), ertϑ(t), ertϑ(t) and ertϑ(iv)(t) exist, differentiable and Riemann integrable on [0,). Then we have the following cases:

    1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=r4L[ϑ(t)]r3[ϑ(0)]r2[ϑ(ı)(0)]r[ϑ(ı)(0)][ϑ(ı)(0)].

    2) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r4)L[ϑ(t)(r3)ϑ(0)(r)ϑ(ı)(0)(r)ϑ(ı)(0).

    3) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then,

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)(r2)ϑ(ı)(0)ϑ(ıı)(0).

    4) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ı)(0)r4L[ϑ(t)]r3ϑ(0)r2ϑ(ı)(0).

    5) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=r2ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)rϑ(ıı)(0)ϑ(ı)(0).

    6) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r2ϑ(ı)(0)r4L[ϑ(t)](r3)ϑ(0)(r)ϑ(ıı)(0).

    7) If ϑ(t) is (ı)-differentiable and ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ıı)(0)(r2)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0).

    8) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ıı)(0)r2)ϑ(ı)(0)r4L[ϑ(t)]r3ϑ(0)ϑ(ıı)(0).

    9) If ϑ(t) is (ıı)-differentiable and ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r3ϑ(0))(r4)L[ϑ(t)]r2ϑ(ıı)(0)rϑ(ı)(0)ϑ(ı)(0).

    10) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ıı)(0)(r2)ϑ(ıı)(0)r3)ϑ(0)r4L[ϑ(t)].

    11) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r3)ϑ(0)r4L[ϑ(t)](r2)ϑ(ıı)(0)ϑ(ıı)(0).

    12) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r3ϑ(0)r4L[ϑ(t)](r2)ϑ(ı)(0)(r)ϑ(ıı)(0).

    13) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r2)ϑ(ıı)(0)r3ϑ(0)r4L[ϑ(t)]rϑ(ıı)(0)ϑ(ı)(0).

    14) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r2ϑ(ıı)(0)(r3)ϑ(0)(r4)L[ϑ(t)](r)ϑ(ıı)(0).

    15) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ıı)(0)r2ϑ(ıı)(0)(r3)ϑ(0)(r4)L[ϑ(t)]ϑ(ıı)(0).

    16) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ı)(0)(r3)ϑ(0)(r4)L[ϑ(t)]r2ϑ(ıı)(0).

    Proof. We only prove 1), 2) and 3) here. The proof of remaining cases can be found in Appendix. $

    1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r4)L[ϑ(t)](r3)[ϑ(0)](r2)[ϑ(ı)(0)](r)[ϑ(ı)(0)][ϑ(ı)(0)].

    Suppose that ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then from Theorem 3.1, it follows that:

    {L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(iv)(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0). (3.5)

    System (3.5) implies that:

    L[ϑ(iv)(ı)(t)]=r[rL[ϑ(ı)(t)]ϑ(ı)(0)]ϑ(0),=r2L[ϑ(ı)(t)rϑ(ı)(0)ϑ(ı)(0),=r2[rL[ϑ(ı)(t)]ϑ(ı)(0)]rϑ(ı)(0)ϑ(ı)(0),=r3L[ϑ(ı)(t)r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0),=r3[rL[ϑ(t)]ϑ(0)]r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0),L[ϑ(iv)(ı)(t)]=r4L[ϑ(t)]r3ϑ(0)r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0).

    2) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r4)L[ϑ(t)(r3)ϑ(0)(r)ϑ(ı)(0)(r)ϑ(ı)(0).

    Assume that ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then from Theorem 3.1, we have:

    {L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r)L[ϑ(ı)(t)]. (3.6)

    By assembling the identities in system (3.6), we have:

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r)[rL[ϑ(ı)(t)]ϑ(ı)(0)],=(ϑ(ı)(0))(r2)L[ϑ(ı)(t)(r)ϑ(ı)(0),=(ϑ(ı)(0))(r2)[rL[ϑ(ı)(t)]ϑ(ı)(0)](r)ϑ(ı)(0),=(ϑ(ı)(0))(r3)L[ϑ(ı)(t)(r)ϑ(ı)(0)(r)ϑ(ı)(0),=(ϑ(ı)(0))(r3)[rL[ϑ(t)]ϑ(0)](r)ϑ(ı)(0)(r)ϑ(ı)(0),L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r4)L[ϑ(t)](r3)ϑ(0)(r)ϑ(ı)(0)(r)ϑ(ı)(0).

    3) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)(r2)ϑ(ı)(0)ϑ(ıı)(0).

    Given that ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then Theorem 3.1 yields that:

    {L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(ıı)(t)]=(ϑ(ı)(0))(r)L[ϑ(ı)(t)],L[ϑ(iv)(ı)(t)]=rL[ϑ(ıı)(t)]ϑ(ıı)(0). (3.7)

    System (3.7) gives:

    L[ϑ(iv)(ı)(t)]=r[(ϑ(ı)(0))(r)L[ϑ(ı)(t)]]ϑ(ıı)(0),=(r)ϑ(ı)(0)(r2)L[ϑ(ı)(t)]ϑ(ıı)(0),=(r)ϑ(ı)(0)(r2)[rL[ϑ(ı)(t)]ϑ(ı)(0)]ϑ(ıı)(0),=(r)ϑ(ı)(0)(r3)L[ϑ(ı)(t)](r2)ϑ(ı)(0)ϑ(ıı)(0),=(r)ϑ(ı)(0)(r3)[rL[ϑ(t)]ϑ(0)](r2)ϑ(ı)(0)ϑ(ıı)(0),L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)(r2)ϑ(ı)(0)ϑ(ıı)(0).

    In this section, we present the framework of research methodology or construction steps to solve the following fourth-order FIVP:

    {ϑ(iv)(t)=f(t,ϑ(t),ϑ(t),ϑ(t),ϑ(t))=(f1,f2)=F,ϑ(0)=(ϑ1(p)(0),ϑ2(p)(0)),ϑ(0)=(ϑ1(p)(0),ϑ2(p)(0)),ϑ(0)=(ϑ1(p)(0),ϑ2(p)(0)),ϑ(0)=(ϑ1(p)(0),ϑ2(p)(0)), (4.1)

    where F is a FVF which is linear with respect to lower and upper bounds (ϑ1(p)(t),ϑ2(p)(t)) and ϑ(t)=(ϑ1(p)(t),ϑ2(p)(t)) is a fuzzy function with t0 and p[0,1]. The initial conditions ϑ(0), ϑ(0), ϑ(0) and ϑ(0) are expressed in pcut form.

    Step 1. First, we apply the fuzzy Laplace transform to system (4.1)

    L[ϑ(iv)(t)]=L[F]. (4.2)

    Step 2. Then, we use Definition 3.1 and Theorem 3.3 for each case according to the type of differentiability. For instance,

    (1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    L[ϑ(iv)(ı)(t)]=r4L[ϑ(t)]r3[ϑ(0)]r2[ϑ(ı)(0)]r[ϑ(ı)(0)]ϑ(ı)(0).

    Equation (4.2) implies:

    L[F]=(r4)L[ϑ(t)](r3)ϑ(0)(r2)ϑ(0)(r)ϑ(0)ϑ(0).
    {L[f1]=(r4)L[ϑ1(p)(t)]r3ϑ1(p)(0)r2ϑ1(p)(0)rϑ1(p)(0)ϑ1(p)(0),L[f2]=(r4)L[ϑ2(p)(t)]r3ϑ2(p)(0)r2ϑ2(p)(0)rϑ2(p)(0)ϑ2(p)(0). (4.3)

    Where

    f1(t,ϑ(t),ϑ(t),ϑ(t),ϑ(t),p)=min{f(t,i,j,k,l)i(ϑ1(p)(t),ϑ2(p)(t)),j(ϑ1(p)(t),ϑ2(p)(t)),k(ϑ1(p)(t),ϑ2(p)(t)),l(ϑ1(p)(t),ϑ2(p)(t))} (4.4)

    and

    f2(t,ϑ(t),ϑ(t),ϑ(t),ϑ(t),p)=max{f(t,i,j,k,l)i(ϑ1(p)(t),ϑ2(p)(t)),j(ϑ1(p)(t),ϑ2(p)(t)),k(ϑ1(p)(t),ϑ2(p)(t)),l(ϑ1(p)(t),ϑ2(p)(t))}. (4.5)

    Step 3. Then after some manipulation system (4.3) implies that:

    {L[ϑ1(p)(t)]=H1(r,p),L[ϑ2(p)(t)]=K1(r,p). (4.6)

    Step 4. In the last step, we take inverse Laplace transform to system (4.6):

    {(ϑ1(p)(t))=L1[H1(r,p)],(ϑ2(p)(t))=L1[K1(r,p)]. (4.7)

    The solution of given FIVP is expressed by system (4.7).

    Remark 4.1. Similarly, the construction steps followed by above case for the remaining fifteen cases of the FVF ϑ(t) and all its derivatives up to fourth-order according to their type of differentiability can be used to find the solution of fourth-order FIVP.

    Bede [19] proved a characterization theorem which states that under certain conditions a fuzzy initial value problem of fuzzy ordinary differential equation under Hukuhara differentiability is equivalent to a system of ordinary differential equations (ODEs). Bede also remarked that this characterization theorem can help to solve FODEs numerically by converting them to a system of ODEs, which can then be solved by any numerical method suitable for ODEs.

    Theorem 4.1. Let ϑ:(a,b)E1 be differentiable FVF denoted by:

    [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)].

    Then the lower and upper FVFs ϑ1(p)(t)andϑ2(p)(t) are differentiable and

    [ϑ(iv)(t)]p=[ϑ(iv)1(p)(t),ϑ(iv)2(p)(t)],p[0,1].

    Consider the fourth-order FIVP

    {ϑ(iv)(t)=f(t,ϑ(t),ϑ(t),ϑ(t),ϑ(t)),ϑ(t0)=(ϑ1(p)(t0),ϑ2(p)(t0)),ϑ(t0)=(ϑ1(p)(t0),ϑ2(p)(t0)),ϑ(t0)=(ϑ1(p)(t0),ϑ2(p)(t0)),ϑ(t0)=(ϑ1(p)(t0),ϑ2(p)(t0)), (4.8)

    where f:[t0,t0+a]×E1E1 and ϑ(t0),ϑ(t0),ϑ(t0),ϑ(t0)E1 are expressed in pcut form. Then we can construct a way how to translate the FIVP (4.8) into a system of ODEs.

    Let [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)]. If ϑ(t) is H-differentiable then [ϑ(iv)(t)]p=[ϑ(iv)1(p)(t),ϑ(iv)2(p)(t)],p[0,1]. So FIVP (4.8) converts into following system of ODEs:

    {ϑ(iv)1(p)(t)=f1(p)(t,ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t)),ϑ(iv)2(p)(t)=f2(p)(t,ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t)), (4.9)

    where,

    [f(t,ϑ)]p=[f1(p)(t,ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t)),f2(p)(t,ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t),ϑ1(p)(t),ϑ2(p)(t))].

    Then in [4], Kaleva states that if we ensure that the solution (ϑ1(p)(t),ϑ2(p)(t)) of the system (4.9) are valid level sets of a fuzzy number valued function and if the derivatives (ϑ1(p)(t),ϑ2(p)(t)), (ϑ1(p)(t),ϑ2(p)(t)) and (ϑ1(p)(t),ϑ2(p)(t)) are accurate level sets of a FVF, then we can extract the solution of the FIVP (4.8).

    In this section, we solve some examples as the applications of fourth-order fuzzy initial value problem to examine the validity of our proposed method. To this end, first, we solve a detail example discussing all the sixteen cases according to the type of differentiability of FVF and its Laplace transform. Other example is solved about switching points.

    Example 5.1. Consider FIVP

    {ϑ(iv)+ϑ=(p,2p)andp[0,1],ϑ(0)=(p1,1p),ϑ(0)=(p1,1p),ϑ(0)=(p1,1p),ϑ(0)=(p1,1p). (5.1)

    (1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    [ϑ(ı)(t)]p=[ϑ1(p)(t),ϑ2(p)(t)],[ϑ(ı)(t)]p=[ϑ1(p)(t),ϑ2(p)(t)],[ϑ(ı)(t)]p=[ϑ1(p)(t),ϑ2(p)(t)],[ϑ(iv)(ı)(t)]p=[ϑ(iv)1(p)(t),ϑ(iv)2(p)(t)]

    and

    L[ϑ(iv)(ı)(t)]=(r4)L[ϑ(t)](r3)[ϑ(0)](r2)[ϑ(ı)(0)](r)[ϑ(ı)(0)][ϑ(ı)(0)].

    System (5.1) implies that:

    {ϑiv1(p)(t)+ϑ1=p,ϑiv2(p)(t)+ϑ1=2p. (5.2)

    Applying Laplace transform on both sides of Eq (5.2), we get:

    L[ϑiv1(p)(t)]+L[ϑ1]=pr,L[ϑiv2(p)(t)]+L[ϑ2]=2pr.

    After simplification, we have:

    {L[ϑ1(p)(t)]=pr(r4+1)+r3(p1)r4+1+r2(p1)r4+1+r(p1)r4+1+p1r4+1,L[ϑ2(p)(t)]=2pr(r4+1)+r3(1p)r4+1+r2(1p)r4+1+r(1p)r4+1+1pr4+1. (5.3)

    Taking inverse laplace transform to system (5.3), it follows that:

    ϑ1(p)(t)=p[t4E4,5(t4)]+(p1)[E4,1(t4)+tE4,2(t4)+t2E4,3(t4)+t3E4,4(t4)]

    and

    ϑ2(p)(t)=(2p)[t4E4,5(t4)]+(1p)[E4,1(t4)+tE4,2(t4)+t2E4,3(t4)+t3E4,4(t4)].

    (2) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then Definition 3.1 yields that:

    ϑiv2(p)(t)+ϑ1=p,ϑiv1(p)(t)+ϑ2=2p. (5.4)

    Equation (5.4) implies that:

    L[ϑiv2(p)(t)]+L[ϑ1]=pr,L[ϑiv1(p)(t)]+L[ϑ2]=2pr.

    Theorem 3.3 provides that:

    {r4L[ϑ2(p)(t)]+L[ϑ1(p)(t)]=pr+r3(1p)+r2(1p)+r(1p)+(1p),r4L[ϑ1(p)(t)]+L[ϑ2(p)(t)]=2pr+r3(p1)+r2(p1)+r(p1)+(p1). (5.5)

    System (5.5) concludes that:

    ϑ1(p)(t)=(2p)[t4E8,5(t8)]+(p1)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)+t3E8,4(t8)]p[t8E8,9(t8)](1p)[t4E8,5(t8)+t5E8,6(t8)+t6E8,7(t8)+t7E8,8(t8)]

    and

    ϑ2(p)(t)=p[t4E8,5(t8)]+(1p)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)+t3E8,4(t8)](2p)[t8E8,9(t8)](p1)[t4E8,5(t8)+t5E8,6(t8)+t6E8,7(t8)+t7E8,8(t8)].
    Figure 1.  Representation of the fuzzy solution of FIVP under the consideration of cases (1) and (2).

    (3) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then from Definition 3.1 and Theorem 3.3, we concludes that:

    ϑ1(p)(t)=(2p)[t4E8,5(t8)]+(p1)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)t7E8,8(t8)]p[t8E8,9(t8)]+(1p)[t3E8,4(t8)t4E8,5(t8)t5E8,6(t8)t6E8,7(t8)]

    and

    ϑ2(p)(t)=p[t4E8,5(t8)]+(1p)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)t7E8,8(t8)](2p)[t8E8,9(t8)]+(p1)[t3E8,4(t8)t4E8,5(t8)t5E8,6(t8)t6E8,7(t8)].

    (4) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    ϑ1(p)(t)=p[t4E4,5(t4)]+(p1)[E4,1(t4)+tE4,2(t4)+t2E4,3(t4)]+(1p)[t3E4,4(t4)]

    and

    ϑ2(p)(t)=(2p)[t4E4,5(t4)]+(1p)[E4,1(t4)+tE4,2(t4)+t2E4,3(t4)]+(p1)[t3E4,4(t4)].
    Figure 2.  Solution of FIVP under the consideration of (3) and (4).

    (5) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then using Definition 3.1 and Theorem 3.3 gives the solution of given FIVP as:

    ϑ1(p)(t)=(2p)[t4E8,5(t8)]+(p1)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)t6E8,7(t8)t7E8,8(t8)]p[t8E8,9(t8)]+(1p)[t3E8,4(t8)t4E8,5(t8)t5E8,6(t8)]

    and

    ϑ2(p)(t)=p[t4E8,5(t8)]+(1p)[E8,1(t8)+tE8,2(t8)+t2E8,3(t8)t6E8,7(t8)t7E8,8(t8)](2p)[t8E8,9(t8)]+(p1)[t3E8,4(t8)t4E8,5(t8)t5E8,6(t8)].

    (6) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    ϑ1(p)(t)=p[t4E4,5(t4)]+(p1)[E4,1(t4)+tE4,2(t4)]+(1p)[t2E4,3(t4)+t3E4,4(t4)]

    and

    ϑ2(p)(t)=(2p)[t4E4,5(t4)]+(1p)[E4,1(t4)+tE4,2(t4)]+(p1)[t2E4,3(t4)+t3E4,4(t4)].
    Figure 3.  Fuzzy solution of FIVP under the consideration of (5) and (6).

    (7) If ϑ(t) is (ı)-differentiable and ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable, then from Definition 3.1 and Theorem 3.3, it follows that:

    ϑ1(p)(t)=(2p)[t4E8,5(t8)]+(p1)[E8,1(t8)+tE8,2(t8)+t3E8,4(t8)t6E8,7(t8)]p[t8E8,9(t8)]+(1p)[+t2E8,3(t8)t4E8,5(t8)t5E8,6(t8)t7E8,8(t8)]

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}

    \rm(8) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 provides that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 4.  Solution of FIVP under the consideration of (7) and (8).

    \rm(9) If \vartheta(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3, we get:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]. \end{align*}

    \rm(10) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 provides the following solution:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 5.  Graphical representation of the fuzzy solution determined by (9) and (10).

    \rm(11) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then from Definition 3.1 and Theorem 3.3, we have:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}

    \rm(12) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 6.  Solution of FIVP under the consideration of (11) and (12).

    \rm(13) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3, we get:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})]. \end{align*}

    \rm(14) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}
    Figure 7.  Representation of the fuzzy solution under the consideration (13) and (14).

    \rm(15) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then Definition 3.1 and Theorem 3.3 gives:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]. \end{align*}

    \rm(16) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ı) -differentiable, then from Definition 3.1 and Theorem 3.3, it follows that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}
    Figure 8.  Solution of FIVP under the consideration of (15) and (16).

    All the plots are nearly identical in their behaviors represented by Figures 18. The plots represent the fuzzy solution of fourth-order fuzzy initial value problem. At every point in the domain, the solution is a fuzzy function and the fourth-order fuzzy initial value problem has strong links to the model features.

    Example 5.2. Consider following fourth-order FIVP

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\vartheta(\mathfrak{t})& = (\mathfrak{p}+2, 4-\mathfrak{p})\mathfrak{t},\\ \vartheta(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{'}(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{''}(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{'''}(0)& = (1+\mathfrak{p},3-\mathfrak{p}). \end{cases} \end{align} (5.6)

    Let us consider the crisp problem corresponding to system (5.6) to identify the behavior of the solution. The corresponding crisp problem is given by:

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\vartheta(\mathfrak{t}) = 3\mathfrak{t},\\ \vartheta(0) = 2, \; \; \vartheta^{'}(0) = 2,\\ \vartheta^{''}(0) = 2, \; \; \vartheta^{'''}(0) = 2. \end{cases} \end{align} (5.7)

    The analytical solution of the system (5.7) is determined as:

    \begin{align} \vartheta(\mathfrak{t}) = \frac{1}{4}e^{-\mathfrak{t}/ \sqrt{2}}\big(12e^{\mathfrak{t}/ \sqrt{2}}\mathfrak{t}+(4+ \sqrt{2})e^{\sqrt{2}\mathfrak{t}}-4+\sqrt{2}\big) \sin\bigg(\frac{\mathfrak{t}}{\sqrt{2}}\bigg)+\big((4-3\sqrt{2})e^{\sqrt{2}\mathfrak{t}}+4+3\sqrt{2}\big)\cos\bigg(\frac{\mathfrak{t}}{\sqrt{2}}\bigg). \end{align} (5.8)

    Before finding out the fuzzy solution of the given FIVP, we first determine the switching points of the crisp solution. For this sake, the graph of \vartheta(\mathfrak{t}) and its derivatives up to fourth-order is as follows:

    Figure 9.  Graph of \vartheta(\mathfrak{t}) and its fourth-order derivatives.

    The graph of Figure 9 indicates that \vartheta(\mathfrak{t}) . \vartheta^{'}(\mathfrak{t}) > 0 and \vartheta^{'}(\mathfrak{t}). \vartheta^{''}(\mathfrak{t}) < 0 for \mathfrak{t}\in [\frac{6\pi}{8}, \frac{9\pi}{8}] . This shows that \vartheta(\mathfrak{t}) is (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable. Similarly we can easily check that \vartheta^{''}(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable for \mathfrak{t}\in [\frac{6\pi}{8}, \frac{9\pi}{8}] . Thus the solution is switched for \mathfrak{t} > \frac{9\pi}{8} .

    Now we evaluate the fuzzy solution of the given FIVP (5.6) corresponding to the switching point.

    If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 provides that:

    \begin{align} {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{1}(\mathfrak{t}) = (\mathfrak{p}+2)\mathfrak{t},\; \; {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{2}(\mathfrak{t}) = (4-\mathfrak{p})\mathfrak{t}. \end{align} (5.9)

    Equation (5.9) gives:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{1}(\mathfrak(h))] = \dfrac{\mathfrak{p}+2}{r^{2}},\; \; \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{2}(\mathfrak{t})] = \dfrac{4-\mathfrak{p}}{r^{2}}. \end{align*}

    From Theorem 3.3, it follows that:

    \begin{align} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\mathfrak{p}+2}{r^{2}(r^{4}+1)}+(1+\mathfrak{p})\bigg[\dfrac{r^{3}}{r^{4}+1}+\dfrac{r^{2}}{r^{4}+1}+\dfrac{1}{r^{4}+1}\bigg] +(3-\mathfrak{p})\bigg[\dfrac{r}{r^{4}+1}\bigg],\\\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{4-\mathfrak{p}}{r^{2}(r^{4}+1)}+(3-\mathfrak{p})\bigg[\dfrac{r^{3}}{r^{4}+1}+\dfrac{r^{2}}{r^{4}+1}+\dfrac{1}{r^{4}+1}\bigg] +(1+\mathfrak{p})\bigg[\dfrac{r}{r^{4}+1}\bigg]. \end{cases} \end{align} (5.10)

    From system (5.10), we have:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = (\mathfrak{p}+2)[\mathfrak{t}^{5}E_{4,6}(-\mathfrak{t}^{5})]+(1+\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(3-\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (4-\mathfrak{p})[\mathfrak{t}^{5}E_{4,6}(-\mathfrak{t}^{5})]+(3-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1+\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 10.  Solution of FIVP corresponding to switching point.

    Figure 10 represents the fuzzy solution of FIVP (5.6) corresponding to the switching point analyzed by Figure 9.

    Remark 5.1. The FIVPs may have more than one switching point that can be easily evaluated using the method which is mentioned in the Example 5.2.

    This section presents a real-world application of fourth-order FIVP by Laplace transform method in RL circuit (Resistance-Inductance circuit) with an AC source. The mathematical modelling of RL circuit can be defined by means of fuzzy differential equation. Environmental conditions, inaccuracy in element modeling, electrical noise, leakage, and other parameters cause uncertainty or vagueness in the RL circuit differential equation. The RL circuit is expressed by means of following fuzzy initial value problem

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\dfrac{R}{L}\vartheta(\mathfrak{t}) = \nu(\mathfrak{t}),\\ \vartheta(0) = 0, \; \; \vartheta^{'}(0) = 0,\\ \vartheta^{''}(0) = 0, \; \; \vartheta^{'''}(0) = 0, \end{cases} \end{align} (5.11)

    where \vartheta(\mathfrak{t}) represents the current in RL circuit, R is circuit resistance, L is the coefficient corresponding to the solenoid, and \nu = (\nu_{1(\mathfrak{p})}, \nu_{2(\mathfrak{p})}) is the uncertain voltage function. The solution of our proposed model expressed by system (5.11) can be evaluated using Definition 3.1 and Theorem 3.3 as under:

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    \begin{align*} [\vartheta^{'}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'}(\mathfrak{t})],\; \; [\vartheta^{''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{''}(\mathfrak{t})],\\ [\vartheta^{'''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'''}(\mathfrak{t})], [\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{(iv)}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{(iv)}(\mathfrak{t})] \end{align*}

    and

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus (r^{3})[\vartheta(0)] \ominus (r^{2})[\vartheta^{'}_{(ı)}(0)] \ominus (r)[\vartheta^{''}_{(ı)}(0)] \ominus [\vartheta^{'''}_{(ı)}(0)]. \end{align*}

    System (5.11) implies that:

    \begin{align} \begin{cases} {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+\dfrac{R}{L}{\vartheta}_{1} = \nu_{1(\mathfrak{p})}(\mathfrak{t}),\; \; {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+\dfrac{R}{L}{\vartheta}_{1} = \nu_{2(\mathfrak{p})}(\mathfrak{t}). \end{cases} \end{align} (5.12)

    Applying Laplace transform on both sides of Eq (5.12), we get:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\dfrac{R}{L}\mathfrak{L}[{\vartheta}_{1}] = \dfrac{\nu_{1(\mathfrak{p})}(\mathfrak{t})}{r},\; \; \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\dfrac{R}{L}\mathfrak{L}[{\vartheta}_{2}] = \dfrac{\nu_{2(\mathfrak{p})}(\mathfrak{t})}{r}. \end{align*}

    After simplification, we have:

    \begin{align} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\nu_{1(\mathfrak{p})}}{r(r^{4}+\frac{R}{L})},\\\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\nu_{2(\mathfrak{p})}}{r(r^{4}+\frac{R}{L})}. \end{cases} \end{align} (5.13)

    Taking inverse laplace transform to system (5.13), it follows that:

    \begin{align} \begin{cases} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \nu_{1(\mathfrak{p})}[\mathfrak{t}^{4}E_{4,5}(-\frac{R}{L}\mathfrak{t}^{4})],\\\\ {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = \nu_{2(\mathfrak{p})}[\mathfrak{t}^{4}E_{4,5}(-\frac{R}{L}\mathfrak{t}^{4})]. \end{cases} \end{align} (5.14)

    The fuzzy solution to fuzzy RL circuit initial value problem is expressed by system (5.14).

    Consider R = 1 Ohm, L = 1 Henry and \nu(\mathfrak{t}) = (\nu_{1(\mathfrak{p})}, \nu_{2(\mathfrak{p})}) = (1+\mathfrak{p}, 3-\mathfrak{p}) in system (5.14). Then the fuzzy solution of system (5.11) according to the type of differentiability is determined as:

    \begin{align} \begin{cases} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = (1+\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})],\\ {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (3-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]. \end{cases} \end{align} (5.15)
    Figure 11.  Solution of FIVP in RL circuit.

    Figure 11 represents the fuzzy solution of RL circuit as an application of fourth-order fuzzy initial value problem using Laplace transform.

    Evaluating exact solution to fuzzy ordinary differential equations (FODEs) using common techniques is considered a very hectic task. To overcome this difficulty, we have proposed a new method to extract the exact solution of the fourth-order fuzzy initial value problem using the Laplace transform under the SGH-differentiability. The solution to the fourth-order FIVP can be easily evaluated using this new technique. The introduced method acts as a bridge between FIVP and the fuzzy Laplace transform. We face a lot of difficulties when solving FIVP, but this new idea alleviates that difficulty as it is a very productive technique for dealing with higher-order FIVP. The fuzzy derivative of FVF depends on their differentiability types, i.e., either a FVF is (ı) -differentiable or (ıı) -differentiable. The parameteric FVF has two parameters, the lower FVF and the upper FVF, in the same sense that we have examined the fourth-order derivative of the FVF, including 16 cases. We have discussed all the cases in this research article. In addition, a meaningful relationship between the fourth-order derivative of the FVF and its Laplace transform is presented, and the results are demonstrated here. We developed an algorithm to understand the steps to take when solving FIVP. The characteristic theorem of the fourth-order FIVP solution is expounded and proved. A general numerical example of FIVP has been solved in this paper to determine the effectiveness of the presented method. The concept of switching points has also been illustrated by another example. The Mittag-Leffler function is used for the FIVP solution. Admittedly, the method we introduced has some limitations related to FODE order. Although, this is a useful technique for dealing with higher-order FODEs, as the FODE order increases, the computations become bulky and tedious. This case is then handled by using the Mittag-Leffler function in the solution while finding the inverse Laplace transform. Optimization methods are increasingly used in various fields and play a crucial role in dealing with real-life problems. We plan to extend our work to develop fuzzy optimizations algorithms and network optimizations.

    Fourth author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.2/48/43).

    The authors declare no conflict of interest.

    Proof. \rm 4) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) be (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.1)

    By combining the identities of system (A.1), we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ı)}(0),\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\ominus r^{2}\vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0) \ominus r^{2}\vartheta^{'}_{(ı)}(0). \end{align*}

    \rm 5) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = -r^{2}\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0)\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Let us consider that \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable, then Theorem 3.1 provides:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.2)

    From system (A.2), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg] \ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0) \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 6) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{2}\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.3)

    From system (A.3), we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 7) If \vartheta(\mathfrak{t}) is (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0). \end{align*}

    Let \vartheta(\mathfrak{t}) be (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable, then using Theorem 3.1 we get:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.4)

    System (A.4) yields:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0). \end{align*}

    \rm 8) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 gives:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.5)

    From system (A.5), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{3}\vartheta(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 9) If \vartheta(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r^{3}\vartheta(0))\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0)\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.6)

    System (A.6) implies that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0)\bigg]\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg]\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{3})\vartheta(0))\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 10) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3})\vartheta(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]. \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 provides that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.7)

    By combining the identities of system (A.7) we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (r^{3})\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]. \end{align*}

    \rm 11) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ı)}(0)\ominus (r^{3})\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.8)

    From system (A.8), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ı)}(0))\ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 12) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{3}\vartheta(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Given that \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then Theorem 3.1 provides that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.9)

    System (A.9) yields that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 13) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.10)

    By combining the expressions of system (A.10) we get:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg]\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 14) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{2}\vartheta^{'}_{(ıı)}(0)\oplus (-r^{3})\vartheta(0)\ominus (- r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.11)

    From system (A.11), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-p)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 15) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.12)

    System (A.12) gives:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 16) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ı)}(0)\oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{2}\vartheta^{'}_{(ıı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) be (ı) -differentiable, then using Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.13)

    From system (A.13), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \ominus r^{2}\vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0). \end{align*}


    [1] C. Jung, M. Jian, J. Liu, et al., Interactive image segmentation via kernel propagation, Pattern Recognit., 47 (2014), 2745–2755.
    [2] S. H. Lee, H. I. Koo and N. I. Cho, Image segmentation algorithms based on the machine learning of features, Pattern Recognit. Lett., 31 (2010), 2325–2336.
    [3] W. Chen, H. Yue, J. Wang, et al., An improved edge detection algorithm for depth map inpainting, Opt. Lasers Eng., 55 (2014), 69–77.
    [4] J. Ye, G. Fu and U. P. Poudel, High-accuracy edge detection with Blurred Edge Model, Image Vision Comput., 23 (2005), 453–467.
    [5] G. Zhang, H. Zhu and N. Xu, Flotation bubble image segmentation based on seed region boundary growing, Min. Sci. Technol., 21 (2011), 239–242.
    [6] K. Liu, L. Guo, H. Li, et al., Fusion of Infrared and Visible Light Images Based on Region Segmentation, Chin. J. Aeronaut., 22 (2009), 75–80.
    [7] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62–66.
    [8] J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29 (1985), 273–285.
    [9] C. H. Li and C. K. Lee, Minimum cross entropy thresholding, Pattern Recognit., 26 (1993), 617–625.
    [10] M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242–256.
    [11] G. Sun, A. Zhang, Y. Yao, et al., Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64–76.
    [12] E. Cuevas, D. Zaldivar and M. Pérez-cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Syst. Appl., 37 (2010), 5265–5271.
    [13] G. Sun, A. Zhang, Y. Yao, et al., A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding, Appl. Soft Comput., 46 (2016), 703–730.
    [14] A. K. Bhandari, V. K. Singh, A. Kumar, et al., Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538–3560.
    [15] A. K. Bhandari, V. K. Singh, A. Kumar, et al., A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging, Meas., 41 (2008), 1124–1134.
    [16] S. Ouadfel and A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566–584.
    [17] U. Mlakar, B. Potočnik and J. Brest, A hybrid differential evolution for optimal multilevel image thresholding, Expert Syst. Appl., 65(2016), 221–232.
    [18] P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell., 24 (2011), 595–615.
    [19] W. A. Hussein, S. Sahran and S. N. H. S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm, Knowled. Based Syst., 101 (2016), 114–134.
    [20] H. S. Gill, B. S. Khehra, A. Singh, et al., Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values, Egypt. Inform. J., (2018).
    [21] K. P. B. Resma and S. N. Madhu, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018).
    [22] S. Pare, A. K. Bhandari, A. Kumar, et al., A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm, Comput. Electr. Eng., 70 (2018), 476–495.
    [23] R. A. Ibrahim, M. A. Elaziz and S. Lu, Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108 (2018), 1–27.
    [24] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
    [25] F. Wilcoxon, Individual comparison by ranking methods, Biom. Bull., 1 (1945), 80–83.
    [26] C. Fan, H. Ouyang, Y. Zhang, et al., Optimal multilevel thresholding using molecular kinetic theory optimization algorithm, Appl. Math. Comput., 239 (2014), 391–408.
    [27] S. Manikandan, K. Ramar, M. W. Iruthayarajan, et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm, Meas., 47 (2014), 558–568.
    [28] M. Horng, A multilevel image thresholding using the honey bee mating optimization, Appl. Math. Comput., 215 (2010), 3302–3310.
    [29] L. Cao, P. Bao and Z. Shi, The strongest schema learning GA and its application to multilevel thresholding, Image Vision Comput., 26 (2008), 716–724.
    [30] A. Bouaziz, A. Draa and S. Chikhi, Artificial bees for multilevel thresholding of iris images, Swarm Evol. Comput., 21 (2015), 32–40.
    [31] A. K. Bhandari, A. Kumar and G. K. Singh, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl., 42 (2015), 8707–8730.
    [32] S. Pare, A. Kumar, V. Bajaj, et al., An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy, Appl. Soft Comput., 61 (2017), 570–592.
    [33] K. Price, Differential evolution: A fast and simple numerical optimizer, Fuzzy Inf. Process. Soc., (1996), 524–527.
    [34] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, Int. Conf. Computat. Intell. Modell., 1 (2005), 695–701.
    [35] T. Xiang, X. Liao and K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645.
    [36] G. Kaur and S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284.
    [37] M. Kohli and S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458–472.
    [38] H. Wang, Z. Wu, S. Rahnamayan, et al., Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011), 4699–4714.
    [39] H. Wang, Z. Wu and S. Rahnamayan, Enhanced opposition-based differential evolution for high-dimensional optimization problems, Soft Comput., 15 (2011), 2127–2140.
    [40] H. Wang, S. Rahnamayan, H. Sun, et al., Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43 (2013), 634–647.
    [41] H. Zorlu, Optimization of weighted myriad filters with differential evolution algorithm, AEU Int. J. Electron. Commun., 77 (2017), 1–9.
    [42] U. Yüzgeç and M. Eser, Chaotic based differential evolution algorithm for optimization of baker's yeast drying process, Egypt. Inf. J., 19 (2018), 151–163.
    [43] R. P. Parouha and K. N. Das, Economic load dispatch using memory based differential evolution, Int. J. Bioinspired. Comput., 11 (2018), 159–170.
    [44] H. Wang, Z. Wu and S. Rahnamayan, Differential evolution based on node strength, Int. J. Bioinspired. Comput., 11 (2018), 34–45.
    [45] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software., 14 (2017), 163–191.
    [46] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowled. Based Syst., 96 (2016), 120–133.
    [47] N. Singh and S. B. Singh, A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601.
    [48] S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software., 83(2015), 80–98.
    [49] E. Emary, H. M. Zawbaa and A. E. Hassanien, Binary ant lion approaches for feature selection, Neurocomput., 213 (2016), 54–65.
    [50] D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831.
    [51] A. H. Gandomi and X. Yang, Chaotic bat algorithm, Int. J. Comput. Sci. Eng. Int., 5 (2014), 224–232.
    [52] Z. Ye, M. Wang, W. Liu, et al., Fuzzy entropy based optimal thresholding using bat algorithm, Appl. Soft Comput., 31 (2015), 381–395.
    [53] N. S. M. Raja, S. A. Sukanya and Y. Nikita, Improved PSO based multi-level thresholding for cancer infected breast thermal images using otsu, Procedia Comput. Sci., 48 (2015), 524–529.
    [54] A. Chander, A. Chatterjee and P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Sys. Appl., 38 (2011), 4998–5004.
    [55] A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Applic., (2018), 1–31. DOI:10.1007/s00521-018-3771-z.
    [56] M. Abdel-Baset, H. Wu, Y. Zhou, et al., Elite opposition-flower pollination algorithm for quadratic assignment problem, J. Intell. Fuzzy Syst., 33 (2017), 901–911. DOI: 10.3233/jifs-162141.
    [57] C. Li and A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517–526.
    [58] J. John, M. S. Nair, P. R. A. Kumar, et al., A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76–88.
    [59] S. Pare, A. K. Bhandari, A. Kumar, et al., An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl., 87 (2017), 335–362.
    [60] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, Evol. Comput. IEEE Trans., 1 (1997), 67–82.
  • This article has been cited by:

    1. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Witold Pedrycz, Solution of initial-value problem for linear third-order fuzzy differential equations, 2022, 41, 2238-3603, 10.1007/s40314-022-02111-x
    2. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali, A solving method for two-dimensional homogeneous system of fuzzy fractional differential equations, 2023, 8, 2473-6988, 228, 10.3934/math.2023011
    3. Muhammad Akram, Ghulam Muhammad, Daud Ahmad, Analytical solution of the Atangana–Baleanu–Caputo fractional differential equations using Pythagorean fuzzy sets, 2023, 2364-4966, 10.1007/s41066-023-00364-3
    4. Muhammad Akram, Tayyaba Ihsan, Solving Pythagorean fuzzy partial fractional diffusion model using the Laplace and Fourier transforms, 2022, 2364-4966, 10.1007/s41066-022-00349-8
    5. Muhammad Akram, Ghulam Muhammad, Analysis of incommensurate multi-order fuzzy fractional differential equations under strongly generalized fuzzy Caputo’s differentiability, 2022, 2364-4966, 10.1007/s41066-022-00353-y
    6. Fazlollah Abbasi, Tofigh Allahviranloo, Muhammad Akram, A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations, 2023, 12, 2075-1680, 222, 10.3390/axioms12020222
    7. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment, 2023, 645, 00200255, 119372, 10.1016/j.ins.2023.119372
    8. Awais Younus, Muhammad Asif, Usama Atta, Tehmina Bashir, Thabet Abdeljawad, Applications of fuzzy conformable Laplace transforms for solving fuzzy conformable differential equations, 2023, 27, 1432-7643, 8583, 10.1007/s00500-023-08181-1
    9. Muhammad Akram, Muhammad Yousuf, Muhammad Bilal, Solution method for fifth-order fuzzy initial value problem, 2023, 8, 2364-4966, 1229, 10.1007/s41066-023-00403-z
    10. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Witold Pedrycz, Incommensurate non-homogeneous system of fuzzy linear fractional differential equations using the fuzzy bunch of real functions, 2023, 473, 01650114, 108725, 10.1016/j.fss.2023.108725
    11. Ghulam Muhammad, Muhammad Akram, Fuzzy fractional epidemiological model for Middle East respiratory syndrome coronavirus on complex heterogeneous network using Caputo derivative, 2024, 659, 00200255, 120046, 10.1016/j.ins.2023.120046
    12. Ghulam Muhammad, Muhammad Akram, Fuzzy fractional generalized Bagley–Torvik equation with fuzzy Caputo gH-differentiability, 2024, 133, 09521976, 108265, 10.1016/j.engappai.2024.108265
    13. Hamzeh Zureigat, Mohammad A. Tashtoush, Ali F. Al Jassar, Emad A. Az-Zo’bi, Mohammad W. Alomari, Deng-Shan Wang, A Solution of the Complex Fuzzy Heat Equation in Terms of Complex Dirichlet Conditions Using a Modified Crank–Nicolson Method, 2023, 2023, 1687-9139, 1, 10.1155/2023/6505227
    14. Mourad Kchaou, G. Narayanan, M. Syed Ali, Sumaya Sanober, Grienggrai Rajchakit, Bandana Priya, Finite-time Mittag-Leffler synchronization of delayed fractional-order discrete-time complex-valued genetic regulatory networks: Decomposition and direct approaches, 2024, 664, 00200255, 120337, 10.1016/j.ins.2024.120337
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5703) PDF downloads(964) Cited by(7)

Figures and Tables

Figures(18)  /  Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog