Citation: Xiaoxu Peng, Heming Jia, Chunbo Lang. Modified dragonfly algorithm based multilevel thresholding method for color images segmentation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324
[1] | C. Jung, M. Jian, J. Liu, et al., Interactive image segmentation via kernel propagation, Pattern Recognit., 47 (2014), 2745–2755. |
[2] | S. H. Lee, H. I. Koo and N. I. Cho, Image segmentation algorithms based on the machine learning of features, Pattern Recognit. Lett., 31 (2010), 2325–2336. |
[3] | W. Chen, H. Yue, J. Wang, et al., An improved edge detection algorithm for depth map inpainting, Opt. Lasers Eng., 55 (2014), 69–77. |
[4] | J. Ye, G. Fu and U. P. Poudel, High-accuracy edge detection with Blurred Edge Model, Image Vision Comput., 23 (2005), 453–467. |
[5] | G. Zhang, H. Zhu and N. Xu, Flotation bubble image segmentation based on seed region boundary growing, Min. Sci. Technol., 21 (2011), 239–242. |
[6] | K. Liu, L. Guo, H. Li, et al., Fusion of Infrared and Visible Light Images Based on Region Segmentation, Chin. J. Aeronaut., 22 (2009), 75–80. |
[7] | N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62–66. |
[8] | J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29 (1985), 273–285. |
[9] | C. H. Li and C. K. Lee, Minimum cross entropy thresholding, Pattern Recognit., 26 (1993), 617–625. |
[10] | M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242–256. |
[11] | G. Sun, A. Zhang, Y. Yao, et al., Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64–76. |
[12] | E. Cuevas, D. Zaldivar and M. Pérez-cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Syst. Appl., 37 (2010), 5265–5271. |
[13] | G. Sun, A. Zhang, Y. Yao, et al., A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding, Appl. Soft Comput., 46 (2016), 703–730. |
[14] | A. K. Bhandari, V. K. Singh, A. Kumar, et al., Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538–3560. |
[15] | A. K. Bhandari, V. K. Singh, A. Kumar, et al., A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging, Meas., 41 (2008), 1124–1134. |
[16] | S. Ouadfel and A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566–584. |
[17] | U. Mlakar, B. Potočnik and J. Brest, A hybrid differential evolution for optimal multilevel image thresholding, Expert Syst. Appl., 65(2016), 221–232. |
[18] | P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell., 24 (2011), 595–615. |
[19] | W. A. Hussein, S. Sahran and S. N. H. S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm, Knowled. Based Syst., 101 (2016), 114–134. |
[20] | H. S. Gill, B. S. Khehra, A. Singh, et al., Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values, Egypt. Inform. J., (2018). |
[21] | K. P. B. Resma and S. N. Madhu, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018). |
[22] | S. Pare, A. K. Bhandari, A. Kumar, et al., A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm, Comput. Electr. Eng., 70 (2018), 476–495. |
[23] | R. A. Ibrahim, M. A. Elaziz and S. Lu, Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108 (2018), 1–27. |
[24] | S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073. |
[25] | F. Wilcoxon, Individual comparison by ranking methods, Biom. Bull., 1 (1945), 80–83. |
[26] | C. Fan, H. Ouyang, Y. Zhang, et al., Optimal multilevel thresholding using molecular kinetic theory optimization algorithm, Appl. Math. Comput., 239 (2014), 391–408. |
[27] | S. Manikandan, K. Ramar, M. W. Iruthayarajan, et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm, Meas., 47 (2014), 558–568. |
[28] | M. Horng, A multilevel image thresholding using the honey bee mating optimization, Appl. Math. Comput., 215 (2010), 3302–3310. |
[29] | L. Cao, P. Bao and Z. Shi, The strongest schema learning GA and its application to multilevel thresholding, Image Vision Comput., 26 (2008), 716–724. |
[30] | A. Bouaziz, A. Draa and S. Chikhi, Artificial bees for multilevel thresholding of iris images, Swarm Evol. Comput., 21 (2015), 32–40. |
[31] | A. K. Bhandari, A. Kumar and G. K. Singh, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl., 42 (2015), 8707–8730. |
[32] | S. Pare, A. Kumar, V. Bajaj, et al., An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy, Appl. Soft Comput., 61 (2017), 570–592. |
[33] | K. Price, Differential evolution: A fast and simple numerical optimizer, Fuzzy Inf. Process. Soc., (1996), 524–527. |
[34] | H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, Int. Conf. Computat. Intell. Modell., 1 (2005), 695–701. |
[35] | T. Xiang, X. Liao and K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645. |
[36] | G. Kaur and S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284. |
[37] | M. Kohli and S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458–472. |
[38] | H. Wang, Z. Wu, S. Rahnamayan, et al., Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011), 4699–4714. |
[39] | H. Wang, Z. Wu and S. Rahnamayan, Enhanced opposition-based differential evolution for high-dimensional optimization problems, Soft Comput., 15 (2011), 2127–2140. |
[40] | H. Wang, S. Rahnamayan, H. Sun, et al., Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43 (2013), 634–647. |
[41] | H. Zorlu, Optimization of weighted myriad filters with differential evolution algorithm, AEU Int. J. Electron. Commun., 77 (2017), 1–9. |
[42] | U. Yüzgeç and M. Eser, Chaotic based differential evolution algorithm for optimization of baker's yeast drying process, Egypt. Inf. J., 19 (2018), 151–163. |
[43] | R. P. Parouha and K. N. Das, Economic load dispatch using memory based differential evolution, Int. J. Bioinspired. Comput., 11 (2018), 159–170. |
[44] | H. Wang, Z. Wu and S. Rahnamayan, Differential evolution based on node strength, Int. J. Bioinspired. Comput., 11 (2018), 34–45. |
[45] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software., 14 (2017), 163–191. |
[46] | S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowled. Based Syst., 96 (2016), 120–133. |
[47] | N. Singh and S. B. Singh, A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601. |
[48] | S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software., 83(2015), 80–98. |
[49] | E. Emary, H. M. Zawbaa and A. E. Hassanien, Binary ant lion approaches for feature selection, Neurocomput., 213 (2016), 54–65. |
[50] | D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831. |
[51] | A. H. Gandomi and X. Yang, Chaotic bat algorithm, Int. J. Comput. Sci. Eng. Int., 5 (2014), 224–232. |
[52] | Z. Ye, M. Wang, W. Liu, et al., Fuzzy entropy based optimal thresholding using bat algorithm, Appl. Soft Comput., 31 (2015), 381–395. |
[53] | N. S. M. Raja, S. A. Sukanya and Y. Nikita, Improved PSO based multi-level thresholding for cancer infected breast thermal images using otsu, Procedia Comput. Sci., 48 (2015), 524–529. |
[54] | A. Chander, A. Chatterjee and P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Sys. Appl., 38 (2011), 4998–5004. |
[55] | A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Applic., (2018), 1–31. DOI:10.1007/s00521-018-3771-z. |
[56] | M. Abdel-Baset, H. Wu, Y. Zhou, et al., Elite opposition-flower pollination algorithm for quadratic assignment problem, J. Intell. Fuzzy Syst., 33 (2017), 901–911. DOI: 10.3233/jifs-162141. |
[57] | C. Li and A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517–526. |
[58] | J. John, M. S. Nair, P. R. A. Kumar, et al., A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76–88. |
[59] | S. Pare, A. K. Bhandari, A. Kumar, et al., An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl., 87 (2017), 335–362. |
[60] | D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, Evol. Comput. IEEE Trans., 1 (1997), 67–82. |