Citation: Yefu Zheng, Jun Xu, Hongzhang Chen. TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301
[1] | A. Si, S. Das, S. Kar, An approach to rank picture fuzzy numbers for decision making problems, Decis. Making Appl. Manage. Eng., 2 (2019), 54-64. |
[2] | I. Petrovic, M. Kankaras, A hybridized IT2FS-DEMATEL-AHP-TOPSIS multi-criteria decision making approach: Case study of selection and evaluation of criteria for determination of air traffic control radar position, Decis. Making Appl. Manage. Eng., 3 (2020), 146-164. |
[3] | S. Biswas, G. Bandyopadhyay, B. Guha, & M. Bhattacharjee, An ensemble approach for portfolio selection in a multi-criteria decision making framework, Decis. Making Appl. Manage. Eng., 2 (2019), 138-158. |
[4] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96. |
[5] | K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343-349. |
[6] | H. Garg, K. Kumar, A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory, Artif. Intell. Rev., 1 (2020), 595-624. |
[7] | K. Kumar, H. Garg, Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making, Appl. Intell., 48 (2018), 2112-2119. |
[8] | K. Kumar, H. Garg, TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment, Comput. Appl. Math., 37 (2018), 1319-1329. |
[9] | H. Garg, K. Kumar, An extended technique for order preference by similarity to ideal solution group decision-making method with linguistic interval-valued intuitionistic fuzzy information, J. Multi. Crite. Decis. Anal., 26 (2019), 16-26. |
[10] | P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Syst., 118 (1996), 305-316. |
[11] | E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst., 118 (2001), 467-477. |
[12] | T. Y. Chen, C. H. Li, Determing objective weights with intuitionistic fuzzy entropy measures: A comparative analysis, Inf. Sci., 180 (2010), 4207-4222. |
[13] | Q. S. Zhang, H. Y. Xing, F. C. Liu, J. Ye, P. Tang, Some new entropy measures for interval-valued intuitionistic fuzzy sets based on distances and their relationships with similarity and inclusion measures, Inf. Sci., 283 (2014), 55-69. |
[14] | A. De Luca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inf. Control, 20 (1972), 301-312. |
[15] | R. Joshi, S. Kumar, Parametric (R, S)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making, Fuzzy Inf. Eng., 9 (2019), 181-203. |
[16] | F. Liu, X. H. Yuan, Fuzzy number intuitionistic fuzzy set, Fuzzy Syst. Math., 21 (2007), 88-91. |
[17] | M. H. Shu, C. H. Cheng, J. R. Dong, Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab., 46 (2006), 2139-2148. |
[18] | X. F. Wang, Fuzzy number intuitionistic fuzzy geometric aggregation operators and their application to decision making, Control Decis., 10 (2008), 104-111. |
[19] | G. W. Wei, Induced fuzzy number intuitionistic fuzzy ordered weighted averaging (I-FIFOWA) operator and its application to group decision making, Chin. Jou. Manage., 7 (2010), 903-908. |
[20] | Y. Gao, D. Q. Zhou, C. C. Liu, L. Zhang, Triangular fuzzy number intuitionistic fuzzy aggregation operators and their application based on interaction, Syst. Eng. Theory Prac., 32 (2012), 1964-1972. |
[21] | Shan, Yu, Z. S. Xu, Aggregation and decision making using intuitionistic multiplicative triangular fuzzy information, J. Syst. Sci. Syst. Eng., 23 (2014), 20-38. |
[22] | C. L. Hwang, K. Yoon, Multiple attributes decision making methods and applications, Berlin Heidelberg: Springer, (1981). |
[23] | X. C. Liu, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets Syst., 52 (1992), 305-318. |
[24] | H. Y. Zhang, W. X. Zhang, C. L. Mei, Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure, Knowledge-Based Syst., 22 (2009), 449-454. |
[25] | H. Garg, Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems, Iran. J. Sci. Technol.-Trans. Electr. Eng., 43 (2019), 597-613. |
[26] | H. Garg, Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights, Proc. Natl. Acad. Sci. ndia Sect. A, 89 (2019), 129-139. |
[27] | X. W. Qi, C. Y. Liang, J. L. Zhang, Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment, Comput. Ind. Eng., 79 (2015), 52-64. |
[28] | H. Garg, K. Kumar, Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems, IEEE Trans. Fuzzy Syst., 27 (2019), 2302-2311. |
[29] | H. Zhang, G. Kou, Y. Peng, Soft consensus cost models for group decision making and economic interpretations, Eur. J. Oper. Res., 277 (2019), 964-980. |
[30] | G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, F. E. Alsaadi, Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Appl. Soft Comput., 86 (2020), 105836. |
[31] | G. Kou, Y. Peng, G. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inf. Sci., 275 (2014), 1-12. |