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Abstract: As an extension of intuitionistic fuzzy numbers, intuitionistic trapezoidal fuzzy numbers 
(ITrFNs) are useful in expressing complex fuzzy information with an ‘interval value’. This study 
focuses on multi-attribute decision-making (MADM) problems with unknown attribute weights under 
an ITrFN environment. We initially present an entropy measure for ITrFNs by using the relative 
closeness of technique for order preference by similarity to an ideal solution. From the view of the 
reliability and certainty of decision data, we present an approach to determine the attribute weights. 
Subsequently, a new method to solve intuitionistic trapezoidal fuzzy MADM problems with unknown 
attribute weight information is proposed. A numerical example is provided to verify the practicality 
and effectiveness of the proposed method. 
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1. Introduction 

Multi-attribute decision making (MADM) method has played an important role in operations 
research and modern decision science by effectively evaluating the alternative with multiple attributes. 
The evaluations of decision makers are always vague and imprecise due to the complexity of an actual 
decision-making environment. Si et al. [1] presented a novel method to compare the picture fuzzy 



5605 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 5604–5617. 

numbers and applied it to solve decision making problems. Petrovic and Kankaras [2] developed a 
hybridized DEMATEL-AHP-TOPSIS for air traffic control radar position. Biswas et al. [3] proposed 
a multi-criteria decision making framework based on entropy measure to assess the mutual funds. 
Intuitionistic fuzzy (IF) sets (IFSs) proposed by Atanassov [4] can express the uncertainty and 
ambiguity of the information system quantitatively and intuitively. Subsequently, Atanassov and 
Gargov [5] introduced an interval-valued IFS (IVIFS) by using interval numbers to describe 
membership and non-membership functions. The IVIFS excellently expresses the imprecise preference 
for decision making. Thus far, IVIFS has received considerable attention in decision making [6–9] and 
entropy measure [10–15]. 

With the increasing uncertainties and complexities involved in the management and decision 
situation, the higher requirements are put forward to represent fuzzy information. As data analysis and 
processing theory, picture fuzzy set, and fuzzy neutrosophic set are an effective tool to deal with 
imprecise and inconsistent information, but their values are expressed as single values. In real decision-
making, single values cannot accurately describe the reality, uncertainty, and distortion of things. 
Besides, modeling a continuous set by using IF numbers (IFNs) and interval-valued IFNs (IVIFNs) is 
difficult. Thus, as an extension of IFSs, intuitionistic trapezoidal fuzzy numbers (ITrFNs) introduced 
by Liu and Yuan [16], can express more uncertainty from different dimensions of decision information 
than IFNs and IVIFNs. ITrFN extends IFS's discourse universe from a discrete set to a continuous set 
[17] because its prominent characteristic is that trapezoidal fuzzy numbers describe the corresponding 
membership and non-membership degrees. Thus, ITrFNs not only can depict the fuzzy concept of 
‘good’ or ‘excellent’ but also present the concept abundantly [16–17]. In recent years, the research and 
application of intuitionistic triangular fuzzy numbers (ITFNs), which are a particular case of ITrFNs, 
have attracted considerable attention from scholars, such as Wang [18]; Wei [19]; Gao et al. [20]; Yu 
and Xu [21]. The current achievements are mainly concentrated in two aspects: (1) The ranking method 
of ITFNs based score and accuracy functions, (2) the intuitionistic triangular fuzzy aggregation 
operators. But there is no investigation on entropy measure and its application in intuitionistic 
triangular fuzzy MADM with attribute weight completely unknown. Therefore, the entropy measure 
and MADM method under ITrFNs, which are exciting yet relatively sophisticated, must be discussed. 

Technique for order preference by similarity to an ideal solution (TOPSIS) [22] is a well-known 
method for MADM. The extended TOPSIS method for MADM problems with IFNs and IVIFNs using 
the connection numbers of set pair analysis theory was presented in [7] and [8], respectively. Garg and 
Kumar [6] proposed a TOPSIS approach based on a new exponential distance to handle MADM 
problems with IVIFN information. Subsequently, Garg and Kumar [9] applied the TOPSIS method to 
solve decision problems under a linguistic interval-valued IF (IVIF) environment. The present work is 
motivated by TOPSIS methods [6,7–9,22] and initially proposes an entropy measure of the 
intuitionistic trapezoidal fuzzy set (ITrFS) based on TOPSIS method and then provide an objective 
weighted approach. Accordingly, a MADM method with unknown weight information under an ITrFN 
environment is developed. The primary contributions of this study can be illuminated briefly as follows. 
(1) We newly define a Hamming distance measure of ITrFS and discuss its properties. (2) We propose 
entropy axioms and measure for ITrFS, which is the first report for entropy measure based on the idea 
of TOPSIS. (3) On this basis, we apply them to determine attribute weights in the ITrFN environment 
with unknown weight information and propose a method to address MADM problems with ITrFNs. 

The remainder of this paper is organized as follows. Section 2 briefly introduces related basic 
concepts. Section 3 presents an entropy measure for ITrFSs. In section 4, an objective approach to 
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determine attribute weights is developed, and a MADM method with ITrFNs is proposed. Section 5 
provides a numerical example to illustrate the feasibility of the proposed method. Section 6 presents 
our conclusions. 

2. Preliminary 

2.1. Some basic concepts of intuitionistic trapezoidal fuzzy number 

Definition 1. [16]. A trapezoidal fuzzy number (TrFN) A is a fuzzy set in the set R of real numbers, 
with its membership function defined by 

𝐹஺ሺ𝑥ሻ ൌ

⎩
⎪
⎨

⎪
⎧

0,             if 𝑥 ൏ 𝑎ଵ,
௫ି௔భ

௔మି௔భ
,     if 𝑎ଵ ൑ 𝑥 ൑ 𝑎ଶ,

1,             if 𝑎ଶ ൑ 𝑥 ൑ 𝑎ଷ,
௫ି௔ర

௔యି௔ర
,     if 𝑎ଷ ൑ 𝑥 ൑ 𝑎ସ,

0,             if 𝑥 ൐ 𝑎ସ,

                          (1) 

where 𝑎ଵ ൑ 𝑎ଶ ൑ 𝑎ଷ ൑ 𝑎ସ , 𝑎ଵ  and 𝑎ସ  present the lower limit and upper limit of A, respectively, 
ሾ𝑎ଶ, 𝑎ଷሿ is the mode interval, which can be denoted as a four-tuple ሺ𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସሻ. 

Definition 2. Let X be a fixed set, 𝜇஺෨ሺ𝑥ሻ ൌ ሺ𝑡஺
௟ ሺ𝑥ሻ, 𝑡஺

௠భሺ𝑥ሻ, 𝑡஺
௠మሺ𝑥ሻ, 𝑡஺

௛ሺ𝑥ሻሻ  and 𝑣஺෨ሺ𝑥ሻ ൌ

ሺ𝑓஺
௟ሺ𝑥ሻ, 𝑓஺

௠భሺ𝑥ሻ, 𝑓஺
௠మሺ𝑥ሻ, 𝑓஺

௛ሺ𝑥ሻሻ are TrFNs defined on the unit interval [0, 1], then an intuitionistic 

trapezoidal fuzzy set (ITrFS) 𝐴ሚ over X is defined as 𝐴ሚ ൌ ሼሺ𝑥, ൏ 𝜇஺෨ሺ𝑥ሻ, 𝑣஺෨ሺ𝑥ሻ ൐ሻ|𝑥 ∈ 𝑋ሽ where the 
parameters 𝜇஺෨ሺ𝑥ሻ  and 𝑣஺෨ሺ𝑥ሻ  indicate, respectively, the membership degree and non-membership 
degree of the element x in 𝐴ሚ, with the conditions 0 ൑ 𝑡஺

௛ሺ𝑥ሻ ൅ 𝑓஺
௛ሺ𝑥ሻ ൑ 1. 𝑡஺

௟ ሺ𝑥ሻ and 𝑡஺
௛ሺ𝑥ሻ present 

the lower limit and upper limit of 𝜇஺෨ሺ𝑥ሻ, ሾ𝑡஺
௠భሺ𝑥ሻ, 𝑡஺

௠మሺ𝑥ሻሿ is the most possible membership interval 

of 𝜇஺෨ሺ𝑥ሻ. 𝑓஺
௟ሺ𝑥ሻ and 𝑓஺

௛ሺ𝑥ሻ present the lower limit and upper limit of 𝑣஺෨ሺ𝑥ሻ, ሾ𝑓஺
௠భሺ𝑥ሻ, 𝑓஺

௠మሺ𝑥ሻሿ is 

the non-membership interval of 𝑣஺෨ሺ𝑥ሻ. 

For convenience, we call 𝛼෤ ൌ൏ ሺ𝑡஺
௟ , 𝑡஺

௠భ, 𝑡஺
௠మ, 𝑡஺

௛ሻ, ሺ𝑓஺
௟, 𝑓஺

௠భ, 𝑓஺
௠మ, 𝑓஺

௛ሻ ൐  an intuitionistic 

trapezoidal fuzzy number (ITrFN), where 

𝑡஺
௟ , 𝑡஺

௠భ, 𝑡஺
௠మ, 𝑡஺

௛ ∈ ሾ0,1ሿ, 𝑓஺
௟, 𝑓஺

௠భ, 𝑓஺
௠మ, 𝑓஺

௛ ∈ ሾ0,1ሿ, 𝑡஺
௛ ൅ 𝑓஺

௛ ∈ ሾ0,1ሿ.             (2) 

It is clear that the largest and smallest ITFN are 𝛼ା ൌ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐  and 𝛼ି ൌ൏

ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐, respectively. When 𝑡஺
௠భ ൌ 𝑡஺

௠మ and 𝑓஺
௠భ ൌ 𝑓஺

௠మ, an ITrFN reduces to an ITFN 

[16]. 
For example, the product quality attribute in online service trading selection example can be 

expressed in an ITrFN ((0.1,0.2,0.3,0.4), (0.2,0.3,0.5,0.6)), where 0.1 and 0.4 indicate the lower limit 
and upper limit of users’ satisfactory degree, [0.2,0.3] means the interval of most possible satisfactory 
degree; 0.2 and 0.6 denote the lower limit and upper limit of users’ dissatisfactory degree, [0.3,0.5] is 
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the interval of most possible dissatisfactory degree. 

Definition 3. [18] Let 𝛼෤ଵ ൌ൏ ሺ𝑡ଵ
௟ , 𝑡ଵ

௠భ, 𝑡ଵ
௠మ, 𝑡ଵ

௛ሻ, ሺ𝑓ଵ
௟, 𝑓ଵ

௠భ, 𝑓ଵ
௠మ, 𝑓ଵ

௛ሻ ൐  and 𝛼෤ଶ ൌ൏

ሺ𝑡ଶ
௟ , 𝑡ଶ

௠భ, 𝑡ଶ
௠మ, 𝑡ଶ

௛ሻ, ሺ𝑓ଶ
௟, 𝑓ଶ

௠భ, 𝑓ଶ
௠మ, 𝑓ଶ

௛ሻ ൐ be two ITrFNs and 𝜆 ൐ 0, then the containment is: 

𝛼෤ଵ ⊆ 𝛼෤ଶ iff 𝑡ଵ
௟ ൑ 𝑡ଶ

௟ , 𝑡ଵ
௠భ ൑ 𝑡ଶ

௠భ, 𝑡ଵ
௠మ ൑ 𝑡ଶ

௠మ, 𝑡ଵ
௛ ൑ 𝑡ଶ

௛, 

𝑓ଵ
௟ ൒ 𝑓ଶ

௟, 𝑓ଵ
௠భ ൒ 𝑓ଶ

௠భ, 𝑓ଵ
௠మ ൒ 𝑓ଶ

௠మ, 𝑓ଵ
௛ ൒ 𝑓ଶ

௛.                   (3) 

Some arithmetic operations between ITrFNs 𝛼෤ଵ and 𝛼෤ଶ are shown as below: 

(1) 𝛼෤ଵ ൅ 𝛼෤ଶ ൌ൏ ሺ𝑡ଵ
௟ ൅ 𝑡ଶ

௟ െ 𝑡ଵ
௟ 𝑡ଶ

௟ , 𝑡ଵ
௠భ ൅ 𝑡ଶ

௠భ െ 𝑡ଵ
௠భ𝑡ଶ

௠భ, 𝑡ଵ
௠మ ൅ 𝑡ଶ

௠మ െ 𝑡ଵ
௠మ𝑡ଶ

௠మ, 𝑡ଵ
௛ ൅ 𝑡ଶ

௛ െ 𝑡ଵ
௛𝑡ଶ

௛ሻ, 

ሺ𝑓ଵ
௟𝑓ଶ

௟, 𝑓ଵ
௠భ𝑓ଶ

௠భ, 𝑓ଵ
௠మ𝑓ଶ

௠మ, 𝑓ଵ
௛𝑓ଶ

௛ሻ ൐; 

(2) 𝜆𝛼෤ଵ ൌ൏ ሺ1 െ ሺ1 െ 𝑡ଵ
௟ ሻఒ, 1 െ ሺ1 െ 𝑡ଵ

௠భሻఒ, 1 െ ሺ1 െ 𝑡ଵ
௠మሻఒ, 1 െ ሺ1 െ 𝑡ଵ

௛ሻఒሻ, 

ሺሺ𝑓ଵ
௟ሻఒ, ሺ𝑓ଵ

௠భሻఒ, ሺ𝑓ଵ
௠మሻఒ, ሺ𝑓ଵ

௛ሻఒሻ ൐; 

(3) 𝛼෤ଵ
௖ ൌ൏ ሺ𝑓ଵ

௟, 𝑓ଵ
௠భ, 𝑓ଵ

௠మ, 𝑓ଵ
௛ሻ, ሺ𝑡ଵ

௟ , 𝑡ଵ
௠భ, 𝑡ଵ

௠మ, 𝑡ଵ
௛ሻ ൐ 

2.2. The Hamming distance of intuitionistic triangular fuzzy numbers 

Definition 4. Let 𝛼෤ଵ ൌ൏ ሺ𝑡ଵ
௟ , 𝑡ଵ

௠భ, 𝑡ଵ
௠మ, 𝑡ଵ

௛ሻ, ሺ𝑓ଵ
௟, 𝑓ଵ

௠భ, 𝑓ଵ
௠మ, 𝑓ଵ

௛ሻ ൐  and 𝛼෤ଶ ൌ൏

ሺ𝑡ଶ
௟ , 𝑡ଶ

௠భ, 𝑡ଶ
௠మ, 𝑡ଶ

௛ሻ, ሺ𝑓ଶ
௟, 𝑓ଶ

௠భ, 𝑓ଶ
௠మ, 𝑓ଶ

௛ሻ ൐  be two ITrFNs. The Hamming distance 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ  between 

the ITFNs 𝛼෤ଵ and 𝛼෤ଶ is defined as follows: 

𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ
1
8

ሺ|𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൅ |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൅ |𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൅ |𝑡ଵ
௛ െ 𝑡ଶ

௛| ൅ 

                 |𝑓ଵ
௟ െ 𝑓ଶ

௟| ൅ |𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൅ |𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൅ |𝑓ଵ
௛ െ 𝑓ଶ

௛|ሻ               (4) 

Theorem 1. The distance measure 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ satisfies the following properties: 
(i) 0 ൑ 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൑ 1. 
(ii) 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ 0 if and only if 𝛼෤ଵ ൌ 𝛼෤ଶ. 
(iii) 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ 𝑑ሺ𝛼෤ଶ, 𝛼෤ଵሻ. 

(iv) If 𝛼෤ଷ ൌ൏ ሺ𝑡ଷ
௟ , 𝑡ଷ

௠భ, 𝑡ଷ
௠మ, 𝑡ଷ

௛ሻ, ሺ𝑓ଷ
௟, 𝑓ଷ

௠భ, 𝑓ଷ
௠మ, 𝑓ଷ

௛ሻ ൐  is an ITrFN and 𝛼෤ଵ ൑ 𝛼෤ଶ ൑ 𝛼෤ଷ , then 

𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൒ 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ and 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൒ 𝑑ሺ𝛼෤ଶ, 𝛼෤ଷሻ. 
Proof. It is easy to see that the proposed similarity measure 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ meets the third property 

of Theorem 1. We only need to prove (i), (ii) and (iv). 
For (i), 
By Eq (2), we have 

0 ൑ |𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൑ 1, 0 ൑ |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൑ 1, 0 ൑ |𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൑ 1, 0 ൑ |𝑡ଵ
௛ െ 𝑡ଶ

௛| ൑ 1, 0 ൑
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|𝑓ଵ
௟ െ 𝑓ଶ

௟| ൑ 1, 0 ൑ |𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൑ 1, 0 ൑ |𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൑ 1, 0 ൑ |𝑓ଵ
௛ െ 𝑓ଶ

௛| ൑ 1. 

It is easy to see that  

0 ൑
1
8

ሺ|𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൅ |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൅ |𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൅ |𝑡ଵ
௛ െ 𝑡ଶ

௛| ൅ 

|𝑓ଵ
௟ െ 𝑓ଶ

௟| ൅ |𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൅ |𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൅ |𝑓ଵ
௛ െ 𝑓ଶ

௛|ሻ ൑ 1 

0 ൑
1
2

𝑚𝑎𝑥ሺ |𝑡ଵ
௟ െ 𝑡ଶ

௟ |, |𝑡ଵ
௠ െ 𝑡ଶ

௠|, |𝑡ଵ
௛ െ 𝑡ଶ

௛|, |𝑓ଵ
௟ െ 𝑓ଶ

௟|, |𝑓ଵ
௠ െ 𝑓ଶ

௠|, |𝑓ଵ
௛ െ 𝑓ଶ

௛|ሻ ൑
1
2

 

Thus the inequality:0 ൑ 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൑ 1 is established. 
For (ii), 
When 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ 1, if and only if  

1
8

ሺ|𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൅ |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൅ |𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൅ |𝑡ଵ
௛ െ 𝑡ଶ

௛| ൅ |𝑓ଵ
௟ െ 𝑓ଶ

௟| ൅ 

|𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൅ |𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൅ |𝑓ଵ
௛ െ 𝑓ଶ

௛|ሻ ൌ 0 

Apparently, it’s easy to derive 

|𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൌ 0, |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൌ 0, 𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൌ 0, |𝑡ଵ
௛ െ 𝑡ଶ

௛| ൌ 0, |𝑓ଵ
௟ െ 𝑓ଶ

௟| ൌ 0, 

|𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൌ 0, |𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൌ 0, |𝑓ଵ
௛ െ 𝑓ଶ

௛| ൌ 0. 

Thus we get 𝑡ଵ
௟ ൌ 𝑡ଶ

௟  , 𝑡ଵ
௠భ ൌ 𝑡ଶ

௠భ , 𝑡ଵ
௠మ ൌ 𝑡ଶ

௠మ , 𝑡ଵ
௛ ൌ 𝑡ଶ

௛ , 𝑓ଵ
௟ ൌ 𝑓ଶ

௟ , 𝑓ଵ
௠భ ൌ 𝑓ଶ

௠భ , 𝑓ଵ
௠మ ൌ 𝑓ଶ

௠మ , 

𝑓ଵ
௛ െ 𝑓ଶ

௛. And then 𝛼෤ଵ ൌ 𝛼෤ଶ. 
For (iv), 
Since 

𝑡ଵ
௟ ൑ 𝑡ଶ

௟ ൑ 𝑡ଷ
௟ , 𝑡ଵ

௠భ ൑ 𝑡ଶ
௠భ ൑ 𝑡ଷ

௠భ, 𝑡ଵ
௠మ ൑ 𝑡ଶ

௠మ ൑ 𝑡ଷ
௠మ, 𝑡ଵ

௛ ൑ 𝑡ଶ
௛ ൑ 𝑡ଷ

௛, 𝑓ଵ
௟ ൒ 𝑓ଶ

௟ ൒ 𝑓ଷ
௟, 𝑓ଵ

௠భ ൒

𝑓ଶ
௠భ ൒ 𝑓ଷ

௠భ, 𝑓ଵ
௠మ ൒ 𝑓ଶ

௠మ ൒ 𝑓ଷ
௠మ, 𝑓ଵ

௛ ൒ 𝑓ଶ
௛ ൒ 𝑓ଷ

௛, 

We get 

|𝑡ଵ
௟ െ 𝑡ଶ

௟ | ൑ |𝑡ଵ
௟ െ 𝑡ଷ

௟ |, |𝑡ଵ
௠భ െ 𝑡ଶ

௠భ| ൑ |𝑡ଵ
௠భ െ 𝑡ଷ

௠భ|, |𝑡ଵ
௠మ െ 𝑡ଶ

௠మ| ൑ |𝑡ଵ
௠మ െ 𝑡ଷ

௠మ|,  

|𝑡ଵ
௛ െ 𝑡ଶ

௛| ൑ |𝑡ଵ
௛ െ 𝑡ଷ

௛|, |𝑓ଵ
௟ െ 𝑓ଶ

௟| ൑ |𝑓ଵ
௟ െ 𝑓ଷ

௟|, |𝑓ଵ
௠భ െ 𝑓ଶ

௠భ| ൑ |𝑓ଵ
௠భ െ 𝑓ଷ

௠భ|,  

|𝑓ଵ
௠మ െ 𝑓ଶ

௠మ| ൑ |𝑓ଵ
௠మ െ 𝑓ଷ

௠మ|, |𝑓ଵ
௛ െ 𝑓ଶ

௛| ൑ |𝑓ଵ
௛ െ 𝑓ଷ

௛|. 

Based on the above inequalities, it’s easy to derive 

ห𝑡ଵ
௟ െ 𝑡ଶ

௟ ห ൅ ห𝑡ଵ
௠భ െ 𝑡ଶ

௠భห ൅ ห𝑡ଵ
௠మ െ 𝑡ଶ

௠మห ൅ ห𝑡ଵ
௛ െ 𝑡ଶ

௛ห ൅ ห𝑓ଵ
௟ െ 𝑓ଶ

௟ห ൅ 

ห𝑓ଵ
௠భ െ 𝑓ଶ

௠భห ൅ ห𝑓ଵ
௠మ െ 𝑓ଶ

௠మห ൅ ห𝑓ଵ
௛ െ 𝑓ଶ

௛ห ൑ 

ห𝑡ଵ
௟ െ 𝑡ଷ

௟ ห ൅ ห𝑡ଵ
௠భ െ 𝑡ଷ

௠భห ൅ ห𝑡ଵ
௠మ െ 𝑡ଷ

௠మห ൅ ห𝑡ଵ
௛ െ 𝑡ଷ

௛ห ൅ ห𝑓ଵ
௟ െ 𝑓ଷ

௟ห ൅ 
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|𝑓ଵ
௠భ െ 𝑓ଷ

௠భ| ൅ |𝑓ଵ
௠మ െ 𝑓ଷ

௠మ| ൅ |𝑓ଵ
௛ െ 𝑓ଷ

௛| 

and 
𝑚𝑎𝑥ሺ |𝑡ଵ

௟ െ 𝑡ଶ
௟ |, |𝑡ଵ

௠ െ 𝑡ଶ
௠|, |𝑡ଵ

௛ െ 𝑡ଶ
௛|, |𝑓ଵ

௟ െ 𝑓ଶ
௟|, |𝑓ଵ

௠ െ 𝑓ଶ
௠|, |𝑓ଵ

௛ െ 𝑓ଶ
௛|ሻ ൑ 

𝑚𝑎𝑥ሺ |𝑡ଵ
௟ െ 𝑡ଷ

௟ |, |𝑡ଵ
௠ െ 𝑡ଷ

௠|, |𝑡ଵ
௛ െ 𝑡ଷ

௛|, |𝑓ଵ
௟ െ 𝑓ଷ

௟|, |𝑓ଵ
௠ െ 𝑓ଷ

௠|, |𝑓ଵ
௛ െ 𝑓ଷ

௛|ሻ. 
Thus, 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൒ 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ. By the same way, it is proved that 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൒ 𝑑ሺ𝛼෤ଶ, 𝛼෤ଷሻ. 
For example, consider 𝛼෤ଵ ൌ൏ ሺ0.3,0.4,0.5,0.6ሻ, ሺ0.0,0.1,0.2,0.3ሻ ൐  and 𝛼෤ଶ ൌ൏

ሺ0.5,0.5,0.6,0.6ሻ, ሺ0.0,0.1,0.2,0.3ሻ ൐, 𝛼෤ଷ ൌ൏ ሺ0.5,0.5,0.7,0.7ሻ, ሺ0.0,0.1,0.2,0.3ሻ ൐ are three ITrFNs 
in [0,1]. According to Definition 3, we have 𝛼෤ଵ ൏ 𝛼෤ଶ ൏ 𝛼෤ଷ. By Definition 4, we know 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ
0.05 , 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൌ 0.075 , 𝑑ሺ𝛼෤ଶ, 𝛼෤ଷሻ ൌ 0.025 . Obvious, 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൐ 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ  and 𝑑ሺ𝛼෤ଵ, 𝛼෤ଷሻ ൒
𝑑ሺ𝛼෤ଶ, 𝛼෤ଷሻ. 

3. Entropy measure for ITrFSs based on TOPSIS 

Entropy measure is worthy of investigation in IF environment. It is widely used in the field of 
decision-making. Burillo and Bustince [10] discussed the entropy on IFSs and interval-valued. Szmidt 
and Kacprzyk [11] proposed an entropy measure from a geometric point of view. Chen and Li [12] 
conducted a comparative analysis on determining objective weights with intuitionistic fuzzy entropy 
measures. Joshi and Kumara [15] discussed the parametric (R, S)-norm IF entropy and applied it to 
MADM. Some researchers have recently used distance measures to derive fuzzy entropy by extending 
De Luca’s axioms [14]. Liu [23] proposed some entropy measures for fuzzy sets (FSs) based on 
distances. Zhang and Zhang et al. [24] discussed the entropy of interval-valued FSs based on distance 
and its relationship with a similarity measure. Zhang and Xing et al. [13] introduced the relationship 
among distance measures, inclusion measures and fuzzy entropy of IVIFSs. To address the completely 
unknown attribute weights in MADM problems, Garg [25] proposed some IF Hamacher aggregation 
operators based on entropy function to aggregate the attribute values. Later, Garg [26] developed a 
generalized IF entropy for IVIFS and applied it to solve MADM problems. This section combines the 
entropy concept in [13] and TOPSIS method to develop a novel axiomatical definition of entropy 
measure for ITrFS. 

Definition 5. A real-valued function 𝐸: 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ → ሾ0,1ሿ is called an entropy on 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ if 
it satisfies the following properties: 

(EP1) 𝐸ሺ𝐴ሻ ൌ 0 iff A is a crisp set; 
(EP2) 𝐸ሺ𝐴ሻ ൌ 1  iff 𝑑ሺ𝐴, 𝐴ାሻ ൌ 𝑑ሺ𝐴, 𝐴ିሻ  for all 𝐴 ∈ 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ , where 𝑑ሺ𝐴, 𝐴ାሻ  is a 

distance from A to 𝐴ା, and 𝑑ሺ𝐴, 𝐴ିሻ is a distance from A to 𝐴ି; 
(EP3) 𝐸ሺ𝐴ሻ ൌ 𝐸ሺ𝐴௖ሻ for all 𝐴 ∈ 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ; 

(EP4) For all 𝐴, 𝐵 ∈ 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ, if | ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
െ ଵ

ଶ
| ൒ | ௗሺ஻,஻షሻ

ௗሺ஻,஻షሻାௗሺ஻,஻శሻ
െ ଵ

ଶ
|, then 𝐸ሺ𝐴ሻ ൑

𝐸ሺ𝐵ሻ, where 𝑑ሺ𝐵, 𝐵ାሻ is a distance from B to 𝐵ା, and 𝑑ሺ𝐵, 𝐵ିሻ is a distance from B to 𝐵ି. 
Remark 1. A new axiomatical definition of distance-based entropy for ITrFS is proposed in 

Definition 4 based on the idea of TOPSIS. Given a set type, we can define the entropy for the 
corresponding ITrFSs by using different distance measures between two ITrFSs. The properties in 
Definition 4 imply the following realities: 

(EP1) Crisp sets are not fuzzy; 
(EP2) If 𝑑ሺ𝐴, 𝐴ାሻ ൌ 𝑑ሺ𝐴, 𝐴ିሻ, then A is the fuzziest set; 
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(EP3) The fuzziness of a generalized set is equal to that of its complement; 
(EP4) An ITrFS is fuzzier when its relative closeness is nearly 0.5. 
Theorem 2. Let 𝑑 be the distance of 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ. Then, for any 𝐴 ∈ 𝐼𝑇𝑟𝐹𝑆ሺ𝑋ሻ,  

𝐸ሺ𝐴ሻ ൌ 1 െ 2| ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
െ ଵ

ଶ
|                       (5) 

is entropy of 𝐹ሺ𝑋ሻ based on TOPSIS. 
Proof. We can prove that 𝐸ሺ𝐴ሻ meets properties (EP1)–(EP4). 
EP1: If 𝐴  is crisp set, that is, 𝐴ሺ𝑋ሻ ൌ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐  or 𝐴ሺ𝑋ሻ ൌ൏

ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐ , by using Eq. (5), then we have 
ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
ൌ 1  or 

ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
ൌ 0 . 

Thus, 𝐸ሺ𝐴ሻ ൌ 1 െ 2|1 െ ଵ

ଶ
| ൌ 0 or 𝐸ሺ𝐴ሻ ൌ 1 െ 2|0 െ ଵ

ଶ
| ൌ 0. 

EP2: If 𝐸ሺ𝐴ሻ ൌ 1, then we have 
ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
ൌ ଵ

ଶ
⇔ 𝑑ሺ𝐴, 𝐴ିሻ ൌ 𝑑ሺ𝐴, 𝐴ାሻ. 

EP3: Given 𝑑ሺ𝐴௖, 𝐴ିሻ ൌ 𝑑ሺ𝐴, 𝐴ାሻ and 𝑑ሺ𝐴௖, 𝐴ାሻ ൌ 𝑑ሺ𝐴, 𝐴ିሻ, then | ௗሺ஺೎,஺షሻ

ௗሺ஺೎,஺షሻାௗሺ஺೎,஺శሻ
െ ଵ

ଶ
| ൌ 

| ଵ

ଶ
െ ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
|. Thus, 𝐸ሺ𝐴ሻ ൌ 𝐸ሺ𝐴௖ሻ. 

EP4: If | ௗሺ஺,஺షሻ

ௗሺ஺,஺షሻାௗሺ஺,஺శሻ
െ ଵ

ଶ
| ൒ | ௗሺ஻,஻షሻ

ௗሺ஻,஻షሻାௗሺ஻,஻శሻ
െ ଵ

ଶ
|, then 𝐸ሺ𝐴ሻ ൑ 𝐸ሺ𝐵ሻ can be easily derived. 

Remark 2. Consider the distance measure 𝑑ூ௏ூிேሺ⋅,⋅ሻ of IVIFNs, for an ITrFN 𝐴ሚ ൌ൏

ሺ𝑡஺
௟ , 𝑡஺

௠భ, 𝑡஺
௠మ, 𝑡஺

௛ሻ, ሺ𝑓஺
௟, 𝑓஺

௠భ, 𝑓஺
௠మ, 𝑓஺

௛ሻ ൐ , if 𝑡஺
௟ ൌ 𝑡஺

௠భ , 𝑡஺
௠మ ൌ 𝑡஺

௛ , 𝑓஺
௟ ൌ 𝑓஺

௠భ  and 𝑓஺
௠మ ൌ 𝑓஺

௛ , then 𝐴ሚ  

is degenerated to an IVIFN 𝐴ሚூ௏ூிே ൌ൏ ሾ𝑡஺
௟ , 𝑡஺

௛ሿ, ሾ𝑓஺
௟, 𝑓஺

௛ሿ ൐ , the largest IVIFN is 𝐴ூ௏ூிே
ା ൌ൏

ሾ1,1ሿ, ሾ0,0ሿ ൐ , the smallest IVIFN is 𝐴ூ௏ூிே
ି ൌ൏ ሾ0,0ሿ, ሾ1,1ሿ ൐ , and Eq. (4) is degenerated to the 

distance measure of IVIFNs 𝑑ூ௏ூிேሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ ଵ

ସ
ሺ|𝑡ଵ

௟ െ 𝑡ଶ
௟ | ൅ |𝑡ଵ

௛ െ 𝑡ଶ
௛| ൅ |𝑓ଵ

௟ െ 𝑓ଶ
௟| ൅ |𝑓ଵ

௛ െ 𝑓ଶ
௛|ሻ . 

According to Eq (5), the entropy of IVIFN 𝐴ሚூ௏ூிேcan be calculated as 

𝐸ሺ𝐴ሚூ௏ூிேሻ ൌ 1 െ 2| ௗ಺ೇ಺ಷಿሺ஺෨಺ೇ಺ಷಿ,஺಺ೇ಺ಷಿ
ష ሻ

ௗ಺ೇ಺ಷಿሺ஺෨಺ೇ಺ಷಿ,஺಺ೇ಺ಷಿ
ష ሻାௗሺ஺෨಺ೇ಺ಷಿ,஺಺ೇ಺ಷಿ

శ ሻ
െ ଵ

ଶ
|               (6) 

Obviously, 𝐸ሺ𝐴ሚூ௏ூிேሻ satisfies properties (EP1)–(EP4). Thus the proposed entropy measure is a 
generalization of IVIFS. 

4. Method for MADM problems with ITrFNs results 

In this section, we provide a method to address ITrFN MADM problems unknown attribute 
weight by using the proposed entropy measure. 

4.1. Presentation of MADM problems with ITrFN ratings 

For the MADM problem, the final decision should be derived from the assessments of all feasible 
alternatives on multiple attributes. For convenience, some symbols are introduced to characterize the 
MADM problem as follows. 

(1) The set of alternatives is 𝑆௜ሺ𝑖 ∈ 𝑀 ൌ ሼ1,2, ⋯ , 𝑚ሽሻ. 
(2) The set of attributes is 𝐴௝ሺ𝑗 ∈ 𝑁 ൌ ሼ1,2, ⋯ , 𝑛ሽሻ. The attribute weight vector is denoted by 
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𝒘 ൌ ሺ𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤௡ሻ , where 𝑤௝  represents the weight of 𝐴௝  such that 𝑤௝ ∈ ሾ0,1ሿ  ሺ𝑗 ∈ 𝑁ሻ  and 
∑ 𝑤௝

௡
௝ୀଵ ൌ 1. 

(3) The assessments of alternatives 𝑆௜  on attributes 𝐴௝  are ITrFNs 𝛼෤௜௝ ൌ൏
ሺ𝑡௜௝

௟ , 𝑡௜௝
௠భ, 𝑡௜௝

௠మ, 𝑡௜௝
௛ ሻ, ሺ𝑓௜௝

௟ , 𝑓௜௝
௠భ, 𝑓௜௝

௠మ, 𝑓௜௝
௛ሻ ൐. 

(4) An ITrFN MADM problem can be described by an ITrFN decision matrix 𝐷෩ ൌ ሺ𝛼෤௜௝ሻ௠ൈ௡. 

4.2. Attribute weight 

Attribute weights depend on the certainty and reliability of the assessments given by the decision 
maker. The objective weight is smaller when the evaluation value is more uncertain. The fuzziness and 
uncertainty of attribute values can be measured by the fuzzy entropy. According to the entropy-
weighting method [9,13,26], we employ the proposed IF entropy measure to determine the weights of 
the attributes. The decision matrix 𝐷෩ ൌ ሺ𝛼෤௜௝ሻ௠ൈ௡  can be turned into an IF entropy matrix 𝛤 ൌ
ሺ𝐸௜௝ሻ௠ൈ௡, where 

𝐸௜௝ ൌ 1 െ 2|
ௗሺఈ෥೔ೕ,ఈషሻ

ௗሺఈ෥೔ೕ,ఈషሻାௗሺఈ෥೔ೕ,ఈశሻ
െ ଵ

ଶ
|.                        (7) 

𝛼ି ൌ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐ and 𝛼ା ൌ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ are the negative ideal solution (NIS) 
and positive ideal solution (PIS), respectively. 

Then, the normalized entropy matrix 𝐻 ൌ ሺℎ௜௝ሻ௠ൈ௡ is obtained as follows: 

ℎ௜௝ ൌ
ா೔ೕ

௠௔௫ሼா೔భ,ா೔మ,⋯,ா೔೙ሽ
.                              (8) 

The objective attribute weights are determined by 

𝑤௝ ൌ
ଵି∑ ா೔ೕ

೘
೔సభ

ଵି∑ ∑ ா೔ೕ
೘
೔సభ

೙
ೕసభ

 𝑖 ൌ ሼ1,2, ⋯ , 𝑚ሽ, 𝑗 ൌ ሼ1,2, ⋯ , 𝑛ሽ.            (9) 

Evidently, attribute weight 𝑤௝ is inversely proportional to the summation of the entropy values 
of attribute 𝐴௝. In other words, if the values of the attribute are vaguer and more unreliable, then we 
assign a lower weight; otherwise, a higher weight is attached. 

4.3. Intuitionistic trapezoidal fuzzy TOPSIS 

This section extends TOPSIS to aggregate ITrFNs and rank alternatives. Suppose that PIS and 

NIS are 𝑅ା ൌ ሺ𝛼ଵ
ା, 𝛼ଶ

ା, ⋯ , 𝛼௠
ା ሻ  and 𝑅ି ൌ ሺ𝛼ଵ

ି, 𝛼ଶ
ି, ⋯ , 𝛼௠

ି ሻ , respectively, where 𝛼௝
ା ൌ൏

ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐  and 𝛼௝
ି ൌ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐  for benefit attributes and 𝛼௝

ା ൌ൏

ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐ and 𝛼௝
ି ൌ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐ for cost attributes. In the decision matrix 

𝐷෩ ൌ ሺ𝛼෤௜௝ሻ௠ൈ௡, the separation measures from alternative 𝑆௜ to PIS 𝛼ା and NIS 𝛼ି
 can be defined 

as follows. 
Definition 6. The weighted positive separation measure between alternative 𝑆௜  and PIS is 

defined as follows: 

𝐺௜
ା ൌ ∑ 𝑤௝𝑑ሺ𝛼෤௜௝, 𝛼௝

ାሻ௡
௝ୀଵ ,                          (10) 

where 𝑑ሺ𝛼෤௜௝, 𝛼௝
ାሻ is the distance from 𝛼෤௜௝ to 𝛼௝

ା, and 𝑤௝ is the attribute weight of attribute 𝐴௝. 
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Definition 7. The weighted positive separation measure between alternative 𝑆௜  and NIS is 
defined as follows: 

𝐺௜
ି ൌ ∑ 𝑤௝𝑑ሺ𝛼෤௜௝, 𝛼௝

ିሻ௡
௝ୀଵ ,                          (11) 

where 𝑑ሺ𝛼෤௜௝, 𝛼௝
ିሻ is the distance from 𝛼෤௜௝ to 𝛼௝

ି, and 𝑤௝ is the attribute weight of 𝐴௝. 

Then, a closeness coefficient to the PIS and NIS for each alternative is calculated as follows: 

𝑅𝐶௜ ൌ ೔ீ
ష

೔ீ
షା ೔ீ

శ.                             (12) 

Evidently, alternative 𝑆௜ is better when 𝑅𝐶௜ is larger. 

4.4. Procedure for MADM problems with ITrFNs 

This section presents a procedure for solving MADM problems with unknown attribute weights 
under an ITrFN environment; it can be summarized in the following steps: 

Step 1. Provide the decision matrix 𝐷෩ ൌ ሺ𝛼෤௜௝ሻ௠ൈ௡. 
Step 2. Calculate IF entropy matrix using Eq (7). 
Step 3. Determine the weight vector of attributes by Eq (9). 
Step 4. Identify the PIS and NIS and compute the separation measures from each alternative to 

PIS and NIS using Eqs (10) and (11), respectively. 
Step 5. Construct the closeness coefficient of alternatives according to Eq (12). 
Step 6. Rank the alternatives according to the closeness coefficient and select the best one. 

The detailed decision process of the proposed method is shown in Figure 1. 

MADM problems with ITrFNs

Construct IF entropy matrix

Determine attrbute weights

Compute the separation measures from each 
alternative to PIS and NIS

Using Eqs. (10) and (11)

Calculate the closeness coefficient By Eq.(12)

Rank alternatives and select the best one

By Eq.(7)

By Eq.(9)

 

Figure 1. The decision process of the proposed method. 
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5. Numerical example 

5.1. Online trustworthy seller evaluation problem and the decision process 

Online service trading generally transpires between autonomous parties in an environment where 
the buyer often has insufficient information about the seller and goods. Many scholars believe that 
trust is a prerequisite for successful trading. Therefore, buyers must be able to identify the most 
trustworthy seller. Suppose that a consumer desires to select a reliable seller. After preliminary 
screening, four candidate sellers 𝑆ଵ, 𝑆ଶ, 𝑆ଷ and 𝑆ସ remain to be further evaluated. Based on detailed 
seller ratings, the consumer assesses the four candidate sellers according to five trust factors, namely, 
product quality (A1), service attitude (A2), website usability (A3), response time (A4) and shipping speed 
(A5). The first three attributes are benefit attributes, whereas the last two are cost attributes. The 
decision maker provides the lower and upper limits and the most possible intervals to describe these 
attributes. The candidate sellers' ratings concerning the attributes can be represented as ITrFNs by 
using statistical methods, as shown in Table 1. 

Table 1. The ITrFN decision matrix. 

 A1 A2 A3 A4 A5 

S1 

<(0.3,0.4,0.5,0.5),

(0.2,0.3,0.3,0.4)>

<(0.1,0.4,0.5,0.6),

(0.1,0.2,0.3,0.3)>

<(0.4,0.4,0.5,0.6),

(0.1,0.2,0.3,0.4> 

<(0.3,0.4,0.5,0.5), 

(0.1,0.2,0.3,0.5)> 

<(0.2,0.4,0.5,0.5),

(0.3,0.3,0.5,0.5)>

S2 

<(0.1,0.2,0.3,0.4),

(0.2,0.3,0.4,0.5)>

<(0.1,0.2,0.3,0.3),

(0.1,0.3,0.4,0.5)>

<(0.2,0.3,0.4,0.4),

(0.2,0.3,0.4,0.6> 

<(0.1,0.2,0.3,0.3), 

(0.2,0.3,0.4,0.6)> 

<(0.2,0.2,0.3,0.4),

(0.3,0.5,0.5,0.5)>

S3 

<(0.3,0.4,0.5,0.5),

(0.1,0.2,0.3,0.5)>

<(0.2,0.3,0.5,0.6),

(0.1,0.2,0.3,0.4)>

<(0.0,0.2,0.3,0.3),

(0.1,0.3,0.4,0.5)>

<(0.2,0.3,0.4,0.4), 

(0.2,0.2,0.4,0.4)> 

<(0.3,0.3,0.4,0.4),

(0.1,0.2,0.5,0.5)>

S4 
<(0.1,0.2,0.4,0.5),

(0.1,0.3,0.4,0.5)>

<(0.0,0.1,0.2,0.3),

(0.2,0.3,0.5,0.6)>

<(0.0,0.1,0.3,0.4),

(0.2,0.3,0.4,0.6)>

<(0.1,0.2,0.4,0.4), 

(0.2,0.2,0.3,0.4)> 

<(0.1,0.3,0.4,0.4),

(0.1,0.3,0.4,0.4)>

Step 1. Form a decision matrix that is listed in Table 1. 
Step 2. Since A1, A2, A3 are benefit attributes and A4, A5 are cost attributes, we have the following 

PIS and NIS: 
𝑅ା ൌ ሺ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐, ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐, ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐, 
        ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐, ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐ሻ 
𝑅ି ൌ ሺ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐, ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐, ൏ ሺ0,0,0,0ሻ, ሺ1,1,1,1ሻ ൐, 
        ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐, ൏ ሺ1,1,1,1ሻ, ሺ0,0,0,0ሻ ൐ሻ 

Using Eq (7), the decision matrix turns into IF entropy matrix as follows 

𝛤 ൌ ൮

0.875 0.825 0.775 0.825 1.000
0.900 0.900 0.950 0.850 0.825
0.850 0.850 0.875 0.975 0.975
0.975 0.750 0.825 1.000 1.000

൲. 

Step 3. Utilizing Eq (9), the attribute weight vector is determined as 𝑤 ൌ
ሺ0.20,0.20,0.19,0.20,0.21ሻ். 
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Step 4. By Eqs (10) and (11), The positive and negative weighted separation are obtained as 
𝐺ା ൌ ሺ0.465,0.492,0.487,0.545ሻ and 𝐺ି ൌ ሺ0.535,0.508,0.513,0.455ሻ. 

Step 5. Using Eq (12), the closeness coefficients of each seller are calculated as 𝑅𝐶 ൌ
ሺ0.535,0.508,0.513,0.455ሻ. 

Step 6. Since 𝑅𝐶ଵ ൐ 𝑅𝐶ଷ ൐ 𝑅𝐶ଶ ൐ 𝑅𝐶ସ, the best seller is 𝑆ଵ. 

5.2. Sensitivity analysis 

Given different attribute weights will produce various decision results, this section carries out a 
sensitivity analysis on attribute weights to observe whether different attribute weights will lead to a 
different ranking of four trustworthy sellers. After expert discussion, the weight of product quality, 
service attitude and website usability are correct. I analyze the seller's ranking, in the case that the 
weights meet 𝑤ସ ൅ 𝑤ହ ൌ 0.41. When 0 ൑ 𝑤ସ ൑ 0.24, the ranking of four trustworthy sellers is 𝑆ଵ ൐
𝑆ଷ ൐ 𝑆ଶ ൐ 𝑆ସ . If 𝑤ସ ൌ 0.25 , their ranking is 𝑆ଵ ൐ 𝑆ଷ ൌ 𝑆ଶ ൐ 𝑆ସ . When 0.26 ൑ 𝑤ସ ൑ 0.35 , their 
ranking is 𝑆ଵ ൐ 𝑆ଶ ൐ 𝑆ଷ ൐ 𝑆ସ . When 0.36 ൑ 𝑤ସ ൑ 0.41 , their ranking is 𝑆ଶ ൐ 𝑆ଵ ൐ 𝑆ଷ ൐ 𝑆ସ . The 
above results reveal the importance of attribute weights in decision-making. 

5.3. Comparison with existing MADM method using IVIFNs 

This section performs a comparison with the MADM method based on the generalized IF entropy 
developed by Garg [26]. We use the proposed method for solving the supplier selection problem given 
in [26] by appropriate modifications, given that the attribute ratings are in the form of IVIFNs. 
Specifically, when 𝑡஺

௟ ൌ 𝑡஺
௠భ , 𝑡஺

௠మ ൌ 𝑡஺
௛ , 𝑓஺

௟ ൌ 𝑓஺
௠భ  and 𝑓஺

௠మ ൌ 𝑓஺
௛ , the ITrFN 𝛼෤  is reduced to an 

IVIFN, 𝛼ା ൌ൏ ሾ1,1ሿ, ሾ0,0ሿ ൐,  𝛼ି ൌ൏ ሾ0,0ሿ, ሾ1,1ሿ ൐; and the distance measure in Eq (4) is reduced 

to 𝑑ሺ𝛼෤ଵ, 𝛼෤ଶሻ ൌ ଵ

ସ
ሺ|𝑡ଵ

௟ െ 𝑡ଶ
௟ | ൅ |𝑡ଵ

௛ െ 𝑡ଶ
௛| ൅ |𝑓ଵ

௟ െ 𝑓ଶ
௟| ൅ |𝑓ଵ

௛ െ 𝑓ଶ
௛|ሻ. According to Eq (6), we have the 

entropy of each IVIFN. Using the proposed decision procedure for MADM, the ranking order of 
suppliers is as follows: 𝐴ସ ≻ 𝐴ହ ≻ 𝐴ଷ ≻ 𝐴ଶ ≻ 𝐴ଵ, which is the same as that obtained by the method 
in [26]. Hence, the proposed method is suitable for MADM problems with unknown attribute weight 
under an IVIF environment. The method in [26] cannot address decision problems with ITrFNs. 
Moreover, the proposed method is superior in terms of using generalized ITrFNs in comparison with 
the IVIFNs employed in [26]. The proposed method also has shortcomings. For example, it is not 
suitable for MADM problems with incomplete weight attribute information under ITrFSs environment. 
To solve this problem, we can define the cross-entropy of ITrFSs by learning from the cross-entropy 
of IFSs [27]. Then, the programming models can be constructed based on the cross-entropy of ITrFSs 
to obtain attribute weights. 

6. Conclusions 

This study presented a TOPSIS-based entropy method to solve MADM problems with ITrFNs 
and unknown attribute weight information. We applied ITrFNs for MADM problems to address the 
imprecise and vague decision data in the actual MADM environment. We developed a distance 
measure for ITrFNs and discussed its properties. We put forward a TOPSIS-based entropy measure for 
ITrFNs, in which the entropy axioms for ITrFNs are easy to understand and compute because they 
only require identifying the largest and least values. Further, we provided an objective attribute weight 
method by using the proposed entropy measure. Then, by combining TOPSIS and entropy-weighted 
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approach, a MADM method was proposed to select the best alternative. Finally, an online trustworthy 
service evaluation example indicated that the proposed MADM method is practical and useful. Our 
future research will cover the following three aspects. (1) We will construct additional entropy 
measures of ITrFNs and study the relationship between the entropy and similarity measure of ITrFNs. 
(2) We will extend the proposed method to a decision environment with linguistic interval-valued 
Atanassov IFSs [28]. (3) The proposed method will be used for large group decision-making problems 
[29] by integrating the evaluation information into ITrFNs. (4) The proposed method will be applied 
to the evaluation of text classification [30] and financial risk analysis [31] in ITrFSs environment. 
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