Research article Special Issues

On the variable inverse sum deg index


  • Received: 13 December 2022 Revised: 10 February 2023 Accepted: 15 February 2023 Published: 09 March 2023
  • Several important topological indices studied in mathematical chemistry are expressed in the following way $ \sum_{uv \in E(G)} F(d_u, d_v) $, where $ F $ is a two variable function that satisfies the condition $ F(x, y) = F(y, x) $, $ uv $ denotes an edge of the graph $ G $ and $ d_u $ is the degree of the vertex $ u $. Among them, the variable inverse sum deg index $ IS\!D_a $, with $ F(d_u, d_v) = 1/(d_u^a+d_v^a) $, was found to have several applications. In this paper, we solve some problems posed by Vukičević [1], and we characterize graphs with maximum and minimum values of the $ IS\!D_a $ index, for $ a < 0 $, in the following sets of graphs with $ n $ vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.

    Citation: Edil D. Molina, Paul Bosch, José M. Sigarreta, Eva Tourís. On the variable inverse sum deg index[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8800-8813. doi: 10.3934/mbe.2023387

    Related Papers:

  • Several important topological indices studied in mathematical chemistry are expressed in the following way $ \sum_{uv \in E(G)} F(d_u, d_v) $, where $ F $ is a two variable function that satisfies the condition $ F(x, y) = F(y, x) $, $ uv $ denotes an edge of the graph $ G $ and $ d_u $ is the degree of the vertex $ u $. Among them, the variable inverse sum deg index $ IS\!D_a $, with $ F(d_u, d_v) = 1/(d_u^a+d_v^a) $, was found to have several applications. In this paper, we solve some problems posed by Vukičević [1], and we characterize graphs with maximum and minimum values of the $ IS\!D_a $ index, for $ a < 0 $, in the following sets of graphs with $ n $ vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.



    加载中


    [1] D. Vukičević, Bond additive modeling 5. Mathematical properties of the variable sum exdeg index, Croat. Chem. Acta, 84 (2011), 93–101.
    [2] E. Estrada, Quantifying network heterogeneity, Phys. Rev. E, 82 (2010), 066102. https://doi.org/10.1103/PhysRevE.82.066102 doi: 10.1103/PhysRevE.82.066102
    [3] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
    [4] V. R. Kulli, F-Revan index and F-Revan polynomial of some families of benzenoid systems, J. Global Res. Math. Arch., 5 (2018), 1–6.
    [5] V. R. Kulli, Revan indices of oxide and honeycomb networks, Int. J. Math. Appl., 55 (2017), 7.
    [6] A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004), 97–101.
    [7] E. D. Molina, J. M. Rodríguez, J. L. Sánchez, J. M. Sigarreta, Some properties of the arithmetic–geometric index, Symmetry, 13 (2021), 857. https://doi.org/10.3390/sym13050857 doi: 10.3390/sym13050857
    [8] J. Pineda, C. Martínez, J. A. Méndez, J. Muños, J. M. Sigarreta, Application of bipartite networks to the study of water quality, Sustainability, 12 (2020), 5143. https://doi.org/10.3390/su12125143 doi: 10.3390/su12125143
    [9] N. Zahra, M. Ibrahim, M. K. Siddiqui, On topological indices for swapped networks modeled by optical transpose interconnection system, IEEE Access, 8 (2020), 200091–200099. https://doi.org10.1109/ACCESS.2020.3034439 doi: 10.1109/ACCESS.2020.3034439
    [10] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2020), 249–311.
    [11] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 63 (2010), 433–440.
    [12] Z. Du, B. Zhou, N. Trinajstić, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem., 47 (2010), 842–855. https://doi.org/10.1007/s10910-009-9604-7 doi: 10.1007/s10910-009-9604-7
    [13] R. Cruz, J. Monsalve, J. Rada, On chemical trees that maximize atombond connectivity index, its exponential version, and minimize exponential geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 84 (2020), 691–718.
    [14] R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randic index, Discrete Appl. Math., 283 (2020), 634–643. https://doi.org/10.1016/j.dam.2020.03.009 doi: 10.1016/j.dam.2020.03.009
    [15] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, Kragujevac J. Math., 46 (2022), 105–113.
    [16] K. C. Das, Y. Shang, Some extremal graphs with respect to sombor index, Mathematics, 9 (2021), 1202. https://doi.org/10.3390/math9111202 doi: 10.3390/math9111202
    [17] M. A. Iranmanesh, M. Saheli, On the harmonic index and harmonic polynomial of Caterpillars with diameter four, Iran. J. Math. Chem., 5 (2014), 35–43. https://doi.org/10.22052/IJMC.2015.9044 doi: 10.22052/IJMC.2015.9044
    [18] X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Croat. Chem. Acta, 79 (2006).
    [19] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260.
    [20] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta, 83 (2010), 261–273.
    [21] W. Carballosa, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Inequalities for the variable inverse sum deg index, Submitted.
    [22] H. Chen, H. Deng, The inverse sum indeg index of graphs with some given parameters, Discr. Math. Algor. Appl., 10 (2018), 1850006. https://doi.org/10.1142/S1793830918500064 doi: 10.1142/S1793830918500064
    [23] F. Falahati-Nezhad, M. Azari, T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math., 217 (2017), 185–195. https://doi.org/10.1016/j.dam.2016.09.014 doi: 10.1016/j.dam.2016.09.014
    [24] I. Gutman, M. Matejić, E. Milovanović, I. Milovanović, Lower bounds for inverse sum indeg index of graphs, Kragujevac J. Math., 44 (2020), 551–562.
    [25] I. Gutman, J. M. Rodríguez, J. M. Sigarreta, Linear and non-linear inequalities on the inverse sum indeg index, Discrete Appl. Math., 258 (2019), 123–134. https://doi.org/10.1016/j.dam.2018.10.041 doi: 10.1016/j.dam.2018.10.041
    [26] M. An, L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Process. Lett., 134 (2018), 42–46. https://doi.org/10.1016/j.ipl.2018.02.006 doi: 10.1016/j.ipl.2018.02.006
    [27] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math., 184 (2015), 202–212. https://doi.org/10.1016/j.dam.2014.11.013 doi: 10.1016/j.dam.2014.11.013
    [28] M. A. Rashid, S. Ahmad, M. K. Siddiqui, M. K. A. Kaabar, On computation and analysis of topological index-based invariants for complex coronoid systems, Complexity, 2021 (2021), 4646501. https://doi.org/10.1155/2021/4646501 doi: 10.1155/2021/4646501
    [29] M. K. Siddiqui, S. Manzoor, S. Ahmad, M. K. A. Kaabar, On computation and analysis of entropy measures for crystal structures, Math. Probl. Eng., 2021 (2021), 9936949. https://doi.org/10.1155/2021/9936949 doi: 10.1155/2021/9936949
    [30] D. A. Xavier, E. S. Varghese, A. Baby, D. Mathew, M. K. A. Kaabar, Distance based topological descriptors of zinc porphyrin dendrimer, J. Mol. Struct., 1268 (2022), 133614. https://doi.org/10.1016/j.molstruc.2022.133614 doi: 10.1016/j.molstruc.2022.133614
    [31] W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, Extremal problems on the variable sum exdeg index, MATCH Commun. Math. Comput. Chem., 84 (2020), 753–772.
    [32] J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of graph, AIMS Math., 7 (2022), 8330–8334. https://doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464
    [33] D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem. Acta, 84 (2011), 87–91.
    [34] R. Todeschini, P. Gramatica, E. Marengo, R. Provenzani, Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons, Chemom. Intell. Lab. Syst., 27 (1995), 221–229. https://doi.org/10.1016/0169-7439(95)80026-6 doi: 10.1016/0169-7439(95)80026-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1445) PDF downloads(64) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog