Research article Special Issues

Extremal values of VDB topological indices over F-benzenoids with equal number of edges


  • Received: 12 November 2022 Revised: 20 December 2022 Accepted: 26 December 2022 Published: 09 January 2023
  • The utilization of molecular structure topological indices is currently a standing operating procedure in the structure-property relations research, especially in QSPR/QSAR study. In the past several year, generous molecular topological indices related to some chemical and physical properties of chemical compounds were put forward. Among these topological indices, the VDB topological indices rely only on the vertex degree of chemical molecular graphs. The VDB topological index of an $ n $-order graph $ G $ is defined as

    $ TI(G) = \sum\limits_{1\leq i\leq j\leq n-1}m_{ij}\psi_{ij}, $

    where $ \{\psi_{ij}\} $ is a set of real numbers, $ m_{ij} $ is the quantity of edges linking an $ i $-vertex and another $ j $-vertex. Numerous famous topological indices are special circumstance of this expression. f-benzenoids are a kind of polycyclic aromatic hydrocarbons, present in large amounts in coal tar. Studying the properties of f-benzenoids via topological indices is a worthy task. In this work the extremum $ TI $ of f-benzenoids with given number of edges were determined. The main idea is to construct f-benzenoids with maximal number of inlets and simultaneously minimal number of hexagons in $ \Gamma_{m} $, where $ \Gamma_{m} $ is the collection of f-benzenoids with exactly $ m $ $ (m\geq19) $ edges. As an application of this result, we give a unified approach of VDB topological indices to predict distinct chemical and physical properties such as the boiling point, $ \pi $-electrom energy, molecular weight and vapour pressure etc. of f-benzenoids with fixed number of edges.

    Citation: Fengwei Li, Qingfang Ye, Juan Rada. Extremal values of VDB topological indices over F-benzenoids with equal number of edges[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240

    Related Papers:

  • The utilization of molecular structure topological indices is currently a standing operating procedure in the structure-property relations research, especially in QSPR/QSAR study. In the past several year, generous molecular topological indices related to some chemical and physical properties of chemical compounds were put forward. Among these topological indices, the VDB topological indices rely only on the vertex degree of chemical molecular graphs. The VDB topological index of an $ n $-order graph $ G $ is defined as

    $ TI(G) = \sum\limits_{1\leq i\leq j\leq n-1}m_{ij}\psi_{ij}, $

    where $ \{\psi_{ij}\} $ is a set of real numbers, $ m_{ij} $ is the quantity of edges linking an $ i $-vertex and another $ j $-vertex. Numerous famous topological indices are special circumstance of this expression. f-benzenoids are a kind of polycyclic aromatic hydrocarbons, present in large amounts in coal tar. Studying the properties of f-benzenoids via topological indices is a worthy task. In this work the extremum $ TI $ of f-benzenoids with given number of edges were determined. The main idea is to construct f-benzenoids with maximal number of inlets and simultaneously minimal number of hexagons in $ \Gamma_{m} $, where $ \Gamma_{m} $ is the collection of f-benzenoids with exactly $ m $ $ (m\geq19) $ edges. As an application of this result, we give a unified approach of VDB topological indices to predict distinct chemical and physical properties such as the boiling point, $ \pi $-electrom energy, molecular weight and vapour pressure etc. of f-benzenoids with fixed number of edges.



    加载中


    [1] J. Devillers, A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, NewYork, 1999. https://doi.org/10.1021/ci010441h
    [2] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics (2 volumes), Wiley-VCH, Weinheim, Germany, 2009. https://doi.org/10.1002/9783527628766
    [3] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total p–electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
    [4] J. Rada, O. Araujo, I. Gutman, Randić index of benzenoid systems and phenylenes, Croat. Chem. Acta, 74 (2004), 225–235. https://doi.org/10.1111/j.1746-1561.2004.tb07937.x doi: 10.1111/j.1746-1561.2004.tb07937.x
    [5] J. Rada, R. Cruz, I. Gutman, Vertex-degree-based topological indices of catacondensed hexagonal systems, Chem. Phys. Lett., 572 (2013), 154–157. https://doi.org/10.1016/j.amc.2016.10.015 doi: 10.1016/j.amc.2016.10.015
    [6] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1002/qua.560140823 doi: 10.1002/qua.560140823
    [7] D. Vukičević, M. Gašperov, Bond aditive mdelling 1. Ariatic indices, Croat. Chem. Acta, 83 (2010), 243–260.
    [8] I. Gutman, Geometric approach to degree–based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. https://doi.org/10.1016/j.marchem.2007.11.002 doi: 10.1016/j.marchem.2007.11.002
    [9] I. Redžepovi$\mathop c\limits^{` } $, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R
    [10] K. Das, A. Çevik, I. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 1–12. https://doi.org/10.3390/sym13010140 doi: 10.3390/sym13010140
    [11] Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem., 79 (2018), 779–794.
    [12] Z. Wang, Y. Mao, K. Das, Y. Shang, Nordhaus-Gaddum-Type results for the Steiner Gutman index of graphs, Symmetry, 12 (2020), 1–14. https://doi.org/10.3390/sym12101711 doi: 10.3390/sym12101711
    [13] Y. Shang, Sombor index and degree-related properties of simplicial network, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
    [14] R. Cruz, I. Gutman, J. Rada, Convex hexagonal systems and their topological indices, MATCH Commun. Math. Comput. Chem., 68 (2012), 97–108. https://doi.org/10.6060/mhc2012.121104s doi: 10.6060/mhc2012.121104s
    [15] R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex-degree topological indices over hexagonal systems, MATCH Commun. Math. Comput. Chem., 70 (2013), 501–512. https://doi.org/10.1016/j.marchem.2007.11.002 doi: 10.1016/j.marchem.2007.11.002
    [16] H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, Comput. Math. Appl., 61 (2011), 3017–3023. https://doi.org/10.1016/j.camwa.2011.03.089 doi: 10.1016/j.camwa.2011.03.089
    [17] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849–855.
    [18] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem., 48 (2010), 370–380. https://doi.org/10.1007/s10910-010-9677-3 doi: 10.1007/s10910-010-9677-3
    [19] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput., 219 (2013), 8973–8978. https://doi.org/10.1016/j.amc.2013.03.072 doi: 10.1016/j.amc.2013.03.072
    [20] I. Gutman, On discriminativity of vertex degree based indices, Iranian J. Math. Chem., 3 (2012), 95–101. https://doi.org/10.1016/j.marchem.2007.11.002 doi: 10.1016/j.marchem.2007.11.002
    [21] I. Gutman, B. Furtula, Vertex-degree-based molecular structure descriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc., 77 (2012), 1031–1036. https://doi.org/10.2298/JSC111212029G doi: 10.2298/JSC111212029G
    [22] F. Li, X. Li, H. Broersma, Spectral properties of inverse sum indeg index of graphs, J. Math. Chem., 58 (2020), 2108–2139. https://doi.org/10.1007/s10910-020-01170-x doi: 10.1007/s10910-020-01170-x
    [23] F. Li, Q. Ye, H. Broersma, R. Ye, Sharp upper bounds for augmented zagreb index of graphs with fixed parameters, MATCH Commun. Math. Comput. Chem., 85 (2021), 257–274.
    [24] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369–1376. https://doi.org/10.1007/s10910-009-9520-x doi: 10.1007/s10910-009-9520-x
    [25] L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561–566. https://doi.org/10.1016/j.aml.2011.09.059 doi: 10.1016/j.aml.2011.09.059
    [26] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
    [27] I. Gutman, B. Furtula, Recent Results in the Theory of Randić Index, University of Kragujevac, Kragujevac, 2008.
    [28] I. Gutman, B. Furtula, Novel Molecular Structure Descriptors–Theory and Applications I, University of Kragujevac, Kragujevac, 2010. https://doi.org/10.1016/j.amc.2020.125757
    [29] X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors, University of Kragujevac, Kragujevac, 2006.
    [30] E. Clar, Polycyclic Hydrocarbons, Academic press, London, 1964. https://doi.org/10.1007/978-3-662-01665-7
    [31] I. Gutman, Kekulé structures in fluoranthenes, Z. Naturforsch. A, 65 (2010), 473–476. https://doi.org/10.1515/zna-2010-0513 doi: 10.1515/zna-2010-0513
    [32] I. Gutman, J. Durdević, Fluoranthene and its congeners–-A graph theoretical study, MATCH Commun. Math. Comput. Chem., 60 (2008), 659–670. https://doi.org/10.1016/j.marchem.2007.11.002 doi: 10.1016/j.marchem.2007.11.002
    [33] A. Necula, L. T. Scott, High temperature behavior of alternant and nonalternant polycyclic aromatic hydrocarbons, J. Anal. Appl. Pyrol., 54 (2000), 65–87. https://doi.org/10.1016/S0165-2370(99)00085-6 doi: 10.1016/S0165-2370(99)00085-6
    [34] S. J. Cyvin, Graph–theoretical studies on fluoranthenoids and fluorenoids. Part 1, J. Mol. Struct. (Theochem), 262 (1992), 219–231. https://doi.org/10.1016/0166-1280(92)851107 doi: 10.1016/0166-1280(92)851107
    [35] S. J. Cyvin, I. Gutman, Kekulé structures in benzenoid hydrocarbons, in Lecture Notes in Chemistry, Springer-Verlag Berlin (Deutschland), 1988. https://doi.org/10.1007/978-3-662-00892-8
    [36] V. Gineityte, Perturbative analogue for the concept of conjugated circuits in benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem., 72 (2014), 39–73. https://doi.org/10.1016/j.marchem.2007.11.002 doi: 10.1016/j.marchem.2007.11.002
    [37] I. Gutman, S. J. Cyvin, Introduction to the Ttheory of Benzenoid Hydrocarbons, Spriger-Verlag, Berlin, 1990.
    [38] J. Kovic, How to obtain the number of hexagons in a benzenoid system from its boundary edges code, MATCH Commun. Math. Comput. Chem., 72 (2014), 27–38.
    [39] J. Kovic, T. Pisanski, A. T. Balaban, P. W. Fowler, On symmetries of benzenoid systems, MATCH Commun. Math. Comput. Chem., 72 (2014), 3–26.
    [40] F. Li, Q. Ye, Second order Randić index of fluoranthene-type benzenoid systems, Appl. Math. Comput., 268 (2015), 534–546. https://doi.org/10.1016/j.amc.2015.06.056 doi: 10.1016/j.amc.2015.06.056
    [41] F. Li, Q. Ye, The general connectivity indices of fluoranthene-type benzenoid systems, Appl. Math. Comput., 273 (2016), 897–911. https://doi.org/10.1016/j.amc.2015.10.050 doi: 10.1016/j.amc.2015.10.050
    [42] L. Berrocal, A. Olivieri, J. Rada, Extremal values of VDB topological indices over hexagonal systems with fixed number of vertices, Appl. Math. Comput., 243 (2014), 176–183. https://doi.org/10.1016/j.amc.2014.05.112 doi: 10.1016/j.amc.2014.05.112
    [43] I. Gutman, O. Araujo, D. A. Morales, Bounds for the Randić connectivity index, J. Chem. Inf. Comput. Sci., 40 (2000), 572–579. https://doi.org/10.1021/ci990095s doi: 10.1021/ci990095s
    [44] V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of information-theoretic network measures, MATCH Commun. Math. Comput. Chem., 70 (2013), 885–900. https://doi.org/10.1155/2013/593856 doi: 10.1155/2013/593856
    [45] F. Li, Q. Ye, H. Broersma, R. Ye, X. Zhang, Extremality of VDB topological indices over f-benzenoids with given order, Appl. Math. Comput., 393 (2021), 125757. https://doi.org/10.1016/j.amc.2020.125757 doi: 10.1016/j.amc.2020.125757
    [46] F. Li, H. Broserma, J. Rada, Y. Sun, Extremal benzenoid systems for two modified versions of the Randić index, Appl. Math. Comput., 337 (2018), 14–24. https://doi.org/10.1016/j.amc.2018.05.021 doi: 10.1016/j.amc.2018.05.021
    [47] F. Li, Q. Ye, J. Rada, The augmented Zageb indices of fluoranthene-type benzenoid systems, Bull. Malays. Math. Sci. Soc., 42 (2019), 1119–1141. https://doi.org/10.1007/s40840-017-0536-2 doi: 10.1007/s40840-017-0536-2
    [48] X. Li, Y. Shi, L. Zhong, Minimum general Randić index on chemical trees with given order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 60 (2008), 539–554.
    [49] X. Li, Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155–166.
    [50] J. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem., 72 (2014), 709–713.
    [51] J. Rada, Bounds for the Randic index of catacondensed systems, Util. Math., 62 (2002), 155–162.
    [52] J. Rada, Vertex-degree-based topological indices of hexagonal systems with equal number of edges, Appl. Math. Comput., 296 (2017), 270–276. http://dx.doi.org/10.1016/j.amc.2016.10.015 doi: 10.1016/j.amc.2016.10.015
    [53] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertex–degree–based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014), 125–136.
    [54] R. Wu, H. Deng, The general connectivity indices of benzenoid systems and phenylenes, MATCH Commun. Math. Comput. Chem., 64 (2010), 459–470. https://doi.org/10.1166/jctn.2011.1896 doi: 10.1166/jctn.2011.1896
    [55] Q. Ye, F. Li, R. Ye, Extremal values of the general Harmonic index and general sum-connectivity index of f-benzenoids, Polycycl. Aroma. Comp., 42 (2022), 2815–2833. https://doi.org/10.1080/10406638.2020.1852275 doi: 10.1080/10406638.2020.1852275
    [56] S. Hosseini, M. Ahmadi, I. Gutman, Kragujevac trees with minimal atom–bond connectivity index, MATCH Commun. Math. Comput. Chem., 71 (2014), 5–20.
    [57] F. Harary, H. Harborth, Extremal animals, J. Comb. Inf. Syst. Sci., 1 (1976), 1–8.
    [58] S. Ji, X. Li, Y. Shi, The extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 697–706. https://doi.org/10.1109/DCABES.2013.52 doi: 10.1109/DCABES.2013.52
    [59] F. Li, Q. Ye, H. Broersma, Some new bounds for the inverse sum indeg energy of graphs, Axioms, 11 (2022), 243. https://doi.org/10.3390/axioms11050243 doi: 10.3390/axioms11050243
    [60] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4220-2
    [61] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72 (2014), 183–214.
    [62] Q. Ye, F. Li, ISI-equienergetic graphs, Axioms, 11 (2022), 372. https://doi.org/10.3390/axioms11080372 doi: 10.3390/axioms11080372
    [63] M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 321–332.
    [64] K. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 227–238.
    [65] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Comb., 116 (2014), 235–244.
    [66] S. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem., 72 (2014), 215–225.
    [67] M. Azari, A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem., 71 (2014), 373–382.
    [68] S. Cao, M. Dehmer, Y. Shi, Extremality of degree–based graph entropies, Inf. Sci., 278 (2014), 22–33. https://doi.org/10.1016/j.ins.2014.03.133 doi: 10.1016/j.ins.2014.03.133
    [69] Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy bounds for dendrimers, Appl. Math. Comput., 242 (2014), 462–472. https://doi.org/10.1016/j.amc.2014.05.105 doi: 10.1016/j.amc.2014.05.105
    [70] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO–LUMO index of graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 85–96. https://doi.org/10.1155/2013/397382 doi: 10.1155/2013/397382
    [71] Y. Shang, Distance Estrada index of random graphs, Linear Multilinear Algebra, 63 (2015), 466–471. https://doi.org/10.1080/03081087.2013.872640 doi: 10.1080/03081087.2013.872640
    [72] Y. Shang, Further results on distance Estrada index of random graphs, Bull. Malays. Math. Sci. Soc., 41 (2018), 537–544. https://doi.org/10.1007/s40840-016-0306-6 doi: 10.1007/s40840-016-0306-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1734) PDF downloads(85) Cited by(2)

Article outline

Figures and Tables

Figures(19)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog