Research article Special Issues

Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings

  • † These two authors contributed equally to this work
  • Received: 01 April 2024 Revised: 04 June 2024 Accepted: 18 June 2024 Published: 25 June 2024
  • We present a novel multi-modal adaptive feature extraction algorithm considering both time-domain and frequency-domain modalities (AFETF), coupled with a Bidirectional Long Short-Term Memory (Bi-LSTM) network based on the Grey Wolf Optimizer (GWO) for early-stage weak fault diagnosis in bearings. Singular Value Decomposition (SVD) was employed for noise reduction, while Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was utilized for signal decomposition, facilitating further signal processing. AFETF algorithm proposed in this paper was employed to extract weak fault features. The adaptive diagnostic process was further enhanced using Bi-LSTM network optimized with GWO, ensuring objectivity in the hyperparameter optimization. The proposed method was validated for datasets containing weak faults with a 0.2 mm crack and strong faults with a 0.4 mm crack, demonstrating its effectiveness in early-stage fault detection.

    Citation: Zhenzhong Xu, Xu Chen, Linchao Yang, Jiangtao Xu, Shenghan Zhou. Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings[J]. Electronic Research Archive, 2024, 32(6): 4074-4095. doi: 10.3934/era.2024183

    Related Papers:

  • We present a novel multi-modal adaptive feature extraction algorithm considering both time-domain and frequency-domain modalities (AFETF), coupled with a Bidirectional Long Short-Term Memory (Bi-LSTM) network based on the Grey Wolf Optimizer (GWO) for early-stage weak fault diagnosis in bearings. Singular Value Decomposition (SVD) was employed for noise reduction, while Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was utilized for signal decomposition, facilitating further signal processing. AFETF algorithm proposed in this paper was employed to extract weak fault features. The adaptive diagnostic process was further enhanced using Bi-LSTM network optimized with GWO, ensuring objectivity in the hyperparameter optimization. The proposed method was validated for datasets containing weak faults with a 0.2 mm crack and strong faults with a 0.4 mm crack, demonstrating its effectiveness in early-stage fault detection.


    加载中


    [1] F. Jia, Y. G. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process., 72 (2016), 303–315. https://doi.org/10.1016/j.ymssp.2015.10.025 doi: 10.1016/j.ymssp.2015.10.025
    [2] Y. J. Zhou, X. Y. Long, M. W. Sun, Z. Q. Chen, Bearing fault diagnosis based on Gramian angular field and DenseNet, Math. Biosci. Eng., 19 (2022), 14086–14101. https://doi.org/10.3934/mbe.2022656 doi: 10.3934/mbe.2022656
    [3] Z. W. Shang, C. L. Pan, Y. Yu, F. Liu, M. S. Gao, Weak local fault diagnosis of gearboxes based on adaptive inertia factor particle swarm independent component analysis, Insight Nondestr. Test. Cond. Monit., 65 (2023), 415–422. https://doi.org/10.1784/insi.2023.65.8.415 doi: 10.1784/insi.2023.65.8.415
    [4] W. Cui, G. Y. Meng, A. M. Wang, X. E. Zhang, J. Ding, Application of rotating machinery fault diagnosis based on deep learning, Shock Vib., 2021 (2021), 3083190. https://doi.org/10.1155/2021/3083190 doi: 10.1155/2021/3083190
    [5] Y. H. Zhang, T. T. Zhou, X. F. Huang, L. C. Cao, Q. Zhou, Fault diagnosis of rotating machinery based on recurrent neural networks, Measurement, 171 (2021), 108774. https://doi.org/10.1016/j.measurement.2020.108774 doi: 10.1016/j.measurement.2020.108774
    [6] Q. S. Wang, Z. C. Sun, Y. M. Zhu, C. H. Song, D. Li, Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network, Math. Biosci. Eng., 20 (2023), 19963–19982. https://doi.org/10.3934/mbe.2023884 doi: 10.3934/mbe.2023884
    [7] Z. X. Wei, Y. X. Wang, S. L. He, J. D. Bao, A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection, Knowledge-Based Syst., 116 (2017), 1–12. https://doi.org/10.1016/j.knosys.2016.10.022 doi: 10.1016/j.knosys.2016.10.022
    [8] S. Q. Huang, J. D. Zheng, H. Y. Pan, J. Y. Tong, Order-statistic filtering fourier decomposition and its application to rolling bearing fault diagnosis, J. Vib. Control, 28 (2022), 1605–1620. https://doi.org/10.1177/1077546321997598 doi: 10.1177/1077546321997598
    [9] D. C. Zhu, G. Q. Liu, X. Y. Wu, B. L. Yin, An enhanced empirical Fourier decomposition method for bearing fault diagnosis, Struct. Health Monit., 23 (2024), 903–923. https://doi.org/10.1177/14759217231178653 doi: 10.1177/14759217231178653
    [10] W. L. Fu, X. H. Jiang, B. L. Li, C. Tan, B. J. Chen, X. Y. Chen, Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique, Meas. Sci. Technol., 34 (2023), 045005. https://doi.org/10.1088/1361-6501/acabdb doi: 10.1088/1361-6501/acabdb
    [11] Z. J. Xie, D. Yu, C. S. Zhan, Q. C. Zhao, J. X. Wang, J. Q. Liu, et al., Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network, Meas. Control, 56 (2023), 518–528. https://doi.org/10.1177/00202940221107620 doi: 10.1177/00202940221107620
    [12] V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed, Eng. Fail. Anal., 107 (2020), 104204. https://doi.org/10.1016/j.engfailanal.2019.104204 doi: 10.1016/j.engfailanal.2019.104204
    [13] Q. B. Lu, X. Q. Shen, X. J. Wang, M. Li, J. Li, M. Z. Zhang, Fault diagnosis of rolling bearing based on improved VMD and KNN, Math. Probl. Eng., 2021 (2021), 2530315. https://doi.org/10.1155/2021/2530315 doi: 10.1155/2021/2530315
    [14] T. Wu, Fault diagnosis method of rolling bearing based on EMD-Hilbert envelope spectrum and BPNN, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 632 (2021), 052084. https://doi.org/10.1088/1755-1315/632/5/052084
    [15] P. K. Sahu, R. N. Rai, Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method, J. Vib. Eng. Technol., 11 (2023), 513–535. https://doi.org/10.1007/s42417-022-00591-z doi: 10.1007/s42417-022-00591-z
    [16] J. B. Hou, Y. X. Wu, H. Gong, A. S. Ahmad, L. Liu, A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and gg clustering, Appl. Sci., 10 (2020), 386. https://doi.org/10.3390/app10010386 doi: 10.3390/app10010386
    [17] A. Kumar, Y. Berrouche, R. Zimroz, G. Vashishtha, S. Chauhan, C. P. Gandhi, et al., Non-parametric Ensemble Empirical Mode Decomposition for extracting weak features to identify bearing defects, Measurement, 211 (2023), 112615. https://doi.org/10.1016/j.measurement.2023.112615 doi: 10.1016/j.measurement.2023.112615
    [18] F. Z. Liu, J. W. Gao, H. B. Liu, The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN, IEEE Access, 8 (2020), 19810–19819. https://doi.org/10.1109/ACCESS.2020.2968843 doi: 10.1109/ACCESS.2020.2968843
    [19] Y. F. Yang, H. Chen, T. D. Jiang, Nonlinear response prediction of cracked rotor based on EMD, J. Franklin Inst., 352 (2015), 3378–3393. https://doi.org/10.1016/j.jfranklin.2014.12.015 doi: 10.1016/j.jfranklin.2014.12.015
    [20] A. B. Ming, W. Zhang, C. Fu, Y. F. Yang, F. L. Chu, Y. J. Liu, L-kurtosis-based optimal wavelet filtering and its application to fault diagnosis of rolling element bearings, J. Vib. Control, 30 (2024), 1594–1603. https://doi.org/10.1177/10775463231165816 doi: 10.1177/10775463231165816
    [21] J. C. Guo, Q. B. He, D. Zhen, F. S. Gu, A. D. Ball, An iterative morphological difference product wavelet for weak fault feature extraction in rolling bearing fault diagnosis, Struct. Health Monit., 22 (2023), 296–318. https://doi.org/10.1177/14759217221086314 doi: 10.1177/14759217221086314
    [22] S. Q. Zhou, L. P. Lin, C. Chen, W. B. Pan, X. C. Lou, Application of convolutional neural network in motor bearing fault diagnosis, Comput. Intell. Neurosci., 2022 (2022), 923130. https://doi.org/10.1155/2022/9231305 doi: 10.1155/2022/9231305
    [23] S. J. Hao, F. X. Ge, Y. M. Li, J. Y. Jiang, Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks, Measurement, 159 (2020), 107802. https://doi.org/10.1016/j.measurement.2020.107802 doi: 10.1016/j.measurement.2020.107802
    [24] Z. F. Xu, X. Mei, X. Y. Wang, M. N. Yue, J. T. Jin, Y. Yang, et al., Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors, Renewable Energy, 182 (2022), 615–626. https://doi.org/10.1016/j.renene.2021.10.024 doi: 10.1016/j.renene.2021.10.024
    [25] X. C. Li, J. C. Wang, B. Zhang, Fault diagnosis of rolling element bearing weak fault based on sparse decomposition and broad learning network, Trans. Inst. Meas. Control, 42 (2020), 169–179. https://doi.org/10.1177/0142331219864820 doi: 10.1177/0142331219864820
    [26] X. Zhou, H. X. Zhou, G. R. Wen, X. Huang, Z. H. Lei, Z. F. Zhang, et al., A hybrid denoising model using deep learning and sparse representation with application in bearing weak fault diagnosis, Measurement, 189 (2022), 110633. https://doi.org/10.1016/j.measurement.2021.110633 doi: 10.1016/j.measurement.2021.110633
    [27] Z. Z. Jin, D. Q. He, Z. X. Wei, Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN, Eng. Appl. Artif. Intell., 110 (2022), 104713. https://doi.org/10.1016/j.engappai.2022.104713 doi: 10.1016/j.engappai.2022.104713
    [28] B. H. Zhong, M. H. Zhao, S. S. Zhong, L. Lin, Y. J. Zhang, Deep exponential excitation networks: toward stronger attention mechanism for weak fault diagnosis, Struct. Health Monit., 2024. https://doi.org/10.1177/14759217231217936 doi: 10.1177/14759217231217936
    [29] X. Liu, R. Q. Wu, R. G. Wang, F. Zhou, Z. F. Chen, N. H. Guo, Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network, Front. Neurorob., 16 (2022), 1044965. https://doi.org/10.3389/fnbot.2022.1044965 doi: 10.3389/fnbot.2022.1044965
    [30] M. H. Xiao, Y. B. Liao, P. Bartos, M. Filip, G. S. Geng, Z. W. Jiang, Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm, Multimedia Tools Appl., 81 (2022), 1567–1587. https://doi.org/10.1007/s11042-021-11556-x doi: 10.1007/s11042-021-11556-x
    [31] S. Z. Gao, Z. M. Pei, Y. M. Zhang, T. C. Li, Bearing fault diagnosis based on adaptive convolutional neural network with nesterov momentum, IEEE Sens. J., 21 (2021), 9268–9276. https://doi.org/10.1109/JSEN.2021.3050461 doi: 10.1109/JSEN.2021.3050461
    [32] Z. Li, Y. Wang, J. N. Ma, Fault diagnosis of motor bearings based on a convolutional long short-term memory network of bayesian optimization, IEEE Access, 9 (2021), 97546–97556. https://doi.org/10.1109/ACCESS.2021.3093363 doi: 10.1109/ACCESS.2021.3093363
    [33] D. Kalman, A singularly valuable decomposition: The SVD of a matrix, Coll. Math. J., 27 (1996), 2–23. https://doi.org/10.2307/2687269 doi: 10.2307/2687269
    [34] J. F. Huang, L. L. Cui, Tensor singular spectrum decomposition: Multisensor denoising algorithm and application, IEEE Trans. Instrum. Meas., 72 (2023), 1–15. https://doi.org/10.1109/TIM.2023.3249249 doi: 10.1109/TIM.2023.3249249
    [35] H. Li, T. Liu, X. Wu, Q. Chen, A bearing fault diagnosis method based on enhanced singular value decomposition, IEEE Trans. Ind. Inf., 17 (2021), 3220–3230. https://doi.org/10.1109/TⅡ.2020.3001376 doi: 10.1109/TⅡ.2020.3001376
    [36] D. Huang, S. Li, N. Qin, Y. Zhang, Fault diagnosis of high-speed train bogie based on the improved-CEEMDAN and 1-D CNN algorithms, IEEE Trans. Instrum. Meas., 70 (2021), 3508811. https://doi.org/10.1109/TIM.2021.3062104 doi: 10.1109/TIM.2021.3062104
    [37] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [38] T. Han, R. Y. Ma, J. G. Zheng, Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis, Measurement, 176 (2021), 109208. https://doi.org/10.1016/j.measurement.2021.109208 doi: 10.1016/j.measurement.2021.109208
    [39] Y. H. Miao, M. Zhao, J. Lin, Y. G. Lei, Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 92 (2017), 173–195. https://doi.org/10.1016/j.ymssp.2017.01.033 doi: 10.1016/j.ymssp.2017.01.033
    [40] P. K. Kankar, S. C. Sharma, S. P. Harsha, Fault diagnosis of ball bearings using machine learning methods, Expert Syst. Appl., 38 (2011), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119 doi: 10.1016/j.eswa.2010.07.119
    [41] Z. Y. Wang, L. G. Yao, Y. W. Cai, Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine, Measurement, 156 (2020), 107574. https://doi.org/10.1016/j.measurement.2020.107574 doi: 10.1016/j.measurement.2020.107574
    [42] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [43] F. Q. Zou, H. F. Zhang, S. T. Sang, X. M. Li, W. Y. He, X. W. Liu, Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM, Appl. Intell., 51 (2021), 6647–6664. https://doi.org/10.1007/s10489-021-02229-1 doi: 10.1007/s10489-021-02229-1
    [44] M. E. Torres, M. A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague Congress Ctr, Prague, (2011), 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(693) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(19)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog