Research article

On a conjecture concerning the exponential Diophantine equation $ (an^{2}+1)^{x}+(bn^{2}-1)^{y} = (cn)^{z} $

  • Received: 16 April 2024 Revised: 14 June 2024 Accepted: 20 June 2024 Published: 26 June 2024
  • Let $ a $, $ b $, $ c $, and $ n $ be positive integers such that $ a+b = c^{2} $, $ 2\nmid c $ and $ n > 1 $. In this paper, we prove that if $ \gcd(c, n) = 1 $ and $ n\geq 117.14c $, then the equation $ (an^{2}+1)^{x}+(bn^{2}-1)^{y} = (cn)^{z} $ has only the positive integer solution $ (x, y, z) = (1, 1, 2) $ under the assumption $ \gcd(an^{2}+1, bn^{2}-1) = 1 $. Thus, we affirm that the conjecture proposed by Fujita and Le is true in this case. Moreover, combining the above result with some existing results and a computer search, we show that, for any positive integer $ n $, if $ (a, b, c) = (12, 13, 5) $, $ (18, 7, 5) $, or $ (44, 5, 7) $, then this equation has only the solution $ (x, y, z) = (1, 1, 2) $. This result extends the theorem of Terai and Hibino gotten in 2015, that of Alan obtained in 2018, and Hasanalizade's theorem attained recently.

    Citation: Shuanglin Fei, Guangyan Zhu, Rongjun Wu. On a conjecture concerning the exponential Diophantine equation $ (an^{2}+1)^{x}+(bn^{2}-1)^{y} = (cn)^{z} $[J]. Electronic Research Archive, 2024, 32(6): 4096-4107. doi: 10.3934/era.2024184

    Related Papers:

  • Let $ a $, $ b $, $ c $, and $ n $ be positive integers such that $ a+b = c^{2} $, $ 2\nmid c $ and $ n > 1 $. In this paper, we prove that if $ \gcd(c, n) = 1 $ and $ n\geq 117.14c $, then the equation $ (an^{2}+1)^{x}+(bn^{2}-1)^{y} = (cn)^{z} $ has only the positive integer solution $ (x, y, z) = (1, 1, 2) $ under the assumption $ \gcd(an^{2}+1, bn^{2}-1) = 1 $. Thus, we affirm that the conjecture proposed by Fujita and Le is true in this case. Moreover, combining the above result with some existing results and a computer search, we show that, for any positive integer $ n $, if $ (a, b, c) = (12, 13, 5) $, $ (18, 7, 5) $, or $ (44, 5, 7) $, then this equation has only the solution $ (x, y, z) = (1, 1, 2) $. This result extends the theorem of Terai and Hibino gotten in 2015, that of Alan obtained in 2018, and Hasanalizade's theorem attained recently.


    加载中


    [1] Y. Fujita, M. H. Le, A parametric family of ternary purely exponential Diophantine equation $A^{x}+B^{y} = C^{z}$, Turk. J. Math., 46 (2022), 1224–1232. https://doi.org/10.55730/1300-0098.3153 doi: 10.55730/1300-0098.3153
    [2] N. Terai, Y. Shinsh, On the exponential Diophantine equation $(3m^{2}+1)^{x}+(qm^{2}-1)^{y} = (rm)^{z}$, SUT J. Math., 56 (2020), 147–158. https://doi.org/10.55937/sut/1611009430 doi: 10.55937/sut/1611009430
    [3] N. Terai, On the exponential Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Int. J. Algebra, 6 (2012), 1135–1146.
    [4] Y. Bugeaud, T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math., 539 (2001), 55–74. https://doi.org/10.1515/crll.2001.079 doi: 10.1515/crll.2001.079
    [5] M. H. Le, Some exponential Diophantine equations I: The equation $D_{1}x^{2}-D_{2}y^{2} = \lambda k^{z}$, J. Number Theory, 55 (1995), 209–221. https://doi.org/10.1006/jnth.1995.1138 doi: 10.1006/jnth.1995.1138
    [6] Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math., 539 (2001), 75–122. https://doi.org/10.1515/crll.2001.080 doi: 10.1515/crll.2001.080
    [7] J. L. Su, X. X. Li, The Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Abstr. Appl. Anal., 2014 (2014), 670175. https://doi.org/10.1155/2014/670175 doi: 10.1155/2014/670175
    [8] C. Bertók, The complete solution of Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Period. Math. Hung., 72 (2016), 37–42. https://doi.org/10.1007/s10998-016-0111-x doi: 10.1007/s10998-016-0111-x
    [9] C. Bertók, L. Hajdu, A Hasse-type principle for exponential Diophantine equations and its applications, Math. Comp., 85 (2016), 849–860. http://doi.org/10.1090/mcom/3002 doi: 10.1090/mcom/3002
    [10] T. Miyazaki, N. Terai, On the exponential Diophantine equation $(m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Bull. Aust. Math. Soc., 90 (2014), 9–19. https://doi.org/10.1017/S0004972713000956 doi: 10.1017/S0004972713000956
    [11] X. W. Pan, A note on the exponential Diophantine equation $(am^{2}+1)^{x}+(bm^{2}-1)^{y} = (cm)^{z}$, Colloq. Math., 149 (2017), 265–273. https://doi.org/10.4064/cm6878-10-2016 doi: 10.4064/cm6878-10-2016
    [12] R. Q. Fu, H. Yang, On the exponential Diophantine equation $(am^{2}+1)^{x}+(bm^{2}-1)^{y} = (cm)^{z}$ with $c\mid m$, Period. Math. Hung., 75 (2017), 143–149. https://doi.org/10.1007/s10998-016-0170-z doi: 10.1007/s10998-016-0170-z
    [13] E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c+1)m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Turk. J. Math., 42 (2018), 2690–2698. https://doi.org/10.3906/mat-1803-14 doi: 10.3906/mat-1803-14
    [14] Y. Bugeaud, Linear forms in two $m$-adic logarithms and applications to Diophantine problems, Compos. Math., 132 (2002), 137–158. https://doi.org/10.1023/A:1015825809661 doi: 10.1023/A:1015825809661
    [15] N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^{2}+1)^{x}+(13m^{2}-1)^{y} = (5m)^{z}$, Int. J. Algebra, 9 (2015), 261–272. http://doi.org/10.12988/ija.2015.5529
    [16] M. Alan, On the exponential Diophantine equation $(18m^{2}+1)^{x}+(7m^{2}-1)^{y} = (5m)^{z}$, Turk. J. Math., 42 (2018), 1990–1999. https://doi.org/10.3906/mat-1801-76 doi: 10.3906/mat-1801-76
    [17] E. Hasanalizade, A note on the exponential Diophantine equation $(44m^{2}+1)^{x}+(5m^{2}-1)^{y} = (7m)^{z}$, Integers, 23 (2023), 1–12. https://doi.org/10.5281/zenodo.8399672 doi: 10.5281/zenodo.8399672
    [18] N. Terai, T. Hibino, On the exponential Diophantine equation $(3pm^{2}-1)^{x}+(p(p-3)m^{2}+1)^{y} = (pm)^{z}$, Period. Math. Hung., 74 (2017), 227–234. https://doi.org/10.1007/s10998-016-0162-z doi: 10.1007/s10998-016-0162-z
    [19] Y. F. Bilu, Y. Bugeaud, M. Mignotte, The Problem of Catalan, Springer-Verlag, New York, 2014. https://doi.org/10.1007/978-3-319-10094-4
    [20] M. Alan, On the exponential Diophantine equation $(m^{2}+m+1)^{x}+m^{y} = (m+1)^{z}$, Mediterr. J. Math., 17 (2020). https://doi.org/10.1007/s00009-020-01613-4
    [21] M. A. Bennett, Y. Bugeaud, Perfect powers with three digits, Mathematika, 60 (2014), 66–84. https://doi.org/10.1112/S0025579313000107 doi: 10.1112/S0025579313000107
    [22] M. A. Bennett, Y. Bugeaud, M. Mignotte, Perfect powers with few binary digits and related Diophantine problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., XII (2013), 941–953. https://doi.org/10.2422/2036-2145.201110_006 doi: 10.2422/2036-2145.201110_006
    [23] Y. Bugeaud, T. N. Shorey, On the Diophantine equation $\frac{x^{m}-1}{x-1} = \frac{y^{m}-1}{y-1}$, Pacific J. Math., 207 (2002), 61–75. http://doi.org/10.2140/pjm.2002.207.61 doi: 10.2140/pjm.2002.207.61
    [24] T. Miyazaki, M. Sudo, N. Terai, A purely exponential Diophantine equation in three unknowns, Period. Math. Hung., 84 (2022), 287–298. https://doi.org/10.1007/s10998-021-00405-x doi: 10.1007/s10998-021-00405-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(497) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog