Citation: Yuzhi Zhao, Honghui Zhang, Zilu Cao. The important role of astrocytes in activity pattern transition of the subthalamopallidal network related to Parkinson's disease[J]. Electronic Research Archive, 2024, 32(6): 4108-4128. doi: 10.3934/era.2024185
[1] |
S. Mullin, A. H. V. Schapira, Pathogenic mechanisms of neurodegeneration in Parkinson disease, Neurol. Clin., 33 (2015), 1–17. https://doi.org/10.1016/j.ncl.2014.09.010 doi: 10.1016/j.ncl.2014.09.010
![]() |
[2] |
A. Galvan, A. Devergnas, T. Wichmann, Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state, Front. Neuroanat., 9 (2015), 5. https://doi.org/10.3389/fnana.2015.00005 doi: 10.3389/fnana.2015.00005
![]() |
[3] |
P. Silberstein, A. KuÈhn, A. Kupsch, T. Trottenberg, J. Krauss, J. WoÈhrle, et al., Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia, Brain, 126 (2003), 2597–2608. https://doi.org/10.1093/brain/awg267 doi: 10.1093/brain/awg267
![]() |
[4] |
S. Kim, E. Pajarillo, I. Nyarko-Danquah, M. Aschner, E. Lee, Role of astrocytes in Parkinson's disease associated with genetic mutations and neurotoxicants, Cells, 12 (2023), 622. https://doi.org/10.3390/cells12040622 doi: 10.3390/cells12040622
![]() |
[5] |
L. Iovino, M. E. Tremblay, L. Civiero, Glutamate-induced excitotoxicity in Parkinson's disease: the role of glial cells, J. Pharmacol. Sci., 144 (2020), 151–164. https://doi.org/10.1016/j.jphs.2020.07.011 doi: 10.1016/j.jphs.2020.07.011
![]() |
[6] |
H. Kwon, S. Koh, Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes, Transl. Neurodegener., 9 (2020), 42. https://doi.org/10.1186/s40035-020-00221-2 doi: 10.1186/s40035-020-00221-2
![]() |
[7] |
H. D. E. Booth, W. D. Hirst, R. Wade-Martins, The role of astrocyte dysfunction in Parkinson's disease pathogenesis, Trends Neurosci., 40 (2017), 358–370. https://doi.org/10.1016/j.tins.2017.04.001 doi: 10.1016/j.tins.2017.04.001
![]() |
[8] |
W. Chung, N. J. Allen, C. Eroglu, Astrocytes control synapse formation, function, and elimination, Cold Spring Harbor Perspect. Biol., 7 (2015), a020370. https://doi.org/10.1101/cshperspect.a020370 doi: 10.1101/cshperspect.a020370
![]() |
[9] |
I. Miyazaki, M. Asanuma, Neuron-astrocyte interactions in Parkinson's disease, Cells, 9 (2020), 2623. https://doi.org/10.3390/cells9122623 doi: 10.3390/cells9122623
![]() |
[10] |
N. Mallet, L. Delgado, M. Chazalon, C. Miguelez, J. Baufreton, Cellular and synaptic dysfunctions in Parkinson's disease: stepping out of the striatum, Cells, 8 (2019), 1005. https://doi.org/10.3390/cells8091005 doi: 10.3390/cells8091005
![]() |
[11] |
J. Giehrl-Schwab, F. Giesert, B. Rauser, C. L. Lao, S. Hembach, S. Lefort, et al., Parkinson's disease motor symptoms rescue by CRISPRa-reprogramming astrocytes into GABAergic neurons, EMBO Mol. Med., 14 (2022), e14797. https://doi.org/10.15252/emmm.202114797 doi: 10.15252/emmm.202114797
![]() |
[12] |
K. Chen, H. Wang, I. Ilyas, A. Mahmood, L. Hou, Microglia and astrocytes dysfunction and key neuroinflammation-based biomarkers in Parkinson's disease, Brain Sci., 13 (2023), 634. https://doi.org/10.3390/brainsci13040634 doi: 10.3390/brainsci13040634
![]() |
[13] |
A. N. Brandebura, A. Paumier, T. S. Onur, N. J. Allen, Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders, Nat. Rev. Neurosci., 24 (2023), 23–39. https://doi.org/10.1038/s41583-022-00641-1 doi: 10.1038/s41583-022-00641-1
![]() |
[14] |
V. Volman, M. Bazhenov, T. J. Sejnowski, Computational models of neuron-astrocyte interaction in epilepsy, Front. Comput. Neurosci., 6 (2012), 58. https://doi.org/10.3389/fncom.2012.00058 doi: 10.3389/fncom.2012.00058
![]() |
[15] |
J. Tang, J. Zhang, J. Ma, G. Zhang, X. Yang, Astrocyte calcium wave induces seizure-like behavior in neuron network, Sci. China Technol. Sci., 60 (2017), 1011–1018. https://doi.org/10.1007/s11431-016-0293-9 doi: 10.1007/s11431-016-0293-9
![]() |
[16] |
D. A. Iacobas, S. O. Suadicani, D. C. Spray, E. Scemes, A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia, Biophys. J., 90 (2006), 24–41. https://doi.org/10.1529/biophysj.105.064378 doi: 10.1529/biophysj.105.064378
![]() |
[17] |
A. N. Silchenko, P. A. Tass, Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes, Biol. Cybern., 98 (2008), 61–74. https://doi.org/10.1007/s00422-007-0196-7 doi: 10.1007/s00422-007-0196-7
![]() |
[18] |
D. Reato, M. Cammarota, L. C. Parra, G. Carmignoto, Computational model of neuron-astrocyte interactions during focal seizure generation, Front. Comput. Neurosci., 6 (2012), 81. https://doi.org/10.3389/fncom.2012.00081 doi: 10.3389/fncom.2012.00081
![]() |
[19] |
D. Terman, J. E. Rubin, A. C. Yew, C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22 (2002), 2963–2976. https://doi.org/10.1523/JNEUROSCI.22-07-02963.2002 doi: 10.1523/JNEUROSCI.22-07-02963.2002
![]() |
[20] |
J. E. Rubin, D. Terman, High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model, J. Comput. Neurosci., 16 (2004), 211–235. https://doi.org/10.1023/B:JCNS.0000025686.47117.67 doi: 10.1023/B:JCNS.0000025686.47117.67
![]() |
[21] |
J. Best, C. Park, D. Terman, C. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks, J. Comput. Neurosci., 23 (2007), 217–235. https://doi.org/10.1007/s10827-007-0029-7 doi: 10.1007/s10827-007-0029-7
![]() |
[22] |
V. Volman, E. Ben-Jacob, H. Levine, The astrocyte as a gatekeeper of synaptic information transfer, Neural Comput., 19 (2007), 303–326. https://doi.org/10.1162/neco.2007.19.2.303 doi: 10.1162/neco.2007.19.2.303
![]() |
[23] |
Z. Ouyang, Y. Yu, Z. Liu, P. Feng, Transition of spatiotemporal patterns in neuron–astrocyte networks, Chaos, Solitons Fractals, 169 (2023), 113222. https://doi.org/10.1016/j.chaos.2023.113222 doi: 10.1016/j.chaos.2023.113222
![]() |
[24] |
J. Zhao, D. Fan, Q. Wang, Q. Wang, Dynamical transitions of the coupled class Ⅰ (Ⅱ) neurons regulated by an astrocyte, Nonlinear Dyn., 103 (2021), 913–924. https://doi.org/10.1007/s11071-020-06122-3 doi: 10.1007/s11071-020-06122-3
![]() |
[25] |
M. Amiri, F. Bahrami, M. Janahmadi, Functional contributions of astrocytes in synchronization of a neuronal network model, J. Theor. Biol., 292 (2012), 60–70. https://doi.org/10.1016/j.jtbi.2011.09.013 doi: 10.1016/j.jtbi.2011.09.013
![]() |
[26] |
M. Amiri, N. Hosseinmardi, F. Bahrami, M. Janahmadi, Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments, J. Comput. Neurosci., 34 (2013), 489–504. https://doi.org/10.1007/s10827-012-0432-6 doi: 10.1007/s10827-012-0432-6
![]() |
[27] |
J. J. Wade, L. J. McDaid, J. Harkin, V. Crunelli, J. A. S. Kelso, Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach, PLOS One, 6 (2011), e29445. https://doi.org/10.1371/journal.pone.0029445 doi: 10.1371/journal.pone.0029445
![]() |
[28] |
D. Fan, Q. Wang, Improving desynchronization of parkinsonian neuronal network via triplet-structure coordinated reset stimulation, J. Theor. Biol., 370 (2015), 157–170. https://doi.org/10.1016/j.jtbi.2015.01.040 doi: 10.1016/j.jtbi.2015.01.040
![]() |
[29] |
H. Zhang, Y. Yu, Z. Deng, Q. Wang, Activity pattern analysis of the subthalamopallidal network under ChannelRhodopsin-2 and Halorhodopsin photocurrent control, Chaos, Solitons Fractals, 138 (2020), 109963. https://doi.org/10.1016/j.chaos.2020.109963 doi: 10.1016/j.chaos.2020.109963
![]() |
[30] |
Z. Cao, L. Du, H. Zhang, Y. Zhao, Z. Shen, Z. Deng, Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect, Chin. Phys. B, 31 (2022), 118701. https://doi.org/10.1088/1674-1056/ac80ae doi: 10.1088/1674-1056/ac80ae
![]() |
[31] |
H. Zhang, J. Su, Q. Wang, Y. Liu, L. Good, J. M. Pascual, Predicting seizure by modeling synaptic plasticity based on EEG signals-a case study of inherited epilepsy, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 330–343. https://doi.org/10.1016/j.cnsns.2017.08.020 doi: 10.1016/j.cnsns.2017.08.020
![]() |