Citation: Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan. Fractional order SIR model with generalized incidence rate[J]. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
[1] | S. Ullah, M. A. Khan, J. F. Gez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Contr. Appl. Meth., 40 (2019), 529-544. doi: 10.1002/oca.2493 |
[2] | E. Bonyah, M. A. Khan, K. O. Okosun, et al. A theoretical model for Zika virus transmission, PLoS ONE, 12 (2017), 1-26. |
[3] | S. Ullah, M. A. Khan, M. Farooq, et al. Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan, Math. Comput. Simulat., 165 (2019), 181-199. doi: 10.1016/j.matcom.2019.03.012 |
[4] | D. P. Ahokpossi, A. Atangana and D. P. Vermeulen, Modelling groundwater fractal flow with fractional differentiation via Mittag effler law, Eur. Phy. J. Plus, 132 (2017), 165. |
[5] | M. A. Khan, Y. Khan and S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, Phy. A., 493 (2018), 210-227. doi: 10.1016/j.physa.2017.10.038 |
[6] | M. Caputo and M. Fabricio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[7] | A. Atangana and D. Baleanu, New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[8] | M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Math., 4 (2019), 134-146. doi: 10.3934/Math.2019.1.134 |
[9] | S. Ullah, M. A. Khan, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos, Solitons and Fractals, 116 (2018), 227-238. doi: 10.1016/j.chaos.2018.09.039 |
[10] | S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu, Chaos, Solitons and Fractals, 122 (2019), 111-118. doi: 10.1016/j.chaos.2019.03.020 |
[11] | S. Qureshi, E. Bonyah, A. A. Shaikh, Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data, Phy. A, 535 (2019), 1-22. |
[12] | Z. Wang, Y. K. Xie, J. Lu, et al. Stability and bifurcation of a delayed generalized fractional-order prey redator model with interspecific competition, Appl. Math. Comput., 347 (2019), 360-369. |
[13] | X. Wang, Z. Wang, X. Huang, et al. Dynamic Analysis of a Delayed Fractional-Order SIR Model with Saturated Incidence and Treatment Functions, Int. J. Bifurcat. Chaos, 28 (2018), 1850180. |
[14] | X. Wang, Z. Wang, H. Shen, Dynamical analysis of a discrete-time SIS epidemic model on complex networks, Appl. Math. Lett., 94 (2019), 292-299. doi: 10.1016/j.aml.2019.03.011 |
[15] | X. Wang, Z. Wang, J. Xia, Stability and bifurcation control of a delayed fractional-order ecoepidemiological model with incommensurate orders, J. Franklin I., 356 (2019), 8278-8295. doi: 10.1016/j.jfranklin.2019.07.028 |
[16] | M. A. Khan, K. Shah, Y. Khan, et al. Mathematical modeling approach to the transmission dynamics of pine wilt disease with saturated incidence rate, Int. J. Biomath., 11 (2018), 1850035. |
[17] | F. Rao, P. S. Mandal and Y. Kang, Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls, App. Math. Mod., 67 (2019), 38-61. doi: 10.1016/j.apm.2018.10.016 |
[18] | M. A. Khan, M. Farhan, S. Islam, et al. Modeling the transmission dynamics of avian influenza with saturation and psychological effect, Discrete and Continuous Dynamical Systems-S, 12 (2019), 455-474. doi: 10.3934/dcdss.2019030 |
[19] | W. O. Kermack, A. G. MCKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118 |
[20] | V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 41-61. |
[21] | A. Korobeinikov and P. K Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57 |
[22] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1999. |
[23] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, 1993. |
[24] | H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433-2439. doi: 10.1007/s11071-011-0157-5 |
[25] | C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013 |
[26] | J. Li, Y. Yang, Y. Xiao, et al. A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput., 6 (2016), 38-46. |
[27] | J. J. Wang, J. Z. Zhang and Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonlinear Analysis: Real World Applications, 11 (2010), 2390-2402. doi: 10.1016/j.nonrwa.2009.07.012 |
[28] | M. A. Khan, Q. Badshah, S. Islam, et al. Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination, Adv. Diff. Equ., 2015 (2015), 88. |
[29] | M. A. Khan, Y. Khan and S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, Phy. A., 493 (2018), 210-227. doi: 10.1016/j.physa.2017.10.038 |
[30] | X. Liu and L. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Analysis: Real World Applications, 13 (2012), 2671-2679. doi: 10.1016/j.nonrwa.2012.03.010 |
[31] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, The Journal of Animal Ecology, (1975), 331-341. |
[32] | D. L. DeAngelis, R. A. Goldstein and R. V. Oeill, A model for tropic interaction, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298 |
[33] | K. Hattaf, M. Mahrouf, J. Adnani, et al. Qualitative analysis of a stochastic epidemic model with specific functional response cand temporary immunity, Phys. A, 490 (2018), 591-600. doi: 10.1016/j.physa.2017.08.043 |
[34] | Z. M. Odibat and N. T. Shawagfeh, Generalized taylor's formula, Appl. Math. Comput., 186 (2007), 286-293. |
[35] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appli., 332 (2007), 709-726. doi: 10.1016/j.jmaa.2006.10.040 |
[36] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. |