Research article

Determinantal and permanental representations of convolved (u, v)-Lucas first kind p-polynomials

  • Received: 01 December 2019 Accepted: 07 February 2020 Published: 18 February 2020
  • MSC : 11B37, 11B39, 15A15

  • The convolved (u, v)-Lucas first kind p-polynomials are defined using the generating function of the (u, v)-Lucas first kind p-polynomials. The determinantal and permanental representations of the convolved (u, v)-Lucas first kind p-polynomials are used to derive some identities of these polynomials.

    Citation: Adikanda Behera, Prasanta Kumar Ray. Determinantal and permanental representations of convolved (u, v)-Lucas first kind p-polynomials[J]. AIMS Mathematics, 2020, 5(3): 1843-1855. doi: 10.3934/math.2020123

    Related Papers:

  • The convolved (u, v)-Lucas first kind p-polynomials are defined using the generating function of the (u, v)-Lucas first kind p-polynomials. The determinantal and permanental representations of the convolved (u, v)-Lucas first kind p-polynomials are used to derive some identities of these polynomials.


    加载中


    [1] N. D. Cahill, J. R. D'Errico, D. A. Narayan, Fibonacci determinants, College Math. J., 33 (2002), 221-225. doi: 10.1080/07468342.2002.11921945
    [2] Y. H. Chen, C. Y. Yu, A new algorithm for computing the inverse and the determinant of a Hessenberg matrix, Appl. Math. Comput., 218 (2011), 4433-4436.
    [3] P. Moree, Convoluted convolved Fibonacci numbers, J. Integer Seq., 7 (2004), 1-14.
    [4] A. A. Öcal, N. Tuglu, E. Altinişik, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput., 170 (2005), 584-596.
    [5] J. L. Ramírez, Some properties of convolved k-Fibonacci numbers, ISRN Combinatorics., 2013 (2013), 1-6.
    [6] A. Şahin, J. L. Ramírez, Determinantal and permanental representations of convolved Lucas polynomials, Appl. Math. Comput., 281 (2016), 314-322.
    [7] X. Ye, Z. Zhang, A common generalization of convolved generalized Fibonacci and Lucas polynomials and its applications, Appl. Math. Comput., 306 (2017), 31-37.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3180) PDF downloads(311) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog