Citation: Vanita Sharma, Satish Kumar. Caliberating length scale parameter and micropolarity on transference of Love-type waves in composite of CoFe2O4 and Aluminium-Epoxy laden with Newtonian liquid[J]. AIMS Mathematics, 2020, 5(3): 1820-1842. doi: 10.3934/math.2020122
[1] | Z. Chu, M. J. PourhosseiniAsl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications, J. Phys. D: Appl. Phys., 51 (2018), 243001. |
[2] | W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing, J. Phys. D: Appl. Phys., 50 (2017), 223001. |
[3] | V. I. Alshits, A. N. Darinskii, J. Lothe, On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties, Wave Motion, 16 (1992), 265-283. doi: 10.1016/0165-2125(92)90033-X |
[4] | W. Wei, J. Liu, D. Fang, Shear horizontal surface waves in a piezoelectric-piezomagnetic coupled layered half-space, Int. J. Nonlinear Sci., 10 (2009), 767-778. |
[5] | G. Nie, J. Liu, X. Fang, Shear horizontal waves propagating in piezoelectric-piezomagnetic bilayer system with an imperfect interface, Acta Mechanica, 223 (2012), 1999-2009. doi: 10.1007/s00707-012-0680-6 |
[6] | L. Liu, J. Zhao, Y. Pan, Theoretical study of SH-wave propagation in periodically layered piezomagnetic structure, Int. J. Mech. Sci., 85 (2014), 45-54. doi: 10.1016/j.ijmecsci.2014.04.028 |
[7] | R. Hashemi, Scattering of shear waves by a two-phase multiferroic sensor embedded in a piezoelectric/piezomagnetic medium, Smart Mater. Struct., 26 (2017), 035016. |
[8] | S. A. Sahu, S. Mondal, N. Dewangan, Polarized shear waves in functionally graded piezoelectric material layer sandwiched between corrugated piezomagnetic layer and elastic substrate, J. Sandw. Struct. Mater., 21 (2019), 2921-2948. doi: 10.1177/1099636217726330 |
[9] | S. A. Sahu, J. Baroi, Analysis of surface wave behavior in corrugated piezomagnetic layer resting on inhomogeneous half-space, Mech. Adv. Mater. Struc., 26 (2019), 639-650. doi: 10.1080/15376494.2017.1410905 |
[10] | S. Goyal, S. A. Sahu, S. Mondal, Modelling of Love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm-Liouville problem, Smart Mater. Struct., 28 (2019), 057001. |
[11] | A. Ray, A. K. Singh, R. Kumari, Green's function technique to model Love type wave propagation due to an impulsive point source in a piezomagnetic layered structure, Mech. adv. mater. struc., (2019), 1-12. |
[12] | Y. Pang, J. X. Liu, Y. S. Wang, Propagation of Rayleigh type surface waves in a transversely isotropic piezoelectric layer on a piezomagnetic half-space, J. Appl. Phys., 103 (2008), 074901. |
[13] | Y. Pang, J. X. Liu, Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media, Eur. J. Mech. A/Solids, 30 (2011), 731-740. doi: 10.1016/j.euromechsol.2011.03.008 |
[14] | Y. Pang, Y. S. Liu, J. X. Liu, Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure, Ultrasonics, 67 (2016), 120-128. doi: 10.1016/j.ultras.2016.01.007 |
[15] | Y. Pang, W. Feng, J. Liu, SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface, Wav. Random Complex, 29 (2019), 580-594. doi: 10.1080/17455030.2018.1539277 |
[16] | S. S. Singh, Love wave at a layer medium bounded by irregular boundary surfaces, J. Vib. Control, 17 (2011), 789-795. doi: 10.1177/1077546309351301 |
[17] | M. Li, Y. Kong, J. Liu, Study on the propagation characteristics of SH wave in piezomagnetic piezoeletric structures, Mater. Res. Express, 6 (2019), 105707. |
[18] | W. Voigt, Theoretical Studies on the Elasticity Relationships of Crystals, Abhandlungen der Gesellschaft der Wissenschaften zu Gttingen, 34 (1887). |
[19] | E. Cosserat, F. Cosserat, Theory of Deformable Bodies (in French) A Hermann et Fils, Paris, 1909. |
[20] | A. C. Eringen, Linear theory of micropolar elasticity, J Math Mech., 15 (1966), 909-923. |
[21] | Z. Asghar, N. Ali, O. A. Beg, Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition, Results Phys., 9 (2018), 682-691. doi: 10.1016/j.rinp.2018.02.070 |
[22] | Z. Asghar, N. Ali, A mathematical model of the locomotion of bacteria near an inclined solid substrate: effects of different waveforms and rheological properties of couple stress slime. Can. J. Phys., 97 (2019), 537-547. |
[23] | K. Javid, N. Ali, Z. Asghar, Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles, J. Braz. Soc. Mech. Sci. and Eng., 41 (2019), 483. |
[24] | Z. Asghar, N. Ali, M. Sajid, Magnetic microswimmers propelling through biorheological liquid bounded within an active channel, J. Magn. Magn. Mater., 486 (2019), 165283. |
[25] | R. D. Gauthier, Experimental investigation on micropolar media, Mech Micropolar Media World Science Singapore, (1982), 395-463. |
[26] | G. K. Midya, On Love-type surface waves in homogeneous micropolar elastic media, Int. J. Eng. Sci., 42 (2004), 1275-1288. doi: 10.1016/j.ijengsci.2004.03.002 |
[27] | V. A. Eremeyev, A. Skrzat, A. Vinakurava Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction, Strength Mater+., 48 (2016), 573-582. |
[28] | T. Kaur, S. K. Sharma, A. K. Singh, Influence of imperfectly bonded micropolar elastic half-space with non-homogeneous viscoelastic layer on propagation behavior of shear wave, Wav. Random Complex, 26 (2016), 650-670. doi: 10.1080/17455030.2016.1185191 |
[29] | H. Ezzin, M. B. Amor, M. H. B. Ghozlen, Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space, Ultrasonics, 69 (2016), 83-89. doi: 10.1016/j.ultras.2016.03.006 |
[30] | H. Ezzin, M. B. Amor, M. H. B. Ghozlen, Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates, Acta Mechanica, 228 (2017), 1071-1081. doi: 10.1007/s00707-016-1744-9 |
[31] | A. Khurana, S. K. Tomar, Rayleigh-type waves in nonlocal micropolar solid half-space, Ultrasonics, 73 (2017), 162-168. doi: 10.1016/j.ultras.2016.09.005 |
[32] | S. Kundu, A. Kumari, D. K. Pandit, Love wave propagation in heterogeneous micropolar media, Mech. Res. Commun., 83 (2017), 6-11. |
[33] | R. Goyal, S. Kumar, V. Sharma, A size dependent micropolar-piezoelectric layered structure for the analysis of love wave, Wav. Random Complex, (2018), 1-18. |
[34] | Z. Asghar, N. Ali, M. Waqas, M. A. Javed, An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel, Comput. Math. Appl., in press. |
[35] | B. Jakoby, M. J. Vellekoop, Properties of Love waves: applications in sensors, Smart Mater. Struct., 6 (1997), 668-679. doi: 10.1088/0964-1726/6/6/003 |
[36] | M. J. Vellekoop, Acoustic wave sensors and their technology, Ultrasonics, 36 (1998), 7-14. doi: 10.1016/S0041-624X(97)00146-7 |
[37] | W. Wang, H. Oh, K. Lee, S. Yang, Enhanced sensitivity of wireless chemical sensor based on Love wave mode, Jpn. J. Appl. Phys., 47 (2008), 7372-7379. doi: 10.1143/JJAP.47.7372 |
[38] | C. Zhang, J. J. Caron, J. F. Vetelino, The Bleustein-Gulyaev wave for liquid sensing applications, Sensors and Actuators B: Chemical, 76 (2001), 64-68. |
[39] | A. Vikstrom, M. V. Voinova, Soft film dynamics of SH-SAW sensors in viscous and viscoelastic fluids, Sens. Biosensing Res., 11 (2016), 78-85. doi: 10.1016/j.sbsr.2016.08.004 |
[40] | Z. Asghar, N. Ali, M. Sajid, Interaction of gliding motion of bacteria with rheological properties of the slime, Math. Biosci., 290 (2017), 31-40. doi: 10.1016/j.mbs.2017.05.009 |
[41] | Z. Asghar, N. Ali, M. Sajid, Mechanical effects of complex rheological liquid on a microorganism propelling through a rigid cervical canal: swimming at low Reynolds number, J. Braz. Soc. Mech. Sci. and Eng., 40 (2018), 1-16. doi: 10.1007/s40430-017-0921-7 |
[42] | Z. Asghar, N. Ali, R. Ahmed, M. Waqas, W. A. Khan, A mathematical framework for peristaltic flow analysis of non-newtonian sisko fluid in an undulating porous curved channel with heat and mass transfer effects, Comput. Meth. Prog. Bio., (2019), 105040. |
[43] | B. D. Zaitsev, I. E. Kuznetsova, S. G. Joshi, Acoustic waves in piezoelectric plates bordered with viscous and conductive liquid, Ultrasonics, 39 (2001), 45-50. doi: 10.1016/S0041-624X(00)00040-8 |
[44] | J. Du, K. Xian, J. Wang, Y. K. Yong, Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid, A. Mech. Solida Sin., 21 (2008), 542-558. doi: 10.1007/s10338-008-0865-7 |
[45] | J. Du, K. Xian, Y. K. Yong, J. Wang, SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid, Acta Mechanica, 212 (2010), 271-281. doi: 10.1007/s00707-009-0258-0 |
[46] | F. L. Guo, R. Sun, Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid, Int. J. Solids and Struct., 45 (2008), 3699-3710. doi: 10.1016/j.ijsolstr.2007.09.018 |
[47] | P. Kielczynski, M. Szalewski, A. Balcerzak, Effect of a viscous liquid loading on love wave propagation, Int. J. Solids and Struct., 49 (2012), 2314-2319. doi: 10.1016/j.ijsolstr.2012.04.030 |
[48] | G. Nie, J. Liu, Y. Kong,SH Waves in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 piezoelectric layered structures loaded with viscous liquid, Acta Mechanica Solida Sinica, 29 (2016), 479-489. doi: 10.1016/S0894-9166(16)30266-X |
[49] | J. Fatemi, F. V. Keulen, P. R. Onck, Generalized continuum theories; application to stress analysis in bone, Meccanica, 37 (2002), 385-396. doi: 10.1023/A:1020839805384 |
[50] | A. E. H. Love, Some Problems in Geodynamics, Cambridge University Press, London, 1911. |