Research article

Caliberating length scale parameter and micropolarity on transference of Love-type waves in composite of CoFe2O4 and Aluminium-Epoxy laden with Newtonian liquid

  • Received: 04 October 2019 Accepted: 17 January 2020 Published: 17 February 2020
  • MSC : 15A09, 65F30

  • The aim of the present study is to unravel the concealed attributes of the Love-type wave propagating in a composite of $ CoFe_2O_4 $ laden with Newtonian viscous liquid (VL), resting over Aluminium-Epoxy as a semi-infinite micropolar (MP) substrate bearing size dependent properties. The admissible boundary conditions are used to obtain the dispersion relations for both magnetically open and short cases. To support the findings and reverberations of affecting parameters, graphical representations are provided. Probable particular cases are deduced and matched with the existing result. It can be perceived from graphical representations that phase velocity of Love-type wave is remarkably affected by these parameters. Findings may have meaningful practical applications towards the optimization of magnetic sensors and transducers working in liquid environment.

    Citation: Vanita Sharma, Satish Kumar. Caliberating length scale parameter and micropolarity on transference of Love-type waves in composite of CoFe2O4 and Aluminium-Epoxy laden with Newtonian liquid[J]. AIMS Mathematics, 2020, 5(3): 1820-1842. doi: 10.3934/math.2020122

    Related Papers:

  • The aim of the present study is to unravel the concealed attributes of the Love-type wave propagating in a composite of $ CoFe_2O_4 $ laden with Newtonian viscous liquid (VL), resting over Aluminium-Epoxy as a semi-infinite micropolar (MP) substrate bearing size dependent properties. The admissible boundary conditions are used to obtain the dispersion relations for both magnetically open and short cases. To support the findings and reverberations of affecting parameters, graphical representations are provided. Probable particular cases are deduced and matched with the existing result. It can be perceived from graphical representations that phase velocity of Love-type wave is remarkably affected by these parameters. Findings may have meaningful practical applications towards the optimization of magnetic sensors and transducers working in liquid environment.


    加载中


    [1] Z. Chu, M. J. PourhosseiniAsl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications, J. Phys. D: Appl. Phys., 51 (2018), 243001.
    [2] W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing, J. Phys. D: Appl. Phys., 50 (2017), 223001.
    [3] V. I. Alshits, A. N. Darinskii, J. Lothe, On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties, Wave Motion, 16 (1992), 265-283. doi: 10.1016/0165-2125(92)90033-X
    [4] W. Wei, J. Liu, D. Fang, Shear horizontal surface waves in a piezoelectric-piezomagnetic coupled layered half-space, Int. J. Nonlinear Sci., 10 (2009), 767-778.
    [5] G. Nie, J. Liu, X. Fang, Shear horizontal waves propagating in piezoelectric-piezomagnetic bilayer system with an imperfect interface, Acta Mechanica, 223 (2012), 1999-2009. doi: 10.1007/s00707-012-0680-6
    [6] L. Liu, J. Zhao, Y. Pan, Theoretical study of SH-wave propagation in periodically layered piezomagnetic structure, Int. J. Mech. Sci., 85 (2014), 45-54. doi: 10.1016/j.ijmecsci.2014.04.028
    [7] R. Hashemi, Scattering of shear waves by a two-phase multiferroic sensor embedded in a piezoelectric/piezomagnetic medium, Smart Mater. Struct., 26 (2017), 035016.
    [8] S. A. Sahu, S. Mondal, N. Dewangan, Polarized shear waves in functionally graded piezoelectric material layer sandwiched between corrugated piezomagnetic layer and elastic substrate, J. Sandw. Struct. Mater., 21 (2019), 2921-2948. doi: 10.1177/1099636217726330
    [9] S. A. Sahu, J. Baroi, Analysis of surface wave behavior in corrugated piezomagnetic layer resting on inhomogeneous half-space, Mech. Adv. Mater. Struc., 26 (2019), 639-650. doi: 10.1080/15376494.2017.1410905
    [10] S. Goyal, S. A. Sahu, S. Mondal, Modelling of Love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm-Liouville problem, Smart Mater. Struct., 28 (2019), 057001.
    [11] A. Ray, A. K. Singh, R. Kumari, Green's function technique to model Love type wave propagation due to an impulsive point source in a piezomagnetic layered structure, Mech. adv. mater. struc., (2019), 1-12.
    [12] Y. Pang, J. X. Liu, Y. S. Wang, Propagation of Rayleigh type surface waves in a transversely isotropic piezoelectric layer on a piezomagnetic half-space, J. Appl. Phys., 103 (2008), 074901.
    [13] Y. Pang, J. X. Liu, Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media, Eur. J. Mech. A/Solids, 30 (2011), 731-740. doi: 10.1016/j.euromechsol.2011.03.008
    [14] Y. Pang, Y. S. Liu, J. X. Liu, Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure, Ultrasonics, 67 (2016), 120-128. doi: 10.1016/j.ultras.2016.01.007
    [15] Y. Pang, W. Feng, J. Liu, SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface, Wav. Random Complex, 29 (2019), 580-594. doi: 10.1080/17455030.2018.1539277
    [16] S. S. Singh, Love wave at a layer medium bounded by irregular boundary surfaces, J. Vib. Control, 17 (2011), 789-795. doi: 10.1177/1077546309351301
    [17] M. Li, Y. Kong, J. Liu, Study on the propagation characteristics of SH wave in piezomagnetic piezoeletric structures, Mater. Res. Express, 6 (2019), 105707.
    [18] W. Voigt, Theoretical Studies on the Elasticity Relationships of Crystals, Abhandlungen der Gesellschaft der Wissenschaften zu Gttingen, 34 (1887).
    [19] E. Cosserat, F. Cosserat, Theory of Deformable Bodies (in French) A Hermann et Fils, Paris, 1909.
    [20] A. C. Eringen, Linear theory of micropolar elasticity, J Math Mech., 15 (1966), 909-923.
    [21] Z. Asghar, N. Ali, O. A. Beg, Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition, Results Phys., 9 (2018), 682-691. doi: 10.1016/j.rinp.2018.02.070
    [22] Z. Asghar, N. Ali, A mathematical model of the locomotion of bacteria near an inclined solid substrate: effects of different waveforms and rheological properties of couple stress slime. Can. J. Phys., 97 (2019), 537-547.
    [23] K. Javid, N. Ali, Z. Asghar, Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles, J. Braz. Soc. Mech. Sci. and Eng., 41 (2019), 483.
    [24] Z. Asghar, N. Ali, M. Sajid, Magnetic microswimmers propelling through biorheological liquid bounded within an active channel, J. Magn. Magn. Mater., 486 (2019), 165283.
    [25] R. D. Gauthier, Experimental investigation on micropolar media, Mech Micropolar Media World Science Singapore, (1982), 395-463.
    [26] G. K. Midya, On Love-type surface waves in homogeneous micropolar elastic media, Int. J. Eng. Sci., 42 (2004), 1275-1288. doi: 10.1016/j.ijengsci.2004.03.002
    [27] V. A. Eremeyev, A. Skrzat, A. Vinakurava Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction, Strength Mater+., 48 (2016), 573-582.
    [28] T. Kaur, S. K. Sharma, A. K. Singh, Influence of imperfectly bonded micropolar elastic half-space with non-homogeneous viscoelastic layer on propagation behavior of shear wave, Wav. Random Complex, 26 (2016), 650-670. doi: 10.1080/17455030.2016.1185191
    [29] H. Ezzin, M. B. Amor, M. H. B. Ghozlen, Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space, Ultrasonics, 69 (2016), 83-89. doi: 10.1016/j.ultras.2016.03.006
    [30] H. Ezzin, M. B. Amor, M. H. B. Ghozlen, Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates, Acta Mechanica, 228 (2017), 1071-1081. doi: 10.1007/s00707-016-1744-9
    [31] A. Khurana, S. K. Tomar, Rayleigh-type waves in nonlocal micropolar solid half-space, Ultrasonics, 73 (2017), 162-168. doi: 10.1016/j.ultras.2016.09.005
    [32] S. Kundu, A. Kumari, D. K. Pandit, Love wave propagation in heterogeneous micropolar media, Mech. Res. Commun., 83 (2017), 6-11.
    [33] R. Goyal, S. Kumar, V. Sharma, A size dependent micropolar-piezoelectric layered structure for the analysis of love wave, Wav. Random Complex, (2018), 1-18.
    [34] Z. Asghar, N. Ali, M. Waqas, M. A. Javed, An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel, Comput. Math. Appl., in press.
    [35] B. Jakoby, M. J. Vellekoop, Properties of Love waves: applications in sensors, Smart Mater. Struct., 6 (1997), 668-679. doi: 10.1088/0964-1726/6/6/003
    [36] M. J. Vellekoop, Acoustic wave sensors and their technology, Ultrasonics, 36 (1998), 7-14. doi: 10.1016/S0041-624X(97)00146-7
    [37] W. Wang, H. Oh, K. Lee, S. Yang, Enhanced sensitivity of wireless chemical sensor based on Love wave mode, Jpn. J. Appl. Phys., 47 (2008), 7372-7379. doi: 10.1143/JJAP.47.7372
    [38] C. Zhang, J. J. Caron, J. F. Vetelino, The Bleustein-Gulyaev wave for liquid sensing applications, Sensors and Actuators B: Chemical, 76 (2001), 64-68.
    [39] A. Vikstrom, M. V. Voinova, Soft film dynamics of SH-SAW sensors in viscous and viscoelastic fluids, Sens. Biosensing Res., 11 (2016), 78-85. doi: 10.1016/j.sbsr.2016.08.004
    [40] Z. Asghar, N. Ali, M. Sajid, Interaction of gliding motion of bacteria with rheological properties of the slime, Math. Biosci., 290 (2017), 31-40. doi: 10.1016/j.mbs.2017.05.009
    [41] Z. Asghar, N. Ali, M. Sajid, Mechanical effects of complex rheological liquid on a microorganism propelling through a rigid cervical canal: swimming at low Reynolds number, J. Braz. Soc. Mech. Sci. and Eng., 40 (2018), 1-16. doi: 10.1007/s40430-017-0921-7
    [42] Z. Asghar, N. Ali, R. Ahmed, M. Waqas, W. A. Khan, A mathematical framework for peristaltic flow analysis of non-newtonian sisko fluid in an undulating porous curved channel with heat and mass transfer effects, Comput. Meth. Prog. Bio., (2019), 105040.
    [43] B. D. Zaitsev, I. E. Kuznetsova, S. G. Joshi, Acoustic waves in piezoelectric plates bordered with viscous and conductive liquid, Ultrasonics, 39 (2001), 45-50. doi: 10.1016/S0041-624X(00)00040-8
    [44] J. Du, K. Xian, J. Wang, Y. K. Yong, Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid, A. Mech. Solida Sin., 21 (2008), 542-558. doi: 10.1007/s10338-008-0865-7
    [45] J. Du, K. Xian, Y. K. Yong, J. Wang, SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid, Acta Mechanica, 212 (2010), 271-281. doi: 10.1007/s00707-009-0258-0
    [46] F. L. Guo, R. Sun, Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid, Int. J. Solids and Struct., 45 (2008), 3699-3710. doi: 10.1016/j.ijsolstr.2007.09.018
    [47] P. Kielczynski, M. Szalewski, A. Balcerzak, Effect of a viscous liquid loading on love wave propagation, Int. J. Solids and Struct., 49 (2012), 2314-2319. doi: 10.1016/j.ijsolstr.2012.04.030
    [48] G. Nie, J. Liu, Y. Kong,SH Waves in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 piezoelectric layered structures loaded with viscous liquid, Acta Mechanica Solida Sinica, 29 (2016), 479-489. doi: 10.1016/S0894-9166(16)30266-X
    [49] J. Fatemi, F. V. Keulen, P. R. Onck, Generalized continuum theories; application to stress analysis in bone, Meccanica, 37 (2002), 385-396. doi: 10.1023/A:1020839805384
    [50] A. E. H. Love, Some Problems in Geodynamics, Cambridge University Press, London, 1911.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3406) PDF downloads(329) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog