Research article Special Issues

Machine learning approach of Casson hybrid nanofluid flow over a heated stretching surface

  • Received: 11 March 2024 Revised: 28 April 2024 Accepted: 06 May 2024 Published: 04 June 2024
  • MSC : 76A05, 76R05

  • The present investigation focused on the influence of magnetohydrodynamic Gold-Fe3O4 hybrid nanofluid flow over a stretching surface in the presence of a porous medium and linear thermal radiation. This article demonstrates a novel method for implementing an intelligent computational solution by using a multilayer perception (MLP) feed-forward back-propagation artificial neural network (ANN) controlled by the Levenberg-Marquard algorithm. We trained, tested, and validated the ANN model using the obtained data. In this model, we used blood as the base fluid along with Gold-Fe3O4 nanoparticles. By using the suitable self-similarity variables, the partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). After that, the dimensionless equations were solved by using the MATLAB solver in the Fehlberg method, such as those involving velocity, energy, skin friction coefficient, heat transfer rates and other variables. The goals of the ANN model included data selection, network construction, network training, and performance assessment using the mean square error indicator. The influence of key factors on fluid transport properties is presented via tables and graphs. The velocity profile decreased for higher values of the magnetic field parameter and we noticed an increasing tendency in the temperature profile. This type of theoretical investigation is a necessary aspect of the biomedical field and many engineering sectors.

    Citation: Gunisetty Ramasekhar, Shalan Alkarni, Nehad Ali Shah. Machine learning approach of Casson hybrid nanofluid flow over a heated stretching surface[J]. AIMS Mathematics, 2024, 9(7): 18746-18762. doi: 10.3934/math.2024912

    Related Papers:

  • The present investigation focused on the influence of magnetohydrodynamic Gold-Fe3O4 hybrid nanofluid flow over a stretching surface in the presence of a porous medium and linear thermal radiation. This article demonstrates a novel method for implementing an intelligent computational solution by using a multilayer perception (MLP) feed-forward back-propagation artificial neural network (ANN) controlled by the Levenberg-Marquard algorithm. We trained, tested, and validated the ANN model using the obtained data. In this model, we used blood as the base fluid along with Gold-Fe3O4 nanoparticles. By using the suitable self-similarity variables, the partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). After that, the dimensionless equations were solved by using the MATLAB solver in the Fehlberg method, such as those involving velocity, energy, skin friction coefficient, heat transfer rates and other variables. The goals of the ANN model included data selection, network construction, network training, and performance assessment using the mean square error indicator. The influence of key factors on fluid transport properties is presented via tables and graphs. The velocity profile decreased for higher values of the magnetic field parameter and we noticed an increasing tendency in the temperature profile. This type of theoretical investigation is a necessary aspect of the biomedical field and many engineering sectors.



    加载中


    [1] M. Sheikholeslami, Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer, Elsevier, 2019. https://doi.org/10.1016/C2017-0-01264-8
    [2] S. K. Das, S. U. S. Choi, H. E. Patel, Heat transfer in nanofluids—A review, Heat Transfer Eng., 27 (2006), 3–19. https://doi.org/10.1080/01457630600904593 doi: 10.1080/01457630600904593
    [3] G. Ramasekhar, P. B. A. Reddy, Entropy generation on Darcy–Forchheimer flow of Copper-Aluminium oxide/Water hybrid nanofluid over a rotating disk: Semi-analytical and numerical approaches, Sci. Iran., 30 (2023), 2245–2259. https://doi.org/10.24200/sci.2023.60134.6617 doi: 10.24200/sci.2023.60134.6617
    [4] S. R. R. Reddy, G. Ramasekhar, S. Suneetha, S. Jakeer, Entropy generation analysis on MHD Ag+Cu/blood tangent hyperbolic hybrid nanofluid flow over a porous plate, J. Comput. Biophys. Chem., 22 (2023), 881–895. https://doi.org/10.1142/S2737416523500473 doi: 10.1142/S2737416523500473
    [5] B. A. Bhanvase, D. P. Barai, S. H. Sonawane, N. Kumar, S. S. Sonawane, Intensified heat transfer rate with the use of nanofluids, In: Handbook of nanomaterials for industrial applications, Elsevier, 2018,739–750. https://doi.org/10.1016/B978-0-12-813351-4.00042-0
    [6] S. R. R. Reddy, P. B. A. Reddy, A. M. Rashad, Activation energy impact on chemically reacting eyring–powell nanofluid flow over a stretching cylinder, Arab. J. Sci. Eng., 45 (2020), 5227–5242. https://doi.org/10.1007/s13369-020-04379-9 doi: 10.1007/s13369-020-04379-9
    [7] H. Tahir, U. Khan, A. Din, Y. M. Chu, N. Muhammad, Heat transfer in a ferromagnetic chemically reactive species, J. Thermophys. Heat Transf., 35 (2021), 402–410.
    [8] N. S. Khashi'ie, N. M. Arifin, I. Pop, N. S. Wahid, Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis, Alex. Eng. J., 59 (2020), 1787–1798. https://doi.org/10.1016/j.aej.2020.04.048 doi: 10.1016/j.aej.2020.04.048
    [9] M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renew. Sust. Energ. Rev., 74 (2017), 638–670. https://doi.org/10.1016/j.rser.2017.02.073 doi: 10.1016/j.rser.2017.02.073
    [10] B. Mehta, D. Subhedar, H. Panchal, Z. Said, Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid—A review, J. Mol. Liq., 364 (2022), 120034. https://doi.org/10.1016/j.molliq.2022.120034
    [11] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluid with nanoparticles, 1995.
    [12] S. Jakeer, P. B. A. Reddy, Entropy generation on the variable magnetic field and magnetohydrodynamic stagnation point flow of Eyring–Powell hybrid dusty nanofluid: Solar thermal application, P. I. Mech. Eng. C-J. Mec., 236 (2022), 7442–7455. https://doi.org/10.1177/09544062211072457 doi: 10.1177/09544062211072457
    [13] N. S. M. Hanafi, W. A. W. Ghopa, R. Zulkifli, S. Abdullah, Z. Harun, M. R. A. Mansor, Numerical simulation on the effectiveness of hybrid nanofluid in jet impingement cooling application, Energy Rep., 8 (2022), 764–775. https://doi.org/10.1016/j.egyr.2022.07.096 doi: 10.1016/j.egyr.2022.07.096
    [14] M. M. Bhatti, R. Ellahi, Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips, Numer. Heat Tr. B- Fund., 83 (2023), 323–343. https://doi.org/10.1080/10407790.2023.2174624 doi: 10.1080/10407790.2023.2174624
    [15] M. M. Bhatti, O. A. Bég, S. Kuharat, Electromagnetohydrodynamic (EMHD) convective transport of a reactive dissipative carreau fluid with thermal ignition in a non-Darcian vertical duct, Numer. Heat Tr. A-Appl., 2023, 1–31. https://doi.org/10.1080/10407782.2023.2284333 doi: 10.1080/10407782.2023.2284333
    [16] R. Raza, R. Naz, S. Murtaza, S. I. Abdelsalam, Novel nanostructural features of heat and mass transfer of radiative Carreau nanoliquid above an extendable rotating disk, Int. J. Mod. Phys. B, 2024. https://doi.org/10.1142/S0217979224504071 doi: 10.1142/S0217979224504071
    [17] S. I. Abdelsalam, W. Abbas, A. M. Megahed, A. A. M. Said, A comparative study on the rheological properties of upper convected Maxwell fluid along a permeable stretched sheet, Heliyon, 9 (2023), e22740.https://doi.org/10.1016/j.heliyon.2023.e22740
    [18] M. M. Bhatti, K. Vafai, S. I. Abdelsalam, The role of nanofluids in renewable energy engineering, Nanomaterials, 13 (2023), 2671. https://doi.org/10.3390/nano13192671 doi: 10.3390/nano13192671
    [19] W. H. Azmi, S. N. M. Zainon, K. A. Hamid, R. Mamat, A review on thermo-physical properties and heat transfer applications of single and hybrid metal oxide nanofluids, J. Mech. Eng. Sci., 13 (2019), 5182–5211. https://doi.org/10.15282/jmes.13.2.2019.28.0425 doi: 10.15282/jmes.13.2.2019.28.0425
    [20] G. Ramasekhar, Scrutinization of BVP Midrich method for heat transfer analysis on various geometries in the presence of porous medium and thermal radiation, J. Nanofluids, 13 (2024), 100–107. https://doi.org/10.1166/jon.2024.2130 doi: 10.1166/jon.2024.2130
    [21] S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz, S. Noeiaghdam, Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate, Results Eng., 14 (2022), 100394. https://doi.org/10.1016/j.rineng.2022.100394 doi: 10.1016/j.rineng.2022.100394
    [22] S. R. R. Reddy, P. B. A. Reddy, Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution, Propuls. Power Res., 11 (2022), 129–142. https://doi.org/10.1016/j.jppr.2022.01.001 doi: 10.1016/j.jppr.2022.01.001
    [23] S. Jakeer, B. A. R. Polu, Homotopy perturbation method solution of magneto-polymer nanofluid containing gyrotactic microorganisms over the permeable sheet with Cattaneo–Christov heat and mass flux model, P. I. Mech. Eng. E-J. Pro., 236 (2022), 525–534. https://doi.org/10.1177/09544089211048993 doi: 10.1177/09544089211048993
    [24] S. Jakeer, P. B. A. Reddy, Entropy generation on EMHD stagnation point flow of hybrid nanofluid over a stretching sheet: Homotopy perturbation solution, Phys. Scr., 95 (2020), 125203. https://doi.org/10.1088/1402-4896/abc03c doi: 10.1088/1402-4896/abc03c
    [25] H. Ge-Jile, N. A. Shah, Y. M. Mahrous, P. Sharma, C. S. K. Raju, S. M. Upddhya, Radiated magnetic flow in a suspension of ferrous nanoparticles over a cone with brownian motion and thermophoresis, Case Stud. Therm. Eng., 25 (2021), 100915. https://doi.org/10.1016/j.csite.2021.100915 doi: 10.1016/j.csite.2021.100915
    [26] M. Yaseen, S. K. Rawat, N. A. Shah, M. Kumar, S. M. Eldin, Ternary hybrid nanofluid flow containing gyrotactic microorganisms over three different geometries with Cattaneo–Christov model, Mathematics, 11 (2023), 1237. https://doi.org/10.3390/math11051237 doi: 10.3390/math11051237
    [27] P. Ragupathi, N. A. Ahammad, A. Wakif, N. A. Shah, Y. Jeon, Exploration of multiple transfer phenomena within viscous fluid flows over a curved stretching sheet in the co-existence of gyrotactic micro-organisms and tiny particles, Mathematics, 10 (2022), 4133. https://doi.org/10.3390/math10214133 doi: 10.3390/math10214133
    [28] M. Ramzan, F. Ali, N. Akkurt, A. Saeed, P. Kumam, A. M. Galal, Computational assesment of Carreau ternary hybrid nanofluid influenced by MHD flow for entropy generation, J. Magn. Magn. Mater., 567 (2023), 170353. https://doi.org/10.1016/j.jmmm.2023.170353 doi: 10.1016/j.jmmm.2023.170353
    [29] G. Ramasekhar, P. B. A. Reddy, Entropy generation on EMHD Darcy-Forchheimer flow of Carreau hybrid nano fluid over a permeable rotating disk with radiation and heat generation: Homotopy perturbation solution, P. I. Mech. Eng. E-J. Pro., 237 (2023), 1179–1191. https://doi.org/10.1177/09544089221116575 doi: 10.1177/09544089221116575
    [30] G. Rasool, A. J. Chamkha, T. Muhammad, A. Shafiq, I. Khan, Darcy-forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface, Propuls. Power Res., 9 (2020), 159–168. https://doi.org/10.1016/j.jppr.2020.04.003 doi: 10.1016/j.jppr.2020.04.003
    [31] P. B. A. Reddy, R. Das, Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling, Eng. Sci. Technol., 19 (2016), 1108–1116. https://doi.org/10.1016/j.jestch.2015.12.013 doi: 10.1016/j.jestch.2015.12.013
    [32] S. Tian, N. I. Arshad, D. Toghraie, S. A. Eftekhari, M. Hekmatifar, Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid, Case Stud. Therm. Eng., 26 (2021), 101055. https://doi.org/10.1016/j.csite.2021.101055 doi: 10.1016/j.csite.2021.101055
    [33] S. Jakeer, M. L. Rupa, S. R. R. Reddy, A. M. Rashad, Artificial neural network model of non-Darcy MHD Sutterby hybrid nanofluid flow over a curved permeable surface: Solar energy applications, Propuls. Power Res., 12 (2023), 410–427. https://doi.org/10.1016/j.jppr.2023.07.002 doi: 10.1016/j.jppr.2023.07.002
    [34] C. G. N. Ketchate, P. T. Kapen, D. Fokwa, G. Tchuen, Stability analysis of non-Newtonian blood flow conveying hybrid magnetic nanoparticles as target drug delivery in presence of inclined magnetic field and thermal radiation: Application to therapy of cancer, Inform. Med. Unlocked, 27 (2021), 100800. https://doi.org/10.1016/j.imu.2021.100800 doi: 10.1016/j.imu.2021.100800
    [35] U. Khan, A. Zaib, A. Ishak, Magnetic field effect on Sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip, Mathematics, 9 (2021), 921. https://doi.org/10.3390/math9090921 doi: 10.3390/math9090921
    [36] M. A. Basit, U. Farooq, M. Imran, N. Fatima, A. Alhushaybari, S. Noreen, et al., Comprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: Numerical and computational approach, Alex. Eng. J., 72 (2023), 19–36. https://doi.org/10.1016/j.aej.2023.03.077
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(684) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog