In this paper, we present a novel family of soft sets named "finite soft-open sets". The purpose of investigating this kind of soft sets is to offer a new tool to structure topological concepts that are stronger than their existing counterparts produced by soft-open sets and their well-known extensions, as well as to provide an environment that preserves some topological characteristics that have been lost in the structures generated by celebrated extensions of soft-open sets, such as the distributive property of a soft union and intersection for soft closure and interior operators, respectively. We delve into a study of the properties of this family and explore its connections with other known generalizations of soft-open sets. We demonstrate that this family strictly lies between the families of soft-clopen and soft-open sets and derive under which conditions they are equivalent. One of the unique features of this family that we introduce is that it constitutes an infra soft topology and fails to be a supra soft topology. Then, we make use of this family to exhibit some operators in soft settings, i.e., soft $ fo $-interior, $ fo $-closure, $ fo $-boundary, and $ fo $-derived. In addition, we formulate three types of soft continuity and look at their main properties and how they behave under decomposition theorems. Transition of these types between realms of soft topologies and classical topologies is examined with the help of counterexamples. On this point, we bring to light the role of extended soft topologies to validate the properties of soft topologies by exploring them for classical topologies and vice-versa.
Citation: Tareq M. Al-shami, Abdelwaheb Mhemdi, Alaa M. Abd El-latif, Fuad A. Abu Shaheen. Finite soft-open sets: characterizations, operators and continuity[J]. AIMS Mathematics, 2024, 9(4): 10363-10385. doi: 10.3934/math.2024507
In this paper, we present a novel family of soft sets named "finite soft-open sets". The purpose of investigating this kind of soft sets is to offer a new tool to structure topological concepts that are stronger than their existing counterparts produced by soft-open sets and their well-known extensions, as well as to provide an environment that preserves some topological characteristics that have been lost in the structures generated by celebrated extensions of soft-open sets, such as the distributive property of a soft union and intersection for soft closure and interior operators, respectively. We delve into a study of the properties of this family and explore its connections with other known generalizations of soft-open sets. We demonstrate that this family strictly lies between the families of soft-clopen and soft-open sets and derive under which conditions they are equivalent. One of the unique features of this family that we introduce is that it constitutes an infra soft topology and fails to be a supra soft topology. Then, we make use of this family to exhibit some operators in soft settings, i.e., soft $ fo $-interior, $ fo $-closure, $ fo $-boundary, and $ fo $-derived. In addition, we formulate three types of soft continuity and look at their main properties and how they behave under decomposition theorems. Transition of these types between realms of soft topologies and classical topologies is examined with the help of counterexamples. On this point, we bring to light the role of extended soft topologies to validate the properties of soft topologies by exploring them for classical topologies and vice-versa.
[1] | A. M. Abd El-latif, Novel types of supra soft operators via supra soft sd-sets and applications, AIMS Mathematics, 9 (2024), 6586–6602. https://doi.org/10.3934/math.2024321 doi: 10.3934/math.2024321 |
[2] | A. M. Abd El-latif, M. H. Alqahtani, Novel categories of supra soft continuous maps via new soft operators, AIMS Mathematic, 9 (2024), 7449–7470. https://doi.org/10.3934/math.2024361 doi: 10.3934/math.2024361 |
[3] | A. M. Abd El-latif, M. H. Alqahtani, New soft operators related to supra soft $\delta_i$-open sets and applications, AIMS Mathematics, 9 (2024), 3076–3096. https://doi.org/10.3934/math.2024150 doi: 10.3934/math.2024150 |
[4] | D. Abuzaid, S. A. Ghour, Three new soft separation axioms in soft topological spaces, AIMS Mathematics, 9 (2024), 4632–4648. https://doi.org/10.3934/math.2024223 doi: 10.3934/math.2024223 |
[5] | J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672 |
[6] | J. C. R. Alcantud, The semantics of N-soft sets, their applications, and a coda about three-way decision, Inform. Sciences, 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084 |
[7] | J. C. R. Alcantud, A. Z. Khameneh, G. Santos-García, M. Akram, A systematic literature review of soft set theory, Neural Comput. Applic., (2024). https://doi.org/10.1007/s00521-024-09552-x |
[8] | M. Akdag, A. Ozkan, Soft $\alpha$-open sets and soft $\alpha$-continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341, https://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341 |
[9] | S. Al Ghour, Boolean algebra of soft $Q$-sets in soft topological spaces, Appl. Comput. Intell. S., 2022 (2022), 5200590. https://doi.org/10.1155/2022/5200590 doi: 10.1155/2022/5200590 |
[10] | M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[11] | H. H. Al-jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelöf spaces via soft regular closed sets, Afr. Mat., 33 (2022), 23. https://doi.org/10.1007/s13370-021-00952-z doi: 10.1007/s13370-021-00952-z |
[12] | T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. S., 33 (2018), 1341–1356. https://doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378 |
[13] | T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119. https://doi.org/10.1007/s13370-020-00783-4 doi: 10.1007/s13370-020-00783-4 |
[14] | T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 3361604. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604 |
[15] | T. M. Al-shami, Homeomorphism and quotient mappings in infra soft topological spaces, J. Math., 2021 (2021), 3388288. https://doi.org/10.1155/2021/3388288 doi: 10.1155/2021/3388288 |
[16] | T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0 |
[17] | T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x |
[18] | T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. https://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092 |
[19] | T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978 |
[20] | T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comp. Appl. Math., 41 (2022), 216. https://doi.org/10.1007/s40314-022-01919-x doi: 10.1007/s40314-022-01919-x |
[21] | T. M. Al-shami, J. C. R. Alcantud, A. A. Azzam, Two new families of supra-soft topological spaces defined by separation axioms, Mathematics, 10 (2022), 4488. https://doi.org/10.3390/math10234488 doi: 10.3390/math10234488 |
[22] | T. M. Al-shami, M. Arar, R. Abu-Gadiri, Z. A. Ameen, On weakly soft $\beta$-open sets and weakly soft $\beta$-continuity, J. Intell. Fuzzy Syst., 45 (2023), 6351–6363. https://doi.org/10.3233/JIFS-230858 doi: 10.3233/JIFS-230858 |
[23] | T. M. Al-shami, M. E. El-Shafei, On supra soft topological ordered spaces, Arab Journal of Basic and Applied Sciences, 26 (2019), 433–445. https://doi.org/10.1080/25765299.2019.1664101 doi: 10.1080/25765299.2019.1664101 |
[24] | T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. https://doi.org/10.3906/mat-2005-117 doi: 10.3906/mat-2005-117 |
[25] | T. M. Al-shami, R. A. Hosny, R. Abu-Gadiri, M. Arar, A novel approach to study soft preopen sets inspired by classical topologies, J. Intell. Fuzzy Syst., 45 (2023), 6339–6350. https://doi.org/10.3233/JIFS-230191 doi: 10.3233/JIFS-230191 |
[26] | T. M. Al-shami, R. A. Hosny, A. Mhemdi, R. Abu-Gadiri, S. Saleh, Weakly soft $b$-open sets and their usages via soft topologies: A novel approach, J. Intell. Fuzzy Syst., 45 (2023), 7727–7738. https://doi.org/10.3233/JIFS-230436 doi: 10.3233/JIFS-230436 |
[27] | T. M. Al-shami, L. D. R. Kočinac, Almost soft Menger and weakly soft Menger spaces, Appl. Comput. Math., 21 (2022), 35–51. https://doi.org/10.30546/1683-6154.21.1.2022.35 doi: 10.30546/1683-6154.21.1.2022.35 |
[28] | T. M. Al-shami, L. D. R. Kočinac, Nearly soft Menger spaces, J. Math., 2020 (2020), 3807418. https://doi.org/10.1155/2020/3807418 |
[29] | T. M. Al-shami, L. D. R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162. |
[30] | T. M. Al-shami, A. Mhemdi, On soft parametric somewhat-open sets and applications via soft topologies, Heliyon, 9 (2023), e21472. https://doi.org/10.1016/j.heliyon.2023.e21472 doi: 10.1016/j.heliyon.2023.e21472 |
[31] | T. M. Al-shami, A. Mhemdi, A weak form of soft $\alpha$-open sets and its applications via soft topologies, AIMS Mathematics, 8 (2023), 11373–11396. https://doi.org/10.3934/math.2023576 doi: 10.3934/math.2023576 |
[32] | T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, A novel framework for generalizations of soft open sets and its applications via soft topologies, Mathematics, 11 (2023), 840. https://doi.org/10.3390/math11040840. doi: 10.3390/math11040840 |
[33] | T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M. E. El-Shafei, Compactness and connectedness via the class of soft somewhat-open sets, AIMS Mathematics, 8 (2023), 815–840. https://doi.org/10.3934/math.2023040 doi: 10.3934/math.2023040 |
[34] | T. M. Al-shami, A. Mhemdi, A. A. Rawshdeh, H. H. Al-jarrah, Soft version of compact and Lindelöf spaces using soft somewhere dense sets, AIMS Mathematics, 6 (2021), 8064–8077. https://doi.org/10.3934/math.2021468 doi: 10.3934/math.2021468 |
[35] | T. M. Al-shami, A. Mhemdi, A. Rawshdeh and H. Al-jarrah, On weakly soft somewhat open sets, Rocky Mountain J. Math., 54 (2024), 13–30, https://doi.org/10.1216/rmj.2024.54.13 doi: 10.1216/rmj.2024.54.13 |
[36] | B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math. Comput. Sci., 17 (2017), 448–464. https://doi.org/10.22436/jmcs.017.04.02 doi: 10.22436/jmcs.017.04.02 |
[37] | A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Applic., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3 |
[38] | A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914 |
[39] | B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inform. Sci., 7 (2013), 287–294. http://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136 |
[40] | O. Dalkılıç, N. Demirtaş, Algorithms for Covid-19 outbreak using soft set theory: estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5 |
[41] | J. Dontchev, On submaximal spaces, Tamkang J. Math., 26 (1995), 243–250. https://doi.org/10.5556/j.tkjm.26.1995.4402 |
[42] | M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. https://doi.org/10.2298/FIL1813755E doi: 10.2298/FIL1813755E |
[43] | S. A. El-Sheikh, R. A. Hosny, A. M. A. El-latif, Characterizations of b-soft separation axioms in soft topological spaces, Inf. Sci. Lett., 4 (2015), 125–133. |
[44] | F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6 |
[45] | K. Hayat, M. I. Ali, F. Karaaslan, B. Y. Cao, M. H. Shah, Design concept evaluation using soft sets based on acceptable and satisfactory levels: an integrated TOPSIS and Shannon entropy, Soft Comput., 24 (2020), 2229–2263. https://doi.org/10.1007/s00500-019-04055-7 doi: 10.1007/s00500-019-04055-7 |
[46] | K. Hayat, B. Y. Cao, M. I. Ali, F. Karaaslan, Z. Qin, Characterizations of certain types of type 2 soft graphs, Discrete Dyn. Nat. Soc., 2018 (2018), 8535703. https://doi.org/10.1155/2018/8535703 doi: 10.1155/2018/8535703 |
[47] | T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform., 8 (2014), 511–525. |
[48] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft semi separation axioms and some types of soft functions, Ann. Fuzzy Math. Inform., 8 (2014), 305–318. |
[49] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025 |
[50] | M. Kirişci, $\Omega$-soft sets and medical decision-making application, Int. J. Comput. Math., 98 (2021), 690–704. https://doi.org/10.1080/00207160.2020.1777404 doi: 10.1080/00207160.2020.1777404 |
[51] | L. D. R. Kočinac, T. M. Al-shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput., 25 (2021), 12693–12702. https://doi.org/10.1007/s00500-021-06069-6 doi: 10.1007/s00500-021-06069-6 |
[52] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[53] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 |
[54] | W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. https://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068 |
[55] | D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[56] | S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. |
[57] | S. K. Nazmul, S. K. Samanta, Some properties of soft topologies and group soft topologies, Ann. Fuzzy Math. Inform., 8 (2014), 645–661. |
[58] | E. Peyghan, B. Samadi, A. Tayebi, About soft topological paces, 2012, arXiv: 1202.1668. https://doi.org/10.48550/arXiv.1202.1668 |
[59] | A. A. Rawshdeh, H. H. Al-jarrah, T. M. Al-shami, Soft expandable spaces, Filomat, 37 (2023), 2845–2858. https://doi.org/10.2298/FIL2309845R |
[60] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 |
[61] | A. Singh, N. S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inform., 14 (2017), 503–513. https://doi.org/10.30948/afmi.2017.14.5.503 |
[62] | H. L. Yang, X. Liao, S. G. Li, On soft continuous mappings and soft connectedness of soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 385–398. https://doi.org/10.15672/HJMS.2015459876 doi: 10.15672/HJMS.2015459876 |
[63] | I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185. |
[64] | I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inform. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147 |